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Abstract: The research focus in remote sensing scene image classification has been recently shifting
towards deep learning (DL) techniques. However, even the state-of-the-art deep-learning-based
models have shown limited performance due to the inter-class similarity and the intra-class diversity
among scene categories. To alleviate this issue, we propose to explore the spatial dependencies
between different image regions and introduce patch-based discriminative learning (PBDL) for
remote sensing scene classification. In particular, the proposed method employs multi-level feature
learning based on small, medium, and large neighborhood regions to enhance the discriminative
power of image representation. To achieve this, image patches are selected through a fixed-size
sliding window, and sampling redundancy, a novel concept, is developed to minimize the occurrence
of redundant features while sustaining the relevant features for the model. Apart from multi-level
learning, we explicitly impose image pyramids to magnify the visual information of the scene images
and optimize their positions and scale parameters locally. Motivated by this, a local descriptor is
exploited to extract multi-level and multi-scale features that we represent in terms of a codeword
histogram by performing k-means clustering. Finally, a simple fusion strategy is proposed to balance
the contribution of individual features where the fused features are incorporated into a bidirectional
long short-term memory (BiLSTM) network. Experimental results on the NWPU-RESISC45, AID, UC-
Merced, and WHU-RS datasets demonstrate that the proposed approach yields significantly higher
classification performance in comparison with existing state-of-the-art deep-learning-based methods.

Keywords: scene classification; bag-of-words model; Gaussian pyramids; patch-based learning;
BiLSTM

1. Introduction

Remote sensing has received unprecedented attention due to its role in mapping land
cover [1], geographic image retrieval [2], natural hazards’ detection [3], and monitoring
changes in land cover [4]. The currently available remote sensing satellites and instruments
(e.g., IKONOS, unmanned aerial vehicles (UAVs), synthetic aperture radar) for observing
the Earth not only provide high-resolution scene images but also give us an opportunity to
study the spatial information with a fine-grained detail [5].

However, within-class diversity and between-class similarity among scene categories
are the main challenges that make it extremely difficult to distinguish the scene classes.
For instance, as shown in Figure 1a, a large intra-class or within-class diversity can be
observed such as the resort scenes appearing in different building styles but all of them
belong to the same class. Similarly, the park scenes show large differences within the same
semantic class. In addition, satellite imagery data can be influenced by differences in color
or radiation intensity due to factors such as weather, cloud coverage and mist, which,
in turn, may cause within-class diversity [6,7]. In terms of inter-class or between-class
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similarity, the challenge is caused by the appearance of the same ground objects within the
different scene classes as illustrated in Figure 1b. For instance, we can see that stadium and
playground are different classes but represent a highly semantic overlapping between scene
categories. This motivates us to focus on multi-level spatial features with small within-class
scatter but large between-class separation. Here, the “scenes” belong to a different type of
subareas extracted from large satellite images. These subareas could be different types of
land covers or objects and possess a specific semantic meaning, such as commercial area,
dense residential, sparse residential, and parking lot in a typical urban area of satellite
image [6]. With the development of modern technologies, scene classification has been an
active research field, and correctly labeling it to a predefined class is still a challenging task.

(a) The first row represents images from resort class while the second 

row belongs to park class. Within-class diversity can be observed from 

both classes.  

(b) Example of between-class similarity. First row shows images from 

stadium, church, beach, square, and medium residential classes while the 

second row images are from playground, commercial, port, center, and dense 

categories. 

Figure 1. The challenging scene images of AID dataset [6]. (a) The intra-class diversity and (b) inter-
class similarity are the main obstacles that limit the scene classification performance.

In the early days, most of the approaches focused on hand-crafted features, which
can be computed based on shape, color, or textual characteristics where commonly used
descriptors are local binary patterns (LBPs) [8], scale invariant feature transform [9], color
histogram [10], or histogram oriented gradients (HOG) [11]. A major shortcoming of
these low-level descriptors is their inability to fulfill scene understanding due to the high
diversity and non-homogeneous spatial distributions of the scene classes. In comparison to
handcrafted features, the bag-of-words (BoW) model is one of the famous mid-level (global)
representations, which became extremely popular in image analysis and classification [12],
while providing an efficient solution for aerial or satellite image scene classification [13].
It was first proposed for text analysis and then extended to images by a spatial pyramid
method (SPM) because the vanilla BoW model does not consider spatial and structural in-
formation. Specifically, the SPM method divides the images into several parts and computes
BoW histograms from each part based on the structure of local features. The histograms are
then concatenated from all image parts to make up the final representation [14]. Although
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these mid-level features are highly efficient, they may not be able to characterize detailed
structures and distinct patterns. For instance, some scene classes are represented mainly
by individual objects, e.g., runway and airport in remote sensing datasets. As a result, the
performance of BoW model remains limited when dealing with complex and challenging
scene images.

Recently, deep-learning-based methods have been successfully utilized in scene classifi-
cation and proven to be promising in extracting high-level features. For instance, Shi et al. [15]
proposed a multi-level feature fusion method based on a lightweight convolution neural
network to improve the classification performance of scene images. Yuan et al. [16] pro-
posed a multi-subset feature fusion method to integrate the global and local information
of the deep features. A dual-channel spectral feature extraction network is introduced
in [17]. Their model employs a 3D convolution kernel to directly extract multi-scale spatial
features. Then an adaptive fusion of spectral and spatial features is performed to improve
the performance. These methods testify of the importance of deep-learning-based feature
fusion. However, patch-based global feature learning has been never deeply investigated in
the BoW framework. Moreover, the authors in [18] argued that convolutional layers record
a precise position of features in the input and generate a fixed-dimensional representation
in the CNN framework. Since the pooling process decreases the size of the feature matrix
after the convolution layer, the performance of CNN remains limited in the case where key
features are minute and irregular [19]. One of the reasons is that natural images can be
mainly captured by cameras with manual or auto-focus options, which make them center-
biased [20]. However, in the case of remote sensing scene classification, images are usually
captured overhead. Therefore, using a CNN as a “black box” to classify remote sensing
images may be not good enough for complex scenes. Even though several works [21,22]
attempted to focus on critical local image patches, the role of the spatial dependency among
objects in remote sensing scene classification task remains an unsolved problem [23].

In general, patch sampling or feature learning is a critical component for building
up an intelligent system either for the CNN model or BoW-based approaches. Ideally,
special attention should be paid to image patches that are the most informative for the
classification task. This is due to the fact that objects can appear at any location in the
image [24]. Recent studies address this issue by sampling feature points based on a regular
dense grid [25] or a random strategy [26] because there is no clear consensus about which
sampling strategy is most suitable for natural scene images. Although multiscale keypoint
detectors (e.g., Harris-affine, Laplacian of Gaussian) as samplers [27] are well studied in the
computer vision community, they were not designed to find the most informative patches
for scene image classification [26]. In this paper, instead of working towards a new CNN
model or a local descriptor, we introduce a patch-based discriminative learning (PBDL) to
extract image features region by region based on small, medium, and large neighborhood
patches to fully exploit the spatial structure information in the BoW model. Here, the
definition of different neighborhood sizes is considered small, medium, or large regions
depending on the patch sizes. For instance, the patch size (4× 4) represents the small
region, the patch size (6× 6) represents the medium region, and large sizes are represented
by (8× 8), (10× 10). This is motivated by the fact that different patch sizes still exhibit
good learning ability of spatial dependencies between image region features that may help
to interpret the scene [28,29]. Figure 2 illustrates the extracted regions used in our work. In
Figure 2 from right to left: the first column images represent the dark green color due to the
patch size of (4× 4). The images in the second column show the SURF features with the
size of (6× 6). Likewise, (8× 8), and (10× 10) patch sizes are used, and their features are
displayed in the third and fourth columns, respectively. Moreover, the proposed method
also magnifies the visual information by utilizing Gaussian pyramids in a scale-space
setting to improve the classification performance. In particular, the idea of magnifying
the visual information in our work is based on generating a multi-scale representation of
an image by creating a one-parameter family of derived signals [30]. Since the proposed
multi-level learning is based on different image patch sizes, spatial receptive fields may
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overlap due to unique nature of remote sensing scene images (e.g., buildings, fields, etc.).
Thus, we also consider the sampling redundancy problem to minimize the presence of nearby
or neighboring pixels. We show that overlapping pixels can be minimized by setting pixel
stride equal to the pixel width of the feature window.

Original imagesOriginal images (6 × 6) (8 × 8) (10 × 10) (4 × 4) 

Figure 2. An illustration of different patch sizes. Given a remote sensing image, the BoW model is
designed with different image patch sizes to incorporate spatial information. Left column: Example
images from NWPU dataset. Right columns: SURF [31] features of light, medium and dark green
colors represent different spatial locations.

Next, we balance the contribution of individual patch features by proposing a simple
fusion strategy based on two motivations. Firstly, the proposed method introduces a simple
fusion strategy that can surpass the previous performance without utilizing state-of-the-art
fusion methods such as DCA [32], PCA [33], CCA [34], as previously utilized in remote
sensing domain (we further discuss this aspect in Section 4.3). The second motivation
is to evade the disadvantages of traditional dimensionality reduction techniques such as
principle component analysis (PCA) because of their data-dependent characteristic, the
computational burden of diagonalizing the covariance matrix, and the lack of guarantee
that distances in the original and projected spaces are well retained. Finally, the BiLSTM [35]
network is adopted after combining small, medium, and large scale spatial and visual
histograms to classify scene images. We demonstrate that the collaborative fusion of
the different regions (patch sizes) addresses the problem of intra-class difference, and the
aggregated multi-scale features in scale-space pyramids can be used to solve the problem
of inter-class similarity. To this end, our main contributions in this paper are summarized
as follows:

1. We present a patch-based discriminative learning to combine all the surrounding
features into a new single vector and address the problem of intra-class diversity and
inter-class similarity.

2. We demonstrate the effectiveness of patch-based learning in the BoW model for the
first time. Our method suggests that exploring visual descriptor on image regions
independently can be more effective than random sampling for the remote sensing
scene classification.

3. To enlarge the visual information, smoothing and stacking is performed by convolving
the image with Gaussian second derivatives. In this way, we integrate the fixed
regions (patches) into multiple downscaled versions of the input image in a scale-
space pyramid. By doing so, we explore more content and important information.
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4. The proposed method not only surpasses the previous BoW methods but also several
state-of-the-art deep-learning-based methods on four publicly available datasets and
achieves state-of-the-art results.

The rest of this work is organized as follows. Section 2 discusses the related literature
work of this study. Section 3 introduces the proposed PBDL for remote sensing scene
classification. Section 4 shows the experimental results of the proposed PBDL on several
public benchmark datasets. Section 5 summarizes the entire work and gives suggestions
for future research.

2. Literature Review

In the early 1970s, most of the early methods in remote sensing image analysis focused
on per-pixel analysis, through labeling each pixel in the satellite images (such as the Landsat
series) with a semantic class, because the spatial resolution of Landsat images acquired
by satellite sensor is very low where the size of a pixel is close to the sizes of the objects
of interest [7]. With the advances in remote sensing technology, the spatial resolution of
remote sensing images is increasingly finer than the typical object of interest, and the objects
are usually composed of many pixels, such that single pixels lost their semantic meanings.
In such cases, it is difficult or sometimes impoverished to recognize scene images at the
pixel level solely. In 2001, Blaschke and Strobl [36] raised the critical question “What’s
wrong with pixels?” to conclude that analyzing remote sensing images at the object level is
more efficient than the statistical analysis of single pixels. Afterward, a new paradigm of
approaches to analyze remote sensing images at the object level has dominated for the last
two decades [7].

However, pixel and object-level classification methods may not be sufficient to always
classify them correctly because pixel-based identification tasks carry little semantic mean-
ings. Under these circumstances, semantic-level remote sensing image scene classification
seeks to classify each given remote sensing image patch into a semantic class that contains
explicit semantic classes (e.g., commercial area, industrial area, and residential area). This
led to categorization of remote sensing image scene classification into three main classes
according to the employed features: human engineering-based methods, unsupervised
feature learning (or global-based methods), and deep feature learning-based methods.
Early works in scene classification required a considerable amount of engineering skills and
are mainly based on handcrafted descriptors [8,10,37,38]. These methods mainly focused
on texture, color histograms, shape, spatial and spectral information, and were invariant to
translation and rotation.

In brief, handcrafted features have their own benefits and disadvantages as well. For
instance, color features are more convenient to extract in comparison with texture and shape
features [38]. Indeed, color histograms and color moments provide discriminative features
and can be computed based on local descriptors such as local binary patterns (LBPs) [8],
scale invariant feature transform (SIFT) [9], color histogram [10], and histogram oriented
gradients (HOG) [11]. Although color-based histograms are easy to compute, they do not
convey spatial information and the high resolution of scene images makes it very difficult
to distinguish the images with the same colors. Yu et al. [39] proposed a new descriptor
called color-texture-structure (CTS) to encode color, texture, and structure features. In
their work, a dense approach was used to build the hierarchical representation of the
images. Next, the co-occurrence patterns of regions were extracted and the local descriptors
were encoded to test the discriminative capability. Tokarczyk et al. [38] proposed to use
the integral images and extract discriminative textures at different scale levels of scene
images. The features were named Randomized Quasi-Exhaustive (RQE) which are capable
of covering a large range of texture frequencies. The main advantage of extracting these
spatial cues such as color, texture, or spatial information is that they can be directly utilized
by classifiers for scene classification. On the other hand, every individual cue focused
only on one single type of feature, so it remains challenging or inadequate to illustrate the
content of the entire scene image. To overcome this limitation, Chen et al. [37] proposed a
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combination of different features such as color, structure, and texture features. To perform
the classification task, the k-nearest-neighbor (KNN) classifier and the support vector
machine classifiers (SVM) were employed and the decision level fusion was performed
to improve the performance of scene images. Zhang et al. [40] focused on the variable
selection process based on random forests to improve land cover classification.

To further improve the robustness of handcrafted descriptors, the bag-of-words (BoW)
framework has made significant progress for remote sensing image scene classification [41].
By learning global features, Khan et al. [42] investigated multiple hand-crafted color
features in the bag-of-word model. In their work, color and shape cues were used to
enhance the performance of the model. Yang et al. [43] utilized the BoW model using the
spatial co-occurrence kernel, where two spatial extensions were proposed to emphasize the
importance of spatial structure in geographic data. Vigo et al. [44] proved that incorporating
color and shape in both feature detection and extraction significantly improves the bag-
of-words based image representation. Sande et al. [45] proposed a detailed study about
the invariance properties of color descriptors. They concluded that the addition of color
descriptors over SIFT increases the classification accuracy by 8%. Lazebnik et al. [14]
proposed a spatially hierarchical pooling stage to form the spatial pyramid method (SPM).
To improve the SPM pooling stage, sparse codes (SC) of SIFT features were merged into the
traditional SPM [46]. Although, researchers have proposed several methods to achieve good
performance for land use classification, especially compared to handcrafted feature-based
methods, one of the major disadvantages of BoW is that it neglects the spatial relationships
among the patches, and the performance remains unclear, especially the localization issue
is not well understood.

Recently, most of the current state-of-the-art approaches generally rely on end-to-end
learning to obtain good feature representations. Specifically, the use of convolutional neural
networks (CNN) is the state-of-the-art framework in scene image classification. In this
case, convolutional layers convolve the local image regions independently, and pass their
results to the next layer, whereas pooling layers summarize the dimensions of data. Due
to the wide range of image resolution and the various scales of detail textures, fixed-sized
kernels are inadequate to extract scene features of different scales. Therefore, the focus of
current literature has been shifted to multi-scale and fusion methods in the scene image
classification domain, and existing deep learning methods are making full use of multi-
scale information and fusion for a better representation. For instance, Ghanbari et al. [47]
proposed a multi-scale method called dense-global-residual network to reduce the loss
of spatial information and enhance the context information. The authors used a residual
network to extract the features and a global spatial pyramid pooling module to obtain dense
multi-scale features at different levels. Zuo et al. [48] proposed a convolutional recurrent
neural network to learn the spatial dependencies between image regions and enhance
the discriminative power of image representation. The authors trained their model in an
end-to-end manner where CNN layers were used to generate mid-level features and RNN
was used for learning contextual dependencies. Huang et al. [49] proposed an end-to-end
deep learning model with multi-scale feature fusion, channel-spatial attention, and a label
correlation extraction module. Specifically, a channel-spatial attention mechanism was
used to fuse and refine multi-scale features from different layers of the CNN model.

Li et al. [50] proposed an adaptive multi-layer feature fusion model to fuse different
convolutional features with feature selection operation, rather than simple concatenation.
The authors claimed that their proposed method is flexible and can be embedded into other
neural architectures. Few-shot scene classification was introduced by proposing an end-to-
end network, called discriminative learning of adaptive match network (DLA-MatchNet)
in [51]. The authors addressed the issues of the large intraclass variances and interclass
similarity by introducing the attention mechanism into the feature learning process. In
this way, discriminative regions were extracted, which helps the classification model to
emphasize valuable feature information. Xiwen et al. [52] proposed a unified annotation
framework based on a stacked discriminative sparse autoencoder (SDSAE) and weakly
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supervised feature transferring. The results demonstrated the effectiveness of weakly su-
pervised semantic annotation in remote sensing scene classification. Rosier et al. [53] found
that fusing Earth observation and socioeconomic data lead to increases in the accuracy of
urban land use classification.

Due to the wide range of image resolution and various scales of detail textures, fixed-
sized CNN kernels are inadequate to extract scene features of different scales. Therefore,
the focus has been shifted to multi-scale, attention mechanism, and fusion methods in the
scene image classification domain, and existing deep learning methods are making full use
of multi-scale information and fusion for a better representation. The main idea behind
the attention mechanism was initially developed in 2014 for natural language processing
applications [54] based on the assumption that different weights assigned to different pieces
of information can be provided to attract the attention of the model [24].

In our work, we pay particular attention to the previous work [33] where the authors
claimed that a simple combination strategy achieves less than 1% accuracy when the fusion
of deep features (AlexNet, VGG-M, VGG-S and CaffeNet) was applied. Thus, a natural
question arises: can we combine different region features effectively and efficiently to
address scene image classification? With the exception [32], to our knowledge, this question
still remains mostly unanswered. In particular, the deep features from fully connected
layers with the DCA method were fused to improve the scene image classification in [32].
We show that raw SURF features produce good informative features to describe the images
scene with a simple concatenation of different patch-size features. Experimental results
on four public remote sensing image datasets demonstrate that combining the proposed
discriminative regions can improve performance up to 20%, 15%, 10% and 6% for NWPU,
AID, WHU-RS and UC Merced datasets, respectively.

3. The Proposed Method

The proposed approach is divided into four indispensable components: (a) estimation
of patch-based regions (b) scale-space representation (c) information fusion and (d) a
Recurrent neural network for classification purpose. We first describe the procedure of
patch-based learning. Next, we describe the proposed fusion along the classification
process of BiLSTM network. The overall procedure of the proposed approach is illustrated
in Figure 3.

Histogram Concatenation

FC

Softmax 

with output 

probabilities 

 Gaussian Pyramids K-Means Clustering

K-Means Clustering

K-Means Clustering

K-Means Clustering
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Histogram 
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Histogram 
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Classes

Figure 3. Flowchart of the proposed method. The local patches are selected by a fixed-size sliding
window, where green, orange, blue, and yellow rectangles represent the patch sizes of 10× 10, 8× 8,
6× 6, and 4× 4, respectively. Then the dense interest points are extracted with Gaussian second
derivatives without changing the size of the original image and encoded to visual vocabulary through
the k-means clustering process. Finally, a concatenated histogram is used as an input for training the
BiLSTM network.

3.1. Estimation of Patch-Based Regions

To explore the spatial relationship between scenes or sub-scenes, we propose to extract
multi-level features assuming that different regions contain discriminative characteristics
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that can be used to extract more meaningful information. Based on our observation, the
size of the neighborhood has a great impact on the scene representations and classification
performance. To demonstrate this, we first define a region over the entire image, where
the small (4× 4), medium (6× 6), and larger (8× 8), (10× 10), patch sizes are used, and
each patch is then processed individually. In particular, given an image I : Ω 7−→ RQ

where Ω = {0, 1, ..., G− 1} × {0, 1, ..., H − 1}, G and H represent the number of rows and
columns of an image, respectively. The sampling patch g is the number of sampled grids
divided by the number of pixels in an image; the objective is to determine a subset D of Ω
for a given sampling patch g, such that:

D=

{
c|c ε Ω, j(x) is in f ormative,

# C
G× H

= g
}

(1)

where c denotes the local patches (i.e., grids) defined at the image pixel x, j(x) is the
response map at x and #C represents the number of grids. In our work, we set the size
of the sampling patch g to the number of sampled patches partitioned by the number of
pixels in an image. Therefore, an image is represented by the same number of patches
that defines the representative area of the same size. Thus, four kinds of grid sampling
size (g) as mentioned above were used for each image to ensure that the output is a good
representative of the information content.

Moreover, we adopt a multi-scale representation by utilizing different scale σ sizes.
However, the natural question is whether the large scale images can provide salient features
from every scale σ, or, equivalently, whether small scaled images are enough for the
classifier. For instance, taking an equal 4× 4 pixel stride at the scale σ = 1.6, should the
proposed sampling at a 4 pixel stride be able to recognize objects at a wide variety of scales?
This is an open question that must be addressed during feature extraction stage. Recent
studies generally address this issue by sampling the feature points either uniformly or
randomly [55,56]. For uniform sampling, local patches are sampled densely within regular
sampling grids across an image with certain pixel spacing. For instance, an example image
with the neighborhood patch (4× 4) size is provided in Figure 4 to show how the local
descriptor can be exploited using a fixed-size window with a constant stride 1. Such an
approach would be sub-optimal if:

• There is not much spatial information available at the larger scales. This suggests that
larger scales should not be weighted equally.

• A large number of scale images provide more redundancy at the same pixel stride.
Since the fixed pixel stride can share overlapping, spatial closeness must be taken into
account before employing the local descriptor.

Figure 4. Predefined patch (4× 4) size before representing features over entire image.

Perhaps surprisingly, the proposed strategy has the potential to be more efficient,
exploring the salient features at a wide variety of scales. Specifically, if the proposed
sampling uses a 4 pixel strides for σ = 1.6, then it would also utilize other pixel stride of
6, 8 and 10 for higher scales σ = 6.0 to avoid ambiguity. Thus, the proposed sampling
method overcome the overlapping or redundancy problem by, first, setting the different
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patch regions, e,g., (4× 4), (6× 6), (8× 8), (10× 10), and then keeping the pixel stride
equal to the pixel width of the feature window (i.e., 4, 6, 8 and 10). By doing this, a bias, if
it exists at all, would then only be applicable at the borders of such a region, but not for the
central pixels (we further discuss this argument in Section 4.3).

3.2. Scale-Space Representation

To achieve multi-scale information of each region, we propose to use multi-scale
filtering motivated by the fact that it can adaptively integrate the edges of small and large
structures referring as image pyramids. Inspired by the Gaussian scale-space theory [57],
Hessian matrix-based extractor is used by enlarging the size of the box filter without
compromising on the size of the original image. In this way, multi-scale information could
be achieved based on a second derivative Gaussian filter and a convolution operation as
follows, see (Equations (2) and (3)):

H(X, µ) =

[
Lxx(X, µ), Lxy(X, µ)

Lxy(X, µ), Lyy(X, µ)

]
(2)

Lxx(X, µ) = I(x, y)× ∂2

∂x2 g(µ) (3)

where Lxx(X, µ) represents a second-order differentiated Gaussian filter along the xx
direction while Lxy(X, µ) and Lyy(X, µ) denotes second order differentiated Gaussian
filters and convolution operations in xy direction (diagonal) and yy direction (vertical),
respectively [58]. Since the Gaussian filter has a drawback due to a large amount of
computation, this issue is addressed by using box filters [31] which have been particularly
employed for fast implementation such as:

det(Happ) = DxxDyy − (λDxy)
2 (4)

where λ required to balance the Hessian determinant and is acquired using the Frobenius
Norm. In this way, computation amount can be significantly decreased as:

λ =

∣∣Lxy(1, 2)
∣∣
F

∣∣Dyy(9)
∣∣
F∣∣Lyy(1, 2)

∣∣
F

∣∣Dxy(9)
∣∣
F
= 0.912 ∼= 0.9 (5)

Hence, the proposed idea takes the advantage of a hybrid feature extraction scheme,
i.e., multi-scale interest points and dense sampling, where we start from a dense sampling
on regular grids with the repeatability of interest points at multiple scales. Figure 5 displays
the dense sampling, sparse interest points, and hybrid (dense interest points) scheme. Once
the scale space has been built, we utilize SURF descriptor [31] to extract the features within
a bounded search area. For an image I, image scales mi = (i = 1, 2, ..., n) are denoted as
xmi = (i = 1, 2, ..., n). Formally, for each smoothed image, the feature extracted from the
SURF is illustrated as follows:

fmi
= SURF(xmi), i = 1, 2, . . . , n (6)

where n is the number of scales, i is the index of scale, xmi is the ith scale, xmi is the region
at ith scale, and fmi is the SURF feature for xmi.
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Original image Dense sampling Interest points Dense points

Figure 5. Scene recognition with dense sampling, sparse interest points and the proposed dense
interest points.

In order to construct the visual vocabulary, we use the BoW framework that produced
a histogram through a quantization of feature space using K-means clustering. The optimal
value for K remains challenging and we select it according to the size of the dataset by
trial-and-error learning. The histogram becomes a final representation of the image.

3.3. Information Fusion

Information fusion is the process of combining multiple pieces of information to
provide more consistent, accurate, and useful information than a single piece of information.
In general, it is divided into four categories: decision level, scale level, feature level, and
pixel-level [59]. Among them, feature-level fusion has comparatively a shorter history but
is an emerging topic in remote sensing domain. The spatial relation between the proposed
regions can improve scene classification in two aspects. First, aggregating the information
of a neighborhood and its adjacent neighborhoods assists in recognizing the features
that accurately represent the scene type of the image. For instance, determining whether
farmland belongs to a forest field or a meadow requires information about its neighboring
area. Second, the natural relationship of the spatial distribution pattern of a scene helps us
to infer the scene category. An industrial area, for instance, is likely planar, and the runway
is always linear. Therefore, we select to combine four different regions based on multiscale
features, with the aim to obtain more informative and relevant features to represent the
input image. Each input image I produced four sets of a histogram of visual words, which
are generated by different pixel strides through the k-means clustering process as previously
mentioned and denoted as Q1, Q2, Q3, and Q4. Specifically, the first set of histogram of
visual words extracted from the image is Q1 = (qe1 , qe2 , . . . , qen) ∈ Rz; Rz represents the
z-dimensional vector. The second set is represented as Q2 = (qw1 , qw2 , . . . , qwn) ∈ Rw; Rw

represents the w-dimensional vector. Q1 and Q2 are the outputs of two different patch sizes.
Similarly, the third and fourth sets are represented as Q3 = (qy1 , qy2 , . . . , qyn) ∈ Ry; Ry

represents the y-dimensional vector, and Q4 = (qu1 , qu2 , . . . , qun) ∈ Ru; Ru represents the
u-dimensional vector, respectively. Information fusion is performed by the concatenation of
Q1,Q2,Q3 and Q4, and the result is denoted by Q f , which corresponds to an (z+w+ y+ u)-
dimensional vector. Thus, the fusion operation is achieved by the following formula:

Q f = Q1 ⊕Q2 ⊕Q3 ⊕Q4, Q f ∈ Rz+w+y+u (7)
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where the elements (qe1 , qe2 , ..., qen) of Q1, the elements (qw1 , qw2 , ..., qwn) of Q2, the elements
(qy1 , qy2 , ..., qyn) of Q3, and the elements of (qu1 , qu2 , ..., qun) of Q4 construct a new vector Q f
to express the fused feature vector.

3.4. Recurrent Neural Network (RNN)

The extracted multilevel and multiscale features are used as spatial sequences and
fed to a bidirectional long short-term memory (BiLSTM) [35] to capture the long-range
dependency and contextual relationship. In particular, the BiLSTM was used to exploit the
spatial dependency of features and automatically find the optimal combination through
gates mechanism. BiLSTM determines the input sequence i = i1, i2, ..., in from the opposite
order to a forward hidden sequence

−→
ft = (

−→
f1 ,
−→
f2 , ...,

−→
fn ) and a backward hidden sequence

←−
ft = (

←−
f1 ,
←−
f2 , ...,

←−
fn ). The encoded vector vt is computed by the accumulation of the final

forward and backward outputs vt = [
−→
ft ,
←−
ft ].

−→
ft = δ(W−→

f i
it + W−→

f
−→
f

−→
f t−1 + q−→

f
), (8)

←−
ft = δ(W←−

f i
it + W←−

f
←−
f

←−
f t+1 + q−→

f
), (9)

vt = W
v
−→
f

−→
ft + W

v
←−
f

←−
ft + qv (10)

where δ is the logistic sigmoid function and v = (v1, v2, ...vt..., vn) is the output sequence of
the first hidden layer.

4. Datasets and Experimental Setup

In this section, we first provide a brief description of the four databases that are used
to test and evaluate our method. Then, the implementation details and ablation analysis
are discussed and the results are compared with other state-of-the-art methods.

4.1. Datasets

UC Merced Land Use Dataset (UC-Merced): This dataset was obtained from the USGS
National Map Urban Area with a pixel resolution of one-foot [43]. It contains 21 distinctive
scene categories and each class consists of 100 images of size 256× 256× 3. Inter-class
similarity, for example, highway and architecture scenes can be easily mixed with other
scenes, such as freeways and buildings, which makes this dataset a challenging one.

WHU-RS Dataset: It was collected from satellite images of Google Earth [60]. This
dataset consists of 950 scene images and 19 classes with a size of 600× 600. Each image
varies greatly in high resolution, scale, and orientation, which makes it more complicated
than the UCM dataset.

Aerial Image Dataset (AID): There are 10, 000 images in AID dataset, which are catego-
rized into 30 scene classes [6]. Each class contains images ranging from 220 up to 420 with
the fixed size of 600× 600 pixels in the RGB space. The pixel resolution changes from about
8 m to about half a meter.

NWPU-RESISC45 Dataset: It consists of 31,500 remote sensing images divided into 45
scene classes, covering more than 100 countries and regions all over the world [61]. Each
class contains 700 images with the size of 256× 256 pixels. This dataset is acquired from
Google Earth (Google Inc., Mountain View, California, USA), where the spatial resolution
varies from 30 to 0.2 m per pixel. This is one of the largest datasets of remote sensing
images and is 15 times larger than the most widely-used UC Merced dataset. Hence, the
rich image variations, high inter-class similarity, and the large scale make the dataset even
more challenging.
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4.2. Implementation Details

To evaluate the performance on the above-mentioned datasets, the BoW was used as
the base architecture with four distinct image regions and seven adjacent Gaussian scaled
images, i.e., [1.6, 2.5, 3.5, 4.5, 5.5, 6.0, 6.4]. The vocabulary size of k in the remote sensing
domain varies from a few hundred to thousands. We set the size of visual vocabulary to
15, 000 for UC Merced, AID, NWPU, and 10, 000 for the WHU-RS dataset. The results of all
the experiments reported in our work use a 20% training ratio for NWPU, 50% for AID,
and 80% for UC Merced and WHU-RS datasets. The BiLSTM is trained using the Adam
optimizer with a gradient threshold 1, while the minibatch size of 32 with a hidden layer
dimension of 80. For the UC Merced dataset, a hidden layer dimension of 100 was used.
Initializing the BiLSTM with the right weights is a challenging task because the standard
gradient descent from random initialization can hamper the training of BiLSTM. Therefore,
we set the recurrent weights with Glorot initializer (Xavier uniform) [62] which performs
the best in all scenarios of our experiments. To decrease the computation complexity
and overfitting risk on AID and NWPU datasets, we empirically set four Gaussian scaled
images, i.e., [1.6, 2.5, 3.5, 4.5].

4.3. Ablation Study

We thoroughly validate the performance of each neighborhood size by performing
an ablation study. In Table 1, we have reported the results of estimating PBDL on UC
Merced, WHU-RS, NWPU, and AID datasets. Our one-stage detection method on the
WHU-RS dataset with the neighborhood size of (4× 4) achieves 86.10% accuracy and the
numerical results of each category are shown in Figure 6a. The diagonal elements represent
the number of images for which the classifier predicted correctly. It can be seen that
several classes such as bridge (three images), pond (six images), farmland (three images),
residential (three images), and viaduct (two images) are misclassified. In Figure 6b, we
show that when the neighborhood size (10× 10) increases, the overall classification is
improved from 86% to 89%, which is 3% higher than the (4× 4) size. After combining
both kinds of features, we notice that images of the bridge, pond, farmland, and residential
are predicted correctly up to 99% and achieve an overall classification accuracy of 95%
as shown in Figure 6c. The final results are obtained by combining all the neighborhood
features and are displayed in Figure 6d. A significant improvement can be observed in
overall classification performance and only two images are found misclassified in the WHU
dataset. Based on these results, we conclude that a single BoW model cannot provide
state-of-the-art results without aggregating the features of discriminative regions. From
the findings of Table 2, it is evident that the BoW(1+2)+BiLSTM yields good performance
on the UC Merced dataset right from the start. When we integrate the features of different
neighborhood(1+2+3) sizes, the model further improves the performance up to 9% than the
single grid-sized BoW model. By combining all the neighborhood features, we achieved the
best performance i.e., 99%. Similarly, for NWPU and AID datasets, a significant difference
can be seen even with combining two neighborhood(1+2) sizes, and the performance is
boosted when increasing the number of neighborhood(1+2+3) sizes, surpassing 90% with
just 10% of all samples as a training sample. In addition, UC-Merced, WHU-RS, NWPU,
and AID datasets take 19,343.48 s, 22,904.76 s, 44,542.16 s, and 82,170.04 s for training,
and 601.32 s, 1452.6 s, 1452.6 s, and 19,263.92 s for testing, respectively. One can observe
that the size of the patch has a significant influence in the time consuming of the visual
vocabulary-based method. Although the time required to construct the vocabulary is in the
range of few hours, the methods provide acceptable classification performance. Thus, the
results demonstrate that the different neighborhood sizes play different roles in classifying
remote sensing scene images, and the proposed patch-based discriminative learning plays
an essential role in significantly improving the feature representation for remote sensing
scene classification.
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Figure 6. Cont.
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Figure 6. Confusion matrix of our proposed method on WHU-RS dataset by fixing the training ratio
as 80% training (a) with one-stage learning, (b) with two-stage learning, (c) with three-stage learning,
and (d) with multi-stage learning. Zoom in for a better view.
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Table 1. Patch-based analysis on each dataset.

Different Neighborhood Combinations Accuracy (%)

UC Merced dataset

1 4× 4 88.10
2 6× 6 86.79
3 8× 8 85.43
4 10× 10 84.52

WHU-RS dataset

1 4× 4 86.10
2 6× 6 88.70
3 8× 8 91.52
4 10× 10 89.52

NWPU-RESISC45 dataset

1 4× 4 67.10
2 6× 6 65.61
3 8× 8 64.52
4 10× 10 62.52

AID dataset

1 4× 4 75.60
2 6× 6 77.13
3 8× 8 78.52
4 10× 10 76.90

Table 2. The general comparison of the proposed method after information fusion in terms of
accuracy (%), training and testing time per second.

Dataset Patch-Based Fusion Accuracy Training (s) Testing (s)

UC-Merced BoW(1+2)+BiLSTM 94.10 8671.74 253.16
BoW(1+2+3)+BiLSTM 97.76 15007.61 480.74
BoW(1+2+3+4)+BiLSTM 99.57 19343.48 601.32

WHU-RS BoW(1+2)+BiLSTM 95.49 10452.38 676.3
BoW(1+2+3)+BiLSTM 98.20 17678.57 1104.5
BoW(1+2+3+4)+BiLSTM 99.63 22904.76 1452.6

NWPU BoW(1+2)+BiLSTM 89.32 21271.08 7798.06
BoW(1+2+3)+BiLSTM 94.72 32906.62 12695.59
BoW(1+2+3+4)+BiLSTM 97.13 44542.16 16594.12

AID BoW(1+2)+BiLSTM 92.77 40035.02 9131.96
BoW(1+2+3)+BiLSTM 96.51 62152.53 14697.94
BoW(1+2+3+4)+BiLSTM 98.43 82170.04 19263.92

4.3.1. Scale Factor of Gaussian Kernel

Figure 7 shows the classification performance of each scaled image based on 10× 10
neighborhood size. The PBDL extracts multi-scale dense features according to the scale
factor to control the Gaussian kernel. It can be observed that with the increase of scale
σ factor, the performance first improves and then gradually decreases after the σ = 6.0
scaled image. We conclude that including a certain range of Gaussian smoothed images can
improve the performance, but too many of them not only reduce details but also degrade
the performance.
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Figure 7. Classification accuracy of the proposed method under different Gaussian scales for
four datasets.

4.3.2. Codebook Learning

We quantitatively analyzed the performance with the SURF descriptor and standard
SPM method in the bag-of-words framework. An engaging question is how much the
performance can be improved by defining the proposed spatial locations with multi-scale
information. With this in mind, we set different vocabulary sizes for WHU-RS dataset.
The respective outcomes can be found in Figure 8. One can see that even the proposed
one-stage detection method with the neighborhood size of (4× 4) significantly outperforms
the SPM method with the vocabulary size of 10,000. Similarly, using the SURF descriptor
in the BoW framework cannot achieve the best performance and even provided more than
20% lower accuracy than ours. The training ratio was set to 80% in order to conduct the
experiments. Thus, we investigated the importance of the role played by the vocabulary size
and concluded that an extremely large vocabulary size can decrease the model performance.
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Figure 8. Comparing the performance on WHU-RS dataset with SURF-BOW [31], SPM-BOW [14],
and ours.

4.3.3. Quantitative Comparison of Different Fusion Methods

Table 3 provides a quantitative analysis based on the different sizes of the training
data. All the compared methods such as [32–34] performed feature-level fusion based on
discriminant correlation analysis (DCA), principal component analysis (PCA), or canonical
correlation analysis (CCA) to improve the scene classification performance. For instance,
the authors in [32] fused the deep neural network features based on DCA. To make the
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deep learning features more discriminant, features of different models were combined
based on PCA in [33]. The global features under the BoW framework were fused based
on CCA in [34]. In comparison with these state-of-the-art fusion methods, our proposed
fusion performs best even with the size of 30% sampling ratio.

Table 3. Comparison of classification accuracy (%) with feature-level fusion methods under different
training sizes on the WHU-RS dataset.

Train Data DCA [32] PCA [33] CCA [34] Ours

30% 93.72 ± 0.34 92.13 ± 0.32 92.88 ± 0.51 94.13 ± 0.32
40% 94.13 ± 0.11 93.88 ± 0.41 94.11 ± 0.61 95.41 ± 0.59
50% 96.82 ± 0.55 94.52 ± 0.22 95.22 ± 0.43 97.05 ± 0.41

4.3.4. Performance Comparison of Different Pixel Strides

During patch-based learning, we consider the problem of sampling redundancy.
Although different number of image patch sizes have been used in a traditional dense
feature sampling approach, the optimal pixel strides are not deeply investigated in the
literature. We show that same pixel stride (4) corresponding to the pixel width of the
feature window (4 × 4) is better suited to the domain of remote sensing scene image
classification. In this way, it allows the classifiers to consider more scales with minimal
increase in overlapping or redundancy. Table 4 shows the impact of this effective parameter
tuning. The PS represent the same pixel stride corresponding to the proposed patch sizes
while pixel stride 1 and 2 are used for comparison purpose and expressed as PS1 and PS2,
respectively. One can see that this basic modification provides improved results on all
datasets and minimized the overlapping in (x,y) space. In addition, Figure 9 visualizes the
point of redundancy.

Table 4. Comparison of classification accuracy (%) based on different pixel strides (PS) with WHU-RS
dataset. The PS1 and PS2 are corresponding to pixel stride 1 and 2. The PS represents the pixel stride
equal to the patch size (4).

Dataset PS1 PS2 PS

WHU-RS 95.54 ± 0.52 97.94 ± 0.47 99.63 ± 0.21

Figure 9. Images indicate window size and stride for each one of the three. (Left–right): sample
windows shows high redundancy. Center: sample windows with a pixel width 2 display overlapping.
Right: the proposed sample windows show negligible redundancy.

4.3.5. Visualization of Feature Structures

One of the advantages of the proposed approach is that we can interpret the classi-
fication process of the model. Especially for each stage, we can see how the features are
structured into the data space as well as their impact with respect to the different classi-
fication stages. Taking this into consideration, we employed the “t-distributed stochastic
neighboring embedding” (t-SNE) algorithm [63] and illustrated the derived embeddings
into three separated processing stages: (1) one-stage learning, (2) combined learning (PBDL),
and (3) BiLSTM classified features for the WHU dataset. The features with the patch size
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of 4× 4 in Figure 10a show that the most classes are strongly correlated, which makes
the classifier (BiLSTM) hard to separate them. We also visualize the clusters by fusing all
the neighborhood features in Figure 10b. The derived clusters indicate that the proposed
fusion reduces the correlation between similar classes and can capture more variability in
the feature space. Moreover, it could be noticed from Figure 10c that all the classes are well
separable which could potentially lead to a better performance when training BiLSTM on
remote sensing dataset.

(a) (b) (c)

Figure 10. Two-dimensional scatterplots of SURF-based BoW features generated with t-SNE over the
WHU-RS dataset. (a) Scatterplot of one-stage multi-scale features. (b) Scatterplot of features extracted
and combined from four-stage learning. (c) Features extracted from the last fully-connected layer of
BiLSTM. All points in the scatterplots are color coded by class. Zoom in for a better view.

4.4. Performance Comparison with State-Of-The-Art Methods
4.4.1. NWPU-RESISC45 Dataset

To demonstrate the superiority of the proposed method, we evaluated the performance
against several state-of-the-art classification methods on the NWPU dataset as shown in
Table 5. Especially, we choose mainstream BoW and deep-learning-based methods and
compared the performance of scene classification. It could be observed from Table 5, that the
proposed approach, by combining all neighborhood-based features, achieved the highest
overall performance of 94.20% and 97.13% using 10% and 20% training ratios, respectively.
Likewise, NWPU is found to be much more difficult than the other three datasets and our
proposed method outperforms the previous state-of-the-art method by a margin of 4%
under the training ratio of 20%. Thus, the classification performance of the proposed PBDL
shows the effectiveness of combining global-based visual features on the NWPU dataset.

Table 5. Classification accuracy (%) for the NWPU dataset with two training ratios.The results are
obtained directly from the corresponding papers.

Method 10% 20%

BoW with dense SIFT [64] 41.72 ± 0.21 44.97 ± 0.28
BOCF [64] 82.65 ± 0.31 84.32 ± 0.17

BoVW+SPM [61] 27.83 ± 0.61 32.96 ± 0.47
D-CNN [65] 89.22 ± 0.50 91.89 ± 0.22

Triple networks [66] - 92.33 ± 0.20
MDFR [67] 83.37 ± 0.26 86.89 ± 0.17

APDC-Net [68] 85.94 ± 0.22 87.84 ± 0.26
BoWK [34] - 66.87 ± 0.90

SFCNN [69] 89.89 ± 0.16 92.55 ± 0.14
Attention GANs [70] 86.11 ± 0.22 89.44 ± 0.18

MDFR [67] 83.37 ± 0.26 86.89 ± 0.17
CNN + GCN [23] 90.75 ± 0.21 92.87 ± 0.13
Color fusion [71] - 87.50 ± 0.00
Graph CNN [72] 91.39 ± 0.19 93.62 ± 0.28

AlexNet+SAFF [73] 80.05 ± 0.29 84.00 ± 0.17
VGG-VD16+SAFF [73] 84.38 ± 0.19 87.86 ± 0.14

IDCCP [74] 91.55 ± 0.16 93.76 ± 0.12
SEMSDNet [75] 91.68 ± 0.39 93.89 ± 0.63

MFST [76] 92.64 ± 0.08 94.90 ± 0.06
T-CNN [77] 90.25 ± 0.14 93.05 ± 0.12

PBDL (The proposed) 94.20 ± 0.81 97.13 ± 0.92
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Figure 11 illustrates the confusion matrix produced by our proposed method (PBDL)
with the 20% training ratio. Each row represents the percentages of correctly and incorrectly
classified observations for each true class. Similarly, each column displays the percentages
of correctly and incorrectly classified observations for each predicted class. One can see
that the classification performance of 41 categories is greater than 95% where only the 14
categories achieved more than 95% accuracy in the previous methods [23]. However, one
common challenge is found that the church and palace are two confusing categories. This
prevented many existing works to surpass such a performance [23]. In our case, 25% of
images from church are mistakenly classified as a palace which is 1% high misclassification
rate than the CNN + GCN [23]. On the other side, only 0.3% of images from the palace
are mistakenly classified as an industrial area where the previous methods [23] achieve
67% [69] and 70% accuracy performance for the palace class. By analyzing the confusion
matrix on PBDL, the airport, church, and commercial area are the only challenging classes
for our proposed method. Thus, the experimental results demonstrate the proposed
method improves the discriminative ability of features and works well on the large-scale
NWPU-RESISC45 dataset.
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Figure 11. Confusion matrix of our proposed method on NWPU-RESISC45 Dataset by fixing the
training ratio as 20%. Zoom in for a better view.

4.4.2. AID Dataset

We evaluate and report the comparison results against the existing state-of-the-art
classification methods for the AID dataset in Table 6 It could be observed that PBDL
achieved the overall accuracy of 96.11% and 98.43% using 20% and 50% training ratios,
respectively. As can be seen from Table 6, our method outperformed the SEMSDNet [75]
with increases in the overall performance of 1.88% and 0.79% under both training ratios.
Thus, our proposed method, by combining all the neighborhood features, verifies the
effectiveness of multi-level and multi-scale feature fusion.
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Table 6. Classification accuracy (%) for the AID dataset with two training ratios.The results are
obtained directly from the corresponding papers.

Method 20% 50%

Fusion by addition [32] - 91.87 ± 0.36
D-CNN [65] 90.82 ± 0.16 96.89 ± 0.10
MDFR [67] 90.62 ± 0.27 93.37 ± 0.29

APDC-Net [68] 88.56 ± 0.29 92.15 ± 0.29
SFCNN [69] 94.93 ± 0.31 96.89 ± 0.10

Attention GANs [70] 93.97 ± 0.23 96.03 ± 0.16
CNN + GCN [23] 94.93 ± 0.31 96.89 ± 0.10
Color fusion [71] - 94.00 ± 0.00

AlexNet+SAFF [73] 87.51 ± 0.36 91.83 ± 0.27
VGG-VD16+SAFF [73] 90.25 ± 0.29 93.83 ± 0.28

Graph CNN [72] 93.06 ± 0.26 95.78 ± 0.37
IDCCP [74] 94.80 ± 0.18 96.95 ± 0.13

SEMSDNet [75] 94.23 ± 0.63 97.64 ± 0.51
MFST [76] 96.23 ± 0.08 97.38 ± 0.08

T-CNN [77] 94.55 ± 0.27 96.72 ± 0.23

PBDL (The proposed) 96.11 ± 0.81 98.43 ± 0.33

Figure 12 represents the confusion matrix generated by PBDL with the 50% training
ratio. As can be seen from Figure 13, the classification performance of all the categories
is higher than 95%. Specifically, 4 of images from the square are mistakenly classified as
stadium, and 3 of images from commercial are misclassified as dense residential. The five
categories consisting of school, square, park, center, and resort are very confusing categories,
which prevented many existing works from getting a competitive performance [75]. For
instance, SFCNN [69] and the CNN + GCN [23] attained 70% to 91% accuracy for the class
of resort while our method achieves 100% accuracy. This confirms that despite the high
interclass similarity, the proposed method is capable of extracting robust spatial location
information to distinguish these remote sensing scene categories.
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Figure 12. Confusion matrix of our proposed method on AID Dataset by fixing the training ratio as
50%. Zoom in for a better view.
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Figure 13. Confusion matrix of our proposed method on UC Merced Dataset by fixing the training
ratio as 80%. Zoom in for a better view.

4.4.3. UC Merced Dataset

The evaluation results on the UC Merced dataset are presented in Table 7. We used an
80% training ratio. The proposed method achieves 99.71% accuracy and competes with
the previous BoW [34] approach by a margin of 2.15%. For further evaluation, a confusion
matrix of the UC Merced dataset is shown in Figure 13. A total of 3 images are misclassified
in this dataset where buildings and mobile home parks are found to be among challenging
categories for our proposed method. Thus, the proposed method is effective to classify
most of the scene categories.

Table 7. Comparison of classification accuracy (%) for the UC-Merced dataset with 80% ratios. The
results are obtained directly from the corresponding papers.

Method Accuracy (Mean ± std)

AlexNet+sum pooling [78] 94.10 ± 0.93
VGG-VD16+sum pooling [78] 91.67 ± 1.40

SPP-Net [79] 96.67 ± 0.94
GoogleNet [6] 94.31 ± 0.89
VGG-VD16 [6] 95.21 ± 1.20

DCA fusion [32] 96.90 ± 0.77
MCNN [80] 96.66 ± 0.90
D-CNN [65] 98.93 ± 0.10

Triple networks [66] 97.99 ± 0.53
VGG-VD16 +AlexNet [33] 98.81 ± 0.38

Fusion by concatenation [81] 98.10 ± 0.20
MDFR [67] 98.02 ± 0.51

APDC-Net [68] 97.05 ± 0.43
BoWK [34] 97.52 ± 0.80

Attention GANs [70] 97.69 ± 0.69
AlexNet+SAFF [73] 96.13 ± 0.97

VGG-VD16+SAFF [73] 97.02 ± 0.78
Color fusion [71] 98.10 ± 0.00
Graph CNN [72] 99.00 ± 0.43

IDCCP [74] 99.05 ± 0.20
SEMSDNet [75] 99.41 ± 0.14

T-CNN [77] 99.33 ± 0.11

PBDL (The proposed) 99.71 ± 0.11
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4.4.4. WHU-RS Dataset

Table 8 reports the comparison results of the WHU-RS dataset. As shown in Table 8, the
PBDL achieves the highest classification (99.63%) accuracy and outperforms all the previous
methods. In addition, a confusion matrix of the WHU-RS dataset is shown in Figure 6d.
Tremendous improvements can be observed in some classes such as residential, industrial,
port, pond, park, mountain, airport, and railway station. Only 2 images from commercial
and bridge categories are misclassified in this dataset. Hence, based on experimental
analysis, we argue that a combination of neighborhood sizes and multi-scale filtering is
essential to produce a robust feature representation for remote sensing scene classification.

Table 8. Comparison of classification accuracy (%) for the WHU-RS19 with 80% ratios. The results
are obtained directly from the corresponding papers.

Method Accuracy (Mean ± std)

Transferring CNNs (Case I) [82] 96.70 ± 0.00
Transferring CNNs (Case II) [82] 98.60 ± 0.00

Two-Step Categorization [83] 93.70 ± 0.57
CaffeNet [6] 94.80 ± 0.00

GoogleNet [6] 92.90 ± 0.00
VGG-VD16 [6] 95.10 ± 0.00

MDDC [84] 98.27 ± 0.53
salM3LBP-CLM [85] 96.38 ± 0.76
AlexNet-SPP-SS [79] 95.00 ± 1.12

VGG-VD19 [33] 98.16 ± 0.77
DCA by addition [32] 98.70 ± 0.22

MLF [86] 88.16 ± 2.76
Fusion by concatenation [81] 99.17 ± 0.20

D-DSML-CaffeNet [87] 96.64 ± 0.68
BoWK [34] 99.47 ± 0.60

Color fusion [71] 96.60 ± 0.00

PBDL (The proposed) 99.63 ± 0.42

5. Conclusions

This paper introduced a simple, yet very effective approach called patch-based discrim-
inative learning (PBDL) for extracting discriminative patch features. The PBCL generates
N patches for each image feature map, and the individual patches of the same image are
located at different spatial regions to achieve a more accurate representation. In particular,
these regions focus on “where” is the discriminative information, whereas aggregation
(fusion) of the neighborhood regions focuses on “what” is the scene semantic associated
with, given an input image and taking into account the complementary aspect. We showed
that patch-based learning in the BoW model significantly improves the recognition perfor-
mance compared to that obtained when using a single-level BoW alone. Experiments were
conducted on four publicly available datasets, and the results reinforced the intuition that
the use of different distributions of spatial location and visual information is crucial for
scene classification. The proposed approach is shown to have advantages over single-scale
BoW and traditional CNNs methods, especially in the situation where a large number of
training data is not available and the classification accuracy is the prime goal. A drawback
of PBDL is that it increases the computational complexity of the BoW model. Therefore, we
plan to extend our work by developing computationally efficient methods to automatically
obtain multi-level and multi-scale features without human intervention.
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