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Abstract: Earthquakes are the most dangerous natural disasters, and scholars try to predict them to
protect lives and property. Recently, a long-term statistical analysis based on a “heating core” filter
was applied to explore thermal anomalies related to earthquakes; however, some gaps are still present.
Specifically, (1) whether there are differences in thermal anomalies generated by earthquakes of dif-
ferent magnitudes has not yet been discussed; and (2) thermal anomalies in high-spatial-resolution
data are often distributed in spots, which is not convenient for statistics of thermal anomalies.
To address these issues, in this study, we applied high-spatial-resolution thermal infrared data to
explore the performance of the “heating core” for earthquake prediction at different magnitudes
(i.e., 3, 3.5, 4, 4.5, and 5). The specific steps were as follows: first, the resampling and moving-window
methods were applied to reduce the spatial resolution of the dataset and extract the suspected
thermal anomalies; second, the “heating core” filter was used to eliminate thermal noise unrelated
to the seismic activity in order to identify potential thermal anomalies; third, the time–distance–
magnitude (TDM) windows were used to establish the correspondence between earthquakes and
thermal anomalies; finally, the new 3D error diagram (false discovery rate, false negative rate, and
space–time correlation window) and the significance test method were applied to investigate the
performance under each minimum magnitude with training data, and the robustness was vali-
dated using a test dataset. The results show that the following: (1) there is no obvious difference
in the thermal anomalies produced by earthquakes of different magnitudes under the conditions
of a “heating core”, and (2) the best model with a “heating core” can predict earthquakes effec-
tively within 200 km and within 20 days of thermal anomalies’ appearance. The binary prediction
model with a “heating core” based on thermal infrared anomalies can provide some reference for
earthquake prediction.

Keywords: 3D error diagram; heating core; thermal anomaly; earthquake prediction

1. Introduction

Earthquakes, as natural disasters, are always a threat to the safety of human life and
property. Confronted with the disasters brought about by earthquakes, there is an urgent
need for research on earthquake precursors in order to improve the science and accuracy
of earthquake prediction. With the rapid development of remote sensing, the use of TIR
anomalies (TIRAs) based on remote sensing as earthquake precursors was proposed by
Gorny [1] in 1988. There are some hypotheses about seismic thermal anomalies, such as
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the one on “P-holes” [2]. This hypothesis posits that the increase in ground stress affects
the proxy bond in rocks before earthquakes, leading to the occurrence of holes due to the
electron transfer in rocks and the formation of connecting circuits in the crust, thereby
generating an electric current and causing thermal anomalies. Since then, multisource
satellite data have been widely used to study the TIRAs of earthquakes, such as data
obtained from the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors
on the Terra and Aqua satellites, the Advanced Very-High-Resolution Radiometer/2/3
(AVHRR/2/3) on the NOAA satellites, the Visible and Infrared Spin Scan Radiometer
(VISSR) on FY-2, and the Medium-Resolution Spectral Imager (MERSI) on FY-3.

In the past 30 years, researchers have conducted experiments to explore the rela-
tionships between earthquakes and TIRAs [3–13]. For example, Zhang et al. [10] used
NCEP (National Centers for Environmental Prediction) temperature data to analyze the
multilayer temperature changes before and after the 2014 Ludian earthquake in Yunnan,
using significance tests to verify that the TIRAs before the Ludian earthquake were not
accidental. Lu et al. [4] analyzed the TIRAs of 20 moderate-to-strong earthquakes in the
Tibetan region from 2010 to 2015 using microwave brightness temperature (MBT) and
outgoing longwave radiation (OLR), and the results showed that most of the earthquakes
were preceded by TIRAs. Zhong et al. [5] simultaneously investigated the TEC and TIR
during the 2017 Jiuzhaigou earthquake. The experimental results showed that a large range
of TEC anomalies appeared south of the epicenter, and the intensity of the anomalies south
of the Huarong Mountain rupture was the largest and overlapped with the area of the
TIRAs. Using land surface temperature remote sensing data as inputs, Peleli et al. [13]
applied the robust satellite technique (RST) method to detect thermal anomalies in an
earthquake, and they concluded that the thermal anomalies might be connected with the
gas release that takes place due to stress changes and is controlled by the existence of
tectonic lines and the density of the faults.

However, most of the current research focuses only on the cases with TIRAs and
ignores the earthquakes without TIRAs. Therefore, an individual earthquake case analysis
cannot be used to prove the correlation between earthquakes and TIRAs. To evaluate
the relationship between earthquakes and thermal anomalies more fairly, the importance
of conducting long-term data analysis rather than occasional attempts must be empha-
sized. Some scholars [14–20] have studied the correlation between thermal anomalies and
earthquakes in long-term statistical analyses and tried to prove the correlation between
earthquakes and thermal anomalies from a statistical point of view. Among them, the
Molchan diagram (MD) [21,22]—a plot of the false negative rate (FNR) vs. the fraction
of time occupied by alarms, and the receiver operating characteristic (ROC) [23]—a plot
of the true positive rate (TPR) vs. the false positive rate (FPR), have been adapted to
prove the relationship between earthquakes and thermal anomalies. For example, Eleft-
heriou et al. [19] carried out a long-term time-series study of TIRAs in the Greek region
between 2004 and 2013 based on the RST (robust satellite technique) algorithm, and the
results of the MD showed that the correlation between earthquakes and TIRAs was not
coincidental, although a large number of seismic events were underreported due to cloud
cover occlusion. Fu et al. [16] used outgoing longwave radiation (OLR) data in Taiwan from
2009 to 2019 to extract thermal anomalies, where only the FNR was used for evaluating the
correlation between earthquakes and thermal anomalies, and the evaluation of the false
discovery rate (FDR) was ignored. The MD was used to evaluate the performance of the
model based only on the FNR, ignoring the importance of the FDR. A high FDR indicates
that the model is unable to filter out the seismic-related thermal anomalies from a large
number of thermal anomalies. However, Zhang et al. [24] proved that the FDR and FNR are
independent of one another. People will not trust alarms with a high FDR, even when the
FNR of these alarms is low. In addition to the integrity of the evaluation indicators, their
statistical methods are also essential. Zhang et al. [18] repeated the experiments reported
in [19] and evaluated the performance of these alarms with the MD weighted by the relative
intensity (RI) index, among other methods; the results of the repeated experiments indicate
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that these alarms perform no better than a random guess. Unlike the original MD, the
RI-weighted MD [25] accounts for the prior spatial distribution of earthquakes, where the
RI quantifies the historical seismicity rates [26]. The original MD may offer inaccurate
results for inhomogeneous spatial systems, while this RI-weighted MD has also been found
to be effective for statistical analysis [18].

In addition, with the development of artificial intelligence, machine learning and deep
learning methods are increasingly being applied to earthquake prediction research [27–34].
For example, DeVries et al. [27] and Mignan et al. [28] constructed deep learning models
to predict the spatial distribution of aftershocks and evaluated the performance of their
models using the ROC. However, Parsons [35] indicated that the ROC test was ineffective
for evaluating the alarms when the earthquake distribution was spatially imbalanced.
Shodiq et al. [33] proposed an adaptive neuro-fuzzy inference system (ANFIS) based on
automatic clustering for earthquake prediction in Indonesia, and its accuracy was 70%.
Jiang et al. [34] constructed a support vector machine (SVM) to predict earthquakes in
southern China; a total of 39 earthquake cases were used, and the tests showed that the
model had a recall of 50%; however, the spatial distribution of the reference models for
these metrics was homogeneous.

To address the shortcomings of the above metrics for earthquake prediction,
Zhang et al. [24] proposed a 3D error diagram and a method for testing the significance
of inhomogeneous Poisson distribution to evaluate the performance of the earthquake
prediction. Among them, the FNR significance test was proposed by Zechar and Jordan [25].

In the extraction of the TIRAs, not all thermal anomalies are associated with seismic
activity due to human activities and weather effects. For example, lateral movements of hot air
masses and other meteorological warming processes can also produce TIRAs [36–38]. Therefore,
thermal anomalies include both seismic-related thermal anomalies—which are often referred to
as “signals”—and non-seismic-related thermal anomalies, which are referred to as “noise”. To
improve the signal/noise (S/N) ratio of TIRAs and obtain reliable alarms, some scholars have
eliminated irrelevant thermal anomalies by setting a series of conditions, such as intensity and
time continuity [15,17,19,39,40].

A large number of studies have focused on the correlation between thermal anomalies
and earthquakes, while less discussion has been devoted to the thermal anomalies gener-
ated by earthquakes of different magnitudes. In addition, medium- and low-resolution
data, such as OLR, have often been used for long-term statistical analysis [15,16]. For
high-spatial-resolution TIR data, thermal anomalies are difficult to number and statisti-
cally analyze.

In this study, first, thermal infrared data from historical periods were used to construct
a background field to extract suspected thermal infrared anomalies (STIRAs). Secondly,
two downscaling methods—resampling and moving windows—were used to reduce the
spatial resolution of the data, each with two scales of 50 km and 100 km, so as to facilitate
the integration of discrete thermal anomalies. Then, the thermal noise in the TIRAs was
removed using a “heated core” filter [15], and the screened TIRAs were called potential
TIRAs (PTIRAs). In addition, the time–distance–magnitude (TDM) windows were used
to judge whether the earthquake was related to STIRAs or PTIRAs. Finally, to obtain the
optimal parameters, a training–test method was used to divide the data into a training
dataset and a testing dataset. At the same time, the 3D error diagram was used to select
the optimal parameters in the training dataset to form the optimal binary earthquake
prediction model, and the testing dataset was used to verify whether the optimal model
could achieve effective predictions. The data from January 2014 to December 2016 were
used as the training dataset, while the data from January 2017 to December 2019 were used
as the testing dataset.

In this paper, we first introduce the TIR dataset used to extract thermal anomalies and
the geological background of the Qinghai–Tibet Plateau in Section 2. Then, in Section 3, we
introduce the rule of “heating core” under two downscaling conditions—resampling and
moving windows—as well as the evaluation method for the models. To explore the performance
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of the “heating core” under different magnitudes, the results of four sets of comparative
experiments with and without the “heating core” are shown in Section 4. Finally, the discussion
and conclusions of this study are detailed in Sections 5 and 6, respectively.

2. Dataset and Study Area

Many studies have shown the influence of clouds on thermal infrared data [36,41,42]
and found that the presence of TIRAs is influenced by cloud cover. As reported, the per-
centage of cloud coverage over the Qinghai–Tibet Plateau exceeds 50%, which is above the
global average [43]. The amount of seismic thermal anomaly information cannot be effec-
tively observed, as shown in Figure 1. To monitor the temporal and spatial changes in ther-
mal anomalies caused by earthquakes more comprehensively and continuously, we used
TRIMS LST (Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless
LST), which was introduced by Zhang et al. [44–46]. The dataset was applied to merge
aqua/terra Moderate-Resolution Imaging Spectroradiometer (MODIS) and Global/China
Land Data Assimilation System (GLDAS/CLDAS) data over the Tibetan Plateau and
the surrounding area. Then, the high- and low-frequency components of the surface
temperature, along with the spatial correlation of the surface temperature provided by
satellite thermal infrared remote sensing and reanalysis data, were used to develop a
higher-quality all-weather surface temperature dataset. The RMSE (root-mean-square
error) of the measured data from the ground station was 1.52–3.71 K, which satisfies the
accuracy requirements of this study. The spatial resolution of the data was 1 km × 1 km,
with approximate observation times at 10:30 a.m./1:30 p.m. (local solar time) in ascending
orbit and 10:30 p.m./1:30 a.m. in descending orbit. The data were downloaded from
the “National Qinghai–Tibet Plateau Science Data Center”, accessed on 20 August 2021
(http://data.tpdc.ac.cn, accessed on 25 June 2022) [47]. As the daytime data are badly
affected by the Sun, we chose the daily nighttime TRIMS LST data to extract the TIRAs
before earthquakes.
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indicates the frequency of pixels not covered by clouds of the raw TIR data in the selected period.

The Qinghai–Tibet Plateau (26◦N–40◦N, 73◦E–105◦E) is one of the four main geo-
graphic regions in China. It is located to the west of the Hengduan Mountains, north of the
Himalayas, and south of the Kunlun Mountains, Altun Mountains, and Qilian Mountains.
The Qinghai–Tibet Plateau is characterized by seismic activities with high magnitude and
a high frequency of earthquakes. Between 2000 and 2019, there were 200 earthquakes of
magnitude ≥ 5; the highest earthquake magnitude was 8.1, causing great loss of life and
economic damage. The earthquake catalog of the Qinghai–Tibet Plateau was provided by
the China Earthquake Data Center (http://data.earthquake.cn, accessed on 22 June 2022).
This study focused on the seismic data of the Tibetan Plateau with a magnitude ≥ 3 and a
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depth > 0, during the period from 2014 to 2019. The total number of earthquakes that met
the selected criteria was 1377.

The completeness of the seismic catalog is crucial. To assess the spatial and temporal
relationships between earthquakes and thermal anomalies accurately, and to reduce the
occurrence of “false alarms” due to incomplete earthquake catalogs, the Gutenberg–Richter
law [48]—which describes the magnitude of an earthquake as an exponential distribution,
logN = a− bM (where N is the total number of earthquakes with magnitude ≥M)—was
used to assess the completeness of the catalog. As shown in Figure 2b, this study analyzed
the completeness of earthquakes of magnitude 3 and above from 2000 to 2019, and the
results showed that there was a significant exponential relationship between the number of
earthquakes and their magnitude and that the catalog was complete when the earthquakes
were of magnitude 3 and above.

Figure 2. (a) The number of earthquakes that occurred from 2010 to 2019; affected by the 2008
Wenchuan earthquake, the frequency of earthquakes in that year increased significantly. (b) The
completeness examination of the earthquake catalog.

The physical mechanisms of all earthquakes—including foreshocks, mainshocks, and
aftershocks—should be the same [49,50], although some studies do not fully agree with
this assessment [51–53]. The seismic thermal anomaly precursors should be related to
the accumulation and release of seismic energy, i.e., the precursors should be related
to the magnitude of the earthquake and not to its mainshock or aftershock. The de-
clustering approach would hide the potential relationships between some TIRAs and the
“removed earthquakes”. To investigate the effects of seismic catalog de-clustering on
the performance analysis of seismic thermal anomalies, Zhang [54] used four different
de-clustering methods (window methods [55–57], Reasenberg’s methods [58], single-link
cluster analysis [59], and Zaliapin’s method [60,61]) to process the seismic catalogs. It was
found that there were significant differences between the obtained catalogs and that the
seismic catalog de-clustering methods can bring instability to the evaluation of seismic
thermal anomalies. Therefore, Zhang [54] recommends not preprocessing the seismic
catalogs with de-clustering when evaluating alert performance. For a more complete
assessment of the correlation between seismic thermal anomalies and earthquakes, the
seismic catalogs in this experiment were not de-clustering.

3. Methodology

Due to the high spatial resolution of TRIMS LST, firstly, resampling and moving
windows were applied to reduce the spatial resolution of the dataset and extract the thermal
anomalies to obtain STIRAPs (suspected thermal infrared anomaly patches). Secondly,
the “heating core” filter—including the temporal persistence rule, spatial coverage rule,
and spatial persistence rule—was used to eliminate thermal noise unrelated to the seismic
activity in order to obtain PTIRAPs (potential thermal infrared anomaly patches). Then, we
established correspondence between STIRAPs or PTIRAPs and earthquakes, including the
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predicted spatiotemporal window TD and the magnitude M. Finally, a 3D error diagram
(e.g., FDR, FNR, STCW) and significance tests for FDR/FNR were used to evaluate the
performance of earthquake prediction. In addition, based on the training dataset, the
optimal models with and without a “heating core” were selected under different minimum
magnitudes, and the testing dataset was used to validate the models. The flowchart is
shown in Figure 3.
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3.1. Thermal Anomaly Extraction Based on Resampling and Moving Windows

TIRAs are supposed to be caused by the direct or indirect influence of increasing
crustal stress [18]. Therefore, the mean daily data for years with fewer earthquakes were
used to calculate the TIR background field. Based on the statistics of the earthquake catalog
from 2000 to 2019, as shown in Figure 2, the number of earthquakes between 2000 and 2005
was relatively small, so the data from this period were selected. TIRre f (x, y, t) represents
the temperature of the TIR background field at (x, y) on day t; TIR(x, y, t, i) represents the
surface temperature at (x, y) in the year i on day t; and a and b represent the start and end
years of the data used to calculate the TIR background field, respectively.

TIRre f (x, y, t) =
1

b− a + 1

b

∑
i=a

TIR(x, y, t, i) (1)

where θ is the threshold value of the exception; if the TIR(x, y, t, j) > TIRre f (x, y, t) + θ, j ∈
{2014, 2015, 2016, 2017, 2018, 2019}, then TIR(x, y, t, j) will be regarded as a STIRA at
location (x, y) on day i, and it is possibly related to the earthquake.

For the resampling method, γ is the resampling parameter; that is, the spatial resolu-
tion of the original data is reduced by a factor of γ. The resampled data are used to calculate
the TIR background field to extract the STIRA. Under this method, (x, y) in Formula (1)
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represents the coordinate value after resampling, and the extraction of the STIRA depends
on the parameters (γ, θ).

For the moving window, (x, y) in Formula (1) is the original coordinate value; that is,
the original high-spatial-resolution TIR data are used to calculate the TIR background field
and the anomaly pixels. The pixels are marked as 1 if TIR(x, y, t, j) > TIRre f (x, y, t) + θ,
and 0 otherwise. Then, a moving window whose width and step length are both s is used
to calculate the ratio r of the anomaly pixels to all valid pixels in each window, where
f lag(x, y, t, j) represents the mark of the anomaly pixel at (x, y) in the year j and on day
t, while number(TIR(m, n, t, j)) represents the number of valid pixels; (m, n) represents
the row and column numbers where the moving window is located, and its value range
is shown in Formula (3), where N represents a set of natural numbers. µ is the thermal
anomaly ratio threshold; the moving window is considered to be the STIRA if the ratio r is
greater than µ, and the extraction of the STIRA depends on the parameters (s, θ, µ).

r =
∑
(m+1)×s
x=m×s ∑

(n+1)×s
y=n×s f lag(x, y, t, j)

number(TIR(m, n, t, j))
(2)

m ∈
[
1, int

(
max(x)

s − 1
)]
∩ N

n ∈
[
1, int

(
max(y)

s − 1
)]
∩ N

(3)

For each day, these spatial adjacent TIRAs form many patches, which are regarded
as “suspected TIRA patches” (STIRAPs). Then, we assign a different number for each
spatially separate STIRAP on each day. For example, STIRAPi,α indicates that the number
of STIRAPs this patch is α on day i.

3.2. Thermal Anomaly Filtering

The concept of “heating core”, as described by Zhang et al. [15], is used as a reference
in this paper. It assumes that the TIRAPs caused by earthquakes should be persistent in
time and space. To extract the TIRAPs that may be related to earthquakes and to remove
thermal noise that may not be related to earthquakes, a series of spatiotemporal rules—
including temporal persistence, spatial coverage, and spatial persistence—are set. Only
if the STIRAPs satisfy the following rules are they regarded as the PTIRAPs that may be
related to earthquakes:

Temporal persistence rule: PTIRAPs should last for at least two days in the same area.

∃β ∈ R, STIRAPi,α ∩ STIRAPi+1,α 6= ∅ (4)

Spatial coverage rule: The influence range of an earthquake is limited due to the
earthquake being a local geological movement; therefore, the area of each PTIRAP should
be larger than areamin and smaller than areamax.

areamin ≤ AREA(STIRAPi,α) ≤ areamax (5)

Spatial persistence rule: The PTIRAPs should be persistent in space; that is, the
overlapped area of PTIRAPs in two consecutive days should be greater than a threshold.
Unlike the conditions of the original rule, we introduce a stricter factor iou (intersection
over union) (0 ≤ iou ≤ 1) to help us determine the threshold.

AREA
(
STIRAPi,α ∩ STIRAPi+1,β

)
AREA

(
STIRAPi,α ∪ STIRAPi+1,β

) > iou (6)

All of the STIRAPs are filtered by the above three conditions, and the STIRAP that
passes the filtering is called a PTIRAP; in other words, PIRAPs are the result of STIRAP
refinement. Each STIRAP or PTRIAP serves as an alarm for the model without a “heating
core” and the model with a “heating core”, respectively.
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3.3. Correspondence between Earthquakes and Thermal Anomalies

The time–distance–magnitude (TDM) windows judge whether the alarm is related
to the earthquake. T and D represent the time and distance ranges for warning after the
alarm occurs, respectively, while M represents the minimum magnitude for participating
in training and testing. If an earthquake of magnitude M or above occurs within the
spatiotemporal range after an alarm appears, the alarm is considered to correspond to the
earthquake; in this case, the alarm is called a successful alarm, and the earthquake is called
a successfully predicted event. Otherwise, the alarm is called a false alarm. In addition,
if the earthquake is not alerted by the spatial and temporal range of any alarm, then the
earthquake is called a missing event. The specific forms of the three rules are as follows:

Temporal rule: Tf irst < te ≤ Tlast + T, where Tf irst and Tlast represent the first and last
days of the alarm, respectively, while te denotes the time of the earthquake.

Distance rule: The Euclidean distance between the epicenter of EQ(x, y, t, m) and any
pixel of the alarm is less than or equal to D. EQ(x, y, t, m) means that an earthquake with
an epicenter of (x, y) and magnitude m occurred on day t.

Magnitude rule: The magnitude m of the earthquake is greater than or equal to M;
that is, m ≥ M.

Therefore, the correspondence between EQ(x, y, t, m) and the alarm depends on (T, D, M).

3.4. D-Molchan Diagram

The MD has been widely used in the field of earthquake prediction; it judges whether
the performance of an alarm is superior to random guessing by comparing the FNR of
the earthquake with the space–time correlation window (STCW) [26,27]. However, MDs
were originally only used to assess the relationship between the STCW and FNR, while
the FDR is ignored. A higher FDR will inevitably lead to lower confidence in the alarm.
Therefore, based on the original MD, Zhang et al. [24] used the FDR as the third axis to
compose a 3D error diagram. In this diagram, the X and Y axes represent the STCW and
FNR, respectively, and the added Z-axis represents the FDR. In addition, the vicinity of
the coordinate origin represents the best earthquake prediction model, which means a low
FNR, low FDR, and the smallest STCW. We defined an estimate to evaluate the performance
of the alarms as follows:

• TP1 (true positive 1): the number of alarms that correspond to earthquakes;
• FP (false positive): the number of alarms that do not correspond to earthquakes;
• TP2 (true positive 2): the number of earthquakes that correspond to alarms;
• FN (false negative): the number of earthquakes that do not correspond to alarms;
• FDR (false discovery rate): the ratio of the number of alarms that do not correspond to

earthquakes to the total number of alarms;
• FNR (false negative rate): the ratio of the number of earthquakes that do not corre-

spond to alarms to the total number of earthquakes;
• STCW (space–time correlation window): the ratio of the spatiotemporal range of the

warning to the total spatiotemporal range of the study area.

FDR =
FP

TP1 + FP
(7)

FNR =
FN

TP2 + FN
(8)

Loss =

√
ω1FDR2 +ω2FNR2 +ω3STCW2 (9)

where Loss represents the weighted distance from the FDR, FNR, and STCW to the coor-
dinate origin—the higher the Loss, the more serious the alarms—while ω1, ω2, and ω3
represent their respective weights. In this study, ω1 = ω2 = ω3 = 1, meaning that the
three indicators have the same importance. Moreover, the PPV (positive predictive value)
and TPR (true positive rate) were also used to evaluate the performance of the alarms in
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predicting the earthquakes. In addition to calculating the three indicators, it is necessary
to perform significance tests on the FNR and FDR to ensure that the model is effective in
predicting an earthquake, i.e., superior to random guessing. We introduce the method of
significance testing of the inhomogeneous distribution of the FNR and FDR, as follows:

Significance test for the FNR:
The purpose of the significance test for the FNR is to determine whether the model

is superior to a random guess in terms of the false negative rate. For binary earthquake
prediction, assuming that the earthquakes are all independent of one another, whether mul-
tiple earthquakes can be predicted successfully conforms to the binomial distribution, and
P1 is the “prior probability” that each earthquake can be successfully predicted. The P1value
of the significance test of the FNR is shown in Formula (10), where n represents the total
number of earthquakes, and h represents the number of successfully predicted earthquakes:

P1value =
n

∑
k=h

(
n
k

)
P1k(1− P1)n−k (10)

The MD compares the FNR of earthquakes and the fraction of space–time occupied by
the alarms. However, the original MD is not powerful for inhomogeneous distributions of
earthquakes. To obtain a more accurate estimation of P1, Zechar and Jordan [25] proposed
an MD weighted by the relative intensity (RI) index based on a spatially variable Poisson
model. The RI is the rate of past earthquakes occurring within each spatial cell [26]. The
prior probability P1 can be calculated as shown in Formula (11), where Ωalarm represents the
warning space constructed with the TIRAs as the center,ω(x, y) represents the frequency of
earthquakes at (x, y) in the study area, and Neq represents the total number of earthquakes
in the study area.

P1 =
Ωalarm ×ω(x, y)

Neq
(11)

Null hypothesis H0: The FNR of this group of earthquake-prediction alarms is no
different from random guessing. When P1value < λ and λ � 1, the null hypothesis is
rejected; that is, the group of alarms is superior to random guessing from the perspective of
the FNR.

Significance test for the FDR:
The purpose of the significance test for the FDR is to determine whether the model

is superior to a random guess in terms of the false discovery rate. A new method for
PPV-based alarms was put forward by Zhang et al. [24]. The prior probability is impacted
by (T, D, M) and the history of earthquakes. The more historical earthquakes occur, the
higher the prior probability of future earthquakes. Additionally, the prior probability
that the alarms correspond to earthquakes increases when the (T, D) is larger. Let us
assume that there is an alarm A1 composed of TIRAs lasting for two days, where Z(x, y, t)
denotes the TIRA located at (x, y) on day t. The prior probability PA1 that the alarm can
successfully predict an earthquake depends on the earthquake catalog at the location of
the alarm and the corresponding parameters (T, D, M). As

1 represents the position of the
alarm A1 in the research time and space domains. Ωearthquake(T, D, M) represents a space
constructed with a magnitude greater than or equal to M as the center, time of T, and
distance of D. Assuming that As

1 can occur on any day at this location, ft represents the
number of days that the alarm intersects with Ωearthquake(T, D, M) in a random process.
Then, the calculation method of the prior probability PA1 of the successful prediction of
the earthquake by the alarm A1 is shown in Formula (13), where Nt represents the total
number of days of the study.

A1 = Z(x1, y1, t1) ∪ · · · ∪ Z(xm, ym, t1) ∪ Z(x1, y1, t2) ∪ · · · ∪ Z(xn, yn, t2) (12)

PA1 =
ft

(
As

1 ∩Ωearthquake(T, D, M)
)

Nt
(13)
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It is assumed that there is a total of H alarms, of which the number of successful
alarms is h. Under the assumption that the predictions of earthquakes for each alarm
are independent of one another, there are 2H different combinations, among which there

are
(

h
H

)
combinations that satisfy the number of successful alarms as h. For example, if

{A1, A2, · · · , Ah} are successful alarms and {Ah+1, Ah+2, · · · , AH} are false alarms, then
the prior probability corresponding to the combination is as follows: P = PA1 × PA2 ×
· · · × PAh ×

(
1− PAh+1

)
×
(

1− PAh+2

)
∗ · · · ∗

(
1− PAH

)
.

By analogy, the prior probability of other
((

h
H

)
− 1
)

combinations can be calcu-

lated, and the prior probability of each combination can be accumulated to determine the
prior probability P(H, h). Then, the P2value of the FDR significance test is as shown in
Formula (14):

P2value =
H

∑
i=h

P(H, i) (14)

Null hypothesis H0: The FDR of this group of earthquake-prediction alarms is no
different from random guessing. When P2value < λ and λ � 1, the null hypothesis is
rejected; that is, the group of alarms is superior to random guessing from the perspective of
the FDR.

Under the condition that the level of a significance test is 0.05—that is, λ = 0.05—the
test results of the FNR and FDR are combined to divide the alarms into four types. Among
them, Type I is the best type of alarm—it is superior to random guessing, regardless of
being from the FNR or FDR perspectives; Type II is superior to random guessing only
from the perspective of the FDR; Type III is superior to random guessing only from the
perspective of the FNR; and Type IV indicates that the model cannot predict earthquakes
effectively. The specific classification conditions are shown in Table 1.

Table 1. Conditions for the classification of alarm types.

Type Condition

I P1 ≤ 0.05 and P2 ≤ 0.05
II P1 ≥ 0.05 and P2 ≤ 0.05
III P1 ≤ 0.05 and P2 ≥ 0.05
IV P1 ≥ 0.05 and P2 ≥ 0.05

3.5. Minimum Magnitude and Optional Parameters

The comprehensive filtering of thermal anomalies and the corresponding relationships
shows that STIRAPs can be used as alarms to predict an earthquake if the “heating core”
is not set, so the final result of the resampling method is determined by five parameters
(γ, θ, T, D, M). Among them, γ is 50 or 100, which means that the spatial resolution of
the original dataset is rescaled to 50 km × 50 km or 100 km × 100 km, respectively.
The final result of the moving-window method is jointly determined by six parameters
(s, θ, µ, T, D, M), where s is 50 or 100, i.e., the width and step used to extract the STIRA are
50 km × 50 km or 100 km × 100 km, respectively.

If the “heating core” is set, the PTIRAPs are used as an alarm to predict an earth-
quake. The final result of the resampling method is determined by eight parameters
(γ, θ, areamin, areamax, iou, T, D, M), and the value of γ is the same as above. The final result
of the moving-window method is jointly determined by nine parameters
(s, θ, µ, areamin, areamax, iou, T, D, M), and the value of s is the same as above. Under the two
downscaling methods, four sets of comparative experiments with or without a “heating
core” were designed to analyze the response of the “heating core” to different magnitudes.
The candidate parameters were as follows:
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The parameters in Tables 2–5 were arranged and combined to form a series of models
with or without a “heating core”. Additionally, a training–testing strategy was adopted to
evaluate the robustness of this model’s performance. Firstly, the data from January 2014
to December 2016 were used as the training dataset, while the data from January 2017 to
December 2019 were used as the testing dataset. Secondly, the models that passed both
the FDR and FNR significance tests in the training data were regarded as effective models,
where the effective models with the lowest loss were called the optimal models under
different magnitudes. Finally, the loss and the scores of the significance tests for the optimal
models under different earthquake magnitudes were evaluated based on the test dataset.
The performance of the optimal models was classified into four categories based on the
scores of the significance tests. The next section presents the effective models and optimal
models with and without a “heating core” in different magnitudes in the two extraction
methods of resampling and moving windows.

Table 2. Candidate parameters for models with/without a “heating core” when the resampling scale
is 50.

Parameter Heating Core Value

γ Yes/No 50 (km)
θ Yes/No 2, 3, 4, 5, 6, 7 (K)

areamin Yes 3, 6, 9 (50 km × 50 km)
areamax Yes 20, 30, 40 (50 km × 50 km)

iou Yes 0.1, 0.2, 0.3, 0.4, 0.5
T Yes/No 10, 20, 30, 40, 50, 60 (days)
D Yes/No 2, 4, 6, 8, 10 (50 km)
M Yes/No 3, 3.5, 4, 4.5, 5

Table 3. Candidate parameters for models with/without a “heating core” when the resampling scale
is 100.

Parameter Heating Core Value

γ Yes/No 100 (km)
θ Yes/No 2, 3, 4, 5, 6, 7 (K)

areamin Yes 2, 4, 6 (100 km × 100 km)
areamax Yes 10, 15, 20 (100 km × 100 km)

iou Yes 0.1, 0.2, 0.3, 0.4, 0.5
T Yes/No 10, 20, 30, 40, 50, 60 (day)
D Yes/No 1, 2, 3, 4, 5 (100 km)
M Yes/No 3, 3.5, 4, 4.5, 5

Table 4. Candidate parameters for models with and without a “heating core” when the moving
window scale is 50.

Parameter Heating Core Value

s Yes/No 50 (km)
µ Yes/No 0.4, 0.5, 0.6, 0.7
θ Yes/No 2, 3, 4, 5, 6, 7 (K)

areamin Yes 3, 6, 9 (50 km × 50 km)
areamax Yes 20, 30, 40 (50 km × 50 km)

iou Yes 0.1, 0.2, 0.3, 0.4, 0.5
T Yes/No 10, 20, 30, 40, 50, 60 (day)
D Yes/No 2, 4, 6, 8, 10 (50 km)
M Yes/No 3, 3.5, 4, 4.5, 5
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Table 5. Candidate parameters for models with and without a “heating core” when the moving
window scale is 100.

Parameter Heating Core Value

s Yes/No 100 (km)
µ Yes/No 0.4, 0.5, 0.6, 0.7
θ Yes/No 2, 3, 4, 5, 6, 7 (K)

areamin Yes 2, 4, 6 (100 km × 100 km)
areamax Yes 10, 15, 20 (100 km × 100 km)

iou Yes 0.1, 0.2, 0.3, 0.4, 0.5
T Yes/No 10, 20, 30, 40, 50, 60 (day)
D Yes/No 1, 2, 3, 4, 5 (100 km)
M Yes/No 3, 3.5, 4, 4.5, 5

4. Results and Analysis

As mentioned previously, we set up four sets of comparative experiments to explore
the “heating core” performance to improve the S/N ratio of seismic thermal anomalies
under different magnitudes. The experimental results after resampling at two scales are
shown in Section 4.1, while the experimental results after moving-window processing at
two scales are shown in Section 4.2.

4.1. Resampling
4.1.1. Comparison with or without a “Heating Core” When the Resampling Scale Is 50

The optimal parameters for the selected models with and without a “heating core”
under different magnitudes are shown in Figure 4. The X-axis represents the minimum
magnitude parameters—not only for earthquakes with magnitude M—and the other com-
parative experiments are the same. As shown in Figure 5, under the conditions of five
different minimum magnitude parameters, the FDR and STCW of the model with the “heat-
ing core” are smaller than those of the model without the “heating core”, indicating that
the “heating core” can effectively eliminate thermal noise that is not related to earthquakes
and improve the S/N ratio of seismic thermal anomalies. When the minimum magnitude
parameter is 3, the test result of the model with the “heating core” is Type I, which is
superior to the result of the model without the “heating core”. As the minimum magnitude
parameter increases, the FDR of the model with the “heating core” increases, and the type
drops to II or IV. Comparing the optimal parameters, it can be seen that the model with
the “heating core” sets stricter conditions to reduce the number of alarms and expand the
time–space range of the alarm. However, the “heating core” conditions are only valid for
the training dataset and lose their effect in the testing dataset.
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4.1.2. Comparison with or without a “Heating Core” When the Resampling Scale Is 100

The optimal parameters and the evaluation metrics of the 3D error diagrams under
different magnitudes are shown in Figures 6 and 7, respectively. When the minimum
magnitude parameter is 3, the test results of the models with and without the “heating core”
are superior to those of Type IV, and the test result of the model without the “heating core”
(Type II) is superior to random guessing only from the perspective of the FDR. However, the
models with a “heating core” are Type I. When the minimum magnitude parameter is 3.5,
the model without the “heating core” does not find the optimal parameter in the training
data and cannot be effectively predicted. With the increase in the minimum magnitude
parameter, the test result of the model with the “heating core” drops to Type IV, while the
model without a “heating core” is a Type II when the minimum magnitude parameter is
4.5, but its FDR is higher, meaning that it is not an ideal model.
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When the minimum magnitude parameter is 3, the type of the model with the “heating
core” in the resampling comparison experiment under the two scales is superior to that of
the model without the “heating core”, indicating that the “heating core” filter can effectively
eliminate thermal noise that is not related to earthquakes. Therefore, the S/N ratio of
seismic thermal anomalies must be improved. However, as the minimum magnitude
parameter increases, the models with and without a “heating core” cannot effectively
predict earthquakes. From the perspective of the change in the optimal parameters, the
model with a “heating core” sets more stringent filter conditions to reduce the number of
alarms and expand the warning range of a single alarm. However, this change is only valid
in the training dataset, and it performs poorly in the testing dataset.

The models with and without a “heating core” in the resampling comparison experiments
at the two scales have 40,500 and 900 sets of candidate parameters, respectively. The four 3D error
diagrams in Figure 8 indicate the effective parameters that pass the FDR and FNR significance
tests under different magnitude parameters simultaneously. The effective parameters in the
model without the “heating core” have higher STCW and FDR values in the training dataset.
When the TIRA has been filtered by the “heating core”, the FDR of the model is significantly
reduced, and the FDR increases with the increase in the minimum magnitude parameter,
indicating that the “heating core” filter cannot distinguish the signals of TIRAs generated by
earthquakes of different magnitudes and that the FDR for large earthquake predictions is high.
In addition, when the resampling scale is 100 km, the effective parameters are concentrated
in the region with a higher FNR, and the number of effective parameters is small. When the
resampling scale is 50 km, the proportion of effective parameters that pass the significance test is
higher. When assigning different weights to the FDR, FNR, or STCW, more effective parameters
provide more possibilities for selecting optimal parameters.

4.2. Moving Window
4.2.1. Comparison with or without a “Heating Core” When the Moving Window Size Is 50

The optimal parameters and the evaluation metrics of the 3D error diagrams under
different magnitudes are shown in Figures 9 and 10, respectively. When the minimum
magnitude parameter is 3.5, the model without a “heating core” does not have the optimal
parameters to pass the FNR and FDR significance tests simultaneously during the training
step, and it cannot make effective predictions. The model without a “heating core” is Type
IV under all four existing magnitude parameters. However, the model with a “heating core”
is Type III only when the minimum magnitude parameter is 3, and the test results under
other higher magnitude parameters are all Type IV. The number of earthquakes decreases
as the magnitude parameter increases, and the parameters θ and µ of the “heating core”
model increase. The number of alarms is reduced through stricter filtering conditions, but
the FDR in the training and testing datasets still rises. In predicting large earthquakes,
the “heating core” filter does not eliminate the thermal anomalies produced by lower-
magnitude earthquakes. While reducing the number of alarms, the model with a “heating
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core” increases the range of spatiotemporal warnings. As with the resampling experiment,
the change in this optimal parameter is only valid for the training dataset.
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cance tests of FNR and FDR simultaneously under different magnitude parameters: (a) the model
with a “heating core” when the resampling scale is 50, where a total of 3459 sets of parameters pass
the test; (b) the model without a “heating core” when the resampling scale is 50, where a total of 50
sets of parameters pass the test; (c) the model with a “heating core” when the resampling scale is 100,
where a total of 1337 sets of parameters pass the test; (d) the model without a “heating core” when
the resampling scale is 100, where a total of 48 sets of parameters pass the test.
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4.2.2. Comparison with or without a “Heating Core” When the Moving Window Size
Is 100

As shown in Figure 11, when the magnitude parameter is 3.5, the model without a
“heating core” has no optimal parameters in the training dataset, and the test results under
other magnitude parameters are all Type IV. The model with a “heating core” is Type III
when the minimum magnitude parameter is 3. Similar to the previous experimental results,
as the magnitude parameter increases, the “heating core” filter becomes more stringent
in filtering suspected thermal anomalies, the number of alarms decreases sharply, and
the warning range of a single alarm becomes larger. The model without a “heating core”
cannot filter for suspected thermal anomalies, increasing the FDR. As shown in Figure 12,
the FDR of the model without a “heating core” is much higher than that of the model
with a “heating core”, indicating that the “heating core” at this scale can also eliminate
thermal noise that is not related to earthquakes. From the perspective of the FNR, as the
minimum magnitude parameter increases—regardless of whether or not the model has a
“heating core”—the difference between the results of the training dataset and the results of
the testing dataset increases. In particular, when the minimum magnitude parameter is 4,
the difference between the training and test results of the “heating core” model is as high
as 0.370. This large difference between the training results and the test results indicates that
the models with or without a “heating core” have a certain degree of overfitting; that is, the
optimal parameters are only applicable to the training dataset, as they perform poorly in
the testing dataset.
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When the minimum magnitude parameter is 3, the test results of the model with
the “heating core” under the two scales of moving window are all Type III, while the
model without the “heating core” is Type IV. When the minimum magnitude parameter is
3.5, the model without a “heating core” has no optimal parameters in the training results
at either of the two scales. In the moving window comparison experiment, the models
with and without a “heating core” have 162,000 and 3600 sets of candidate parameters,
respectively. Among them, the effective parameters that pass the FDR and FNR significance
tests simultaneously are shown in the 3D error diagram in Figure 13. The FDR of the
model without the “heating core” is still higher overall. The distribution of the effective
parameters of the model with the “heating core” on the FDR axis is correlated with the
magnitude. The FDR of the model with a smaller minimum magnitude parameter is lower
and increases with the magnitude of the increase. In addition, the distribution of effective
parameters is concentrated in the area with a higher FNR and has no apparent correlation
with the magnitude parameter, and this is more obvious when the scale is 100 km.

As shown in Figure 14, in earthquake prediction, the number of alarms given by the
model with a “heating core” is far lower than that provided by the model without a “heating
core”, especially when the magnitude parameter is small; the S/N ratio of seismic thermal
anomalies is improved greatly. In the test with a minimum magnitude parameter of 3, the
resampling methods at the two scales are both Type I, while the moving window method
at the two scales is Type III. The test results of the model without a “heating core” are one
Type II alarm and three Type IV alarms. Four sets of comparative experiments show that
the model with a “heating core” has superior prediction performance, and the resampling
method is superior to the moving-window method. Except for the magnitude parameter of
3, the “heating core” performs poorly under other magnitude parameters; only when the
magnitude parameter is 5 and the moving window scale is 100 km does it produce a Type
II result, and the rest of the test results are all Type IV. It is worth mentioning that when the
magnitude parameter is 3.5, the model without a “heating core” with a resampling scale of
50 km behaves as a Type I, but the number of alarms is as high as 17,502 and the FDR is
92.37%; thus, it is not an excellent model. From this point of view, models with a “heating
core” can predict earthquakes of magnitude 3 and above effectively from the perspective of
the FDR or FNR, but the prediction of large earthquakes is insufficient.

Theoretically, the frequency of thermal anomalies should be proportional to the fre-
quency of earthquakes if the thermal anomalies are related to earthquakes. Figure 15a,b
shows the frequency of thermal anomalies before and after the thermal noise is removed by
the “heating core” filter, respectively. The distribution of STIRAs that are not removed by
the “heating core” is slightly higher in the northeastern region of the Tibetan Plateau than
in the southwestern region, and the overall distribution is relatively even. The frequency of
PTIRAs filtered by the “heating core” decreases sharply, showing three main clusters in the
northwestern, south–central, and eastern regions, while most of the thermal anomalies in
other regions are removed, which is more consistent with the frequency map of earthquake
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occurrence. This result further indicates that the “heating core” filter greatly improves the
S/N ratio of the thermal anomalies.

Comparing the four sets of experimental results, we can see that the optimal method
to reduce the spatial resolution is the resampling scale of 50 km, the optimal extraction
parameters of the STIRAs are (γ = 50, θ = 2), the optimal parameters of the “heat-
ing core” filter are (areamin = 6, areamax = 40, iou = 0.5), and the optimal window is
(T = 20, D = 4, M = 3). The spatiotemporal warning range of the optimal binary pre-
diction model is 20 days and 200 km (4 × 50 km), and the PPV in the testing dataset is
86.7%, the TPR is 52.1%, and the STCW is 41.4%. The results of the optimal model in each
subregion are shown in Figure 16. The PPV is shown in panel (a), where 63.3% of the
regions have a PPV greater than 90%, and 57.3% of the regions have a PPV of 100%. The
TPR is shown in panel (b), and the distribution is polarized, with only 29.6% of the regions
having a TPR greater than 90% and 42.3% having a TPR of 0. The STCW is shown in
panel (c), with two high values in the northwestern and south–central parts of the Tibetan
Plateau, with a maximum of 79.7%. In summary, the PPV of the optimal model applies to
the whole Qinghai–Tibet Plateau region; however, the TPR is low—especially in the central
and western regions, where the STCW is relatively low—and whether or not this is related
to the local geological background needs further analysis.
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Figure 13. Moving windows comparing the results of the parameters that pass the significance test of
the FDR and FNR simultaneously under different magnitude parameters in the experiments: (a) the
model with a “heating core” when the moving window scale is 50 km, where a total of 7005 sets of
parameters pass the test; (b) the model without a “heating core” when the moving window scale is
50 km, where a total of 355 sets of parameters pass the test; (c) the model with a “heating core” when
the moving window scale is 100 km, where a total of 8421 sets of parameters pass the test; (d) the
model without a “heating core” when the moving window scale is 100 km, where a total of 272 sets
of parameters pass the test.
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TPR of the optimal model in each subregion and the distribution histogram of the TPR, respectively;
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respectively. The white pixels represent values for each subregion that were not involved in the
calculation using the testing dataset.

5. Discussion

First, we should discuss the model’s predictive performance with a “heating core”
for different earthquake magnitudes. Previous studies have shown that a “heating core”
can effectively eliminate non-seismic thermal anomalies [15]. We must acknowledge that
researchers have paid extensive attention to earthquake prediction studies in the past.
Still, there is currently no research to show whether the thermal anomalies produced by
earthquakes of different magnitudes are different. For example, [15,19,20] only consider
earthquakes of magnitude 4 and above, neglecting to distinguish between earthquakes
of different magnitudes. Our study shows that there is no significant difference in the
thermal anomalies produced by different magnitudes under this condition. As shown in
Figures 8 and 13, the higher the magnitude parameter M, the higher the FDR corresponding
to the effective parameter. Thus, as the magnitude increases, the number of earthquakes
decreases, and the “heating core” reduces the number of alarms through more stringent
filtering methods to match with earthquakes of higher magnitudes in the training dataset.
However, in the testing dataset, these optimal parameters appear to be no different from
random guesses. Therefore, the optimal parameters of the “heating core” in the training
dataset appear to be overfitted; that is, the “heating core” conditions that are not universally
applicable are set according to the higher-magnitude earthquakes in the training dataset,
and their performance is poor in the testing dataset. The performance in the prediction of
earthquakes with different magnitudes still needs to be explored in further studies.
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Second, we should discuss the relationship between the performance of the model
and the size of the parameters (T, D, M). Counting the number of parameters of the four
models with a “heating core” that only pass the FDR test or only pass the FNR test, we
found that the frequency of passing the FNR test in the four methods was higher than the
frequency of passing the FDR test, as shown in Figure 17. Hence, these models seem to pass
the FNR significance test more easily. P2—the average prior probability that the alarm can
predict earthquakes successfully—is related to the parameters (T, D, M). P2 is positively
correlated with the predicted temporal window (T, D) and negatively correlated with the
earthquake’s predicted magnitude (M). Therefore, we recommend that the TD be set as
small as possible in the forecasting in order to prevent the model from failing to pass the
significance test of the FDR with the large P2.
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6. Conclusions

In this study, the TRIMS LST dataset was used to extract thermal anomalies and
construct a binary prediction model for earthquakes. To facilitate the statistical analysis and
numbering of the thermal anomalies, four sets of experiments were conducted to reduce
the spatial resolution of the original data using resampling and moving windows at two
scales. The “heating core” filter was also used to remove the noise caused by non-seismic
thermal anomalies, and the effects of the “heating core” were compared in each group of
experiments. Finally, the optimal prediction model was selected based on the 3D error
diagram and the significance test. The results show the following:

(1) The downscaled spatial resolution method of resampling is superior to the moving-
window method, the downscaled spatial resolution scale of 50 km is superior to
100 km, and the “heating core” model with the resampling scale of 50 has the best
prediction performance.

(2) The model with a “heating core” has superior performance compared to the model
without a “heating core”, and the “heating core” filter greatly improves the S/N ratio
of seismic thermal anomalies. However, the “heating core” is only valid for earth-
quakes of magnitude 3 and above, and it cannot distinguish the thermal anomalies
produced by earthquakes of different magnitudes under this condition.

(3) For earthquakes of magnitude 3 and above, the test results of the resampling method
for the model with the “heating core” under the two scales are all Type I. This model
is superior to random guessing from the FNR and FDR perspectives, and the losses
are 0.647 (FDR = 13.3%, FNR = 47.9%, STCW = 41.4%) and 0.755 based on the 3D
error diagram, respectively; the best model can predict earthquakes effectively within
200 km and within 20 days of a thermal anomaly’s appearance, which can provide a
reference for earthquake prediction.
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Earthquake prediction is still one of the major scientific questions that need to be
explored urgently. The binary prediction model based on thermal infrared anomalies
presented in this paper can provide some reference for practical earthquake prediction. In
future research on earthquake prediction, hybrid prediction models could be constructed
by combining data from thermal anomalies, gas anomalies, and gravitational anomalies in
order to improve the performance of the models.
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