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Abstract: The aim of this study was to develop a robust methodology for evaluating the spatiotem-
poral dynamics of the inundation status in tropical wetlands with the currently available Global
Navigation Satellite System-Reflectometry (GNSS-R) data by proposing a new quality control tech-
nique called the “precision index”. The methodology was applied over the Mekong Delta, one of
the most important rice-production systems comprising aquaculture areas and natural wetlands
(e.g., mangrove forests, peatlands). Cyclone Global Navigation Satellite System (CyGNSS) constel-
lation data (August 2018–December 2021) were used to evaluate the spatiotemporal dynamics of
the reflectivity Γ over the delta. First, the reflectivity Γ, shape and size of each specular footprint
and the precision index were calibrated at each specular point and reprojected to a 0.0045◦ resolu-
tion (approximately equivalent to 500 m) grid at a daily temporal resolution (Lv. 2 product); then,
the results were obtained considering bias-causing factors (e.g., the velocity/effective scattering
area/incidence angle). The Lv. 2 product was temporally integrated every 15 days with a Kalman
smoother (+/− 14 days temporal localization with Gaussian kernel: 1σ = 5 days). By applying the
smoother, the regional-annual dynamics over the delta could be clearly visualized. The behaviors of
the GNSS-R reflectivity and the Advanced Land Observing Satellite-2 Phased-Array type L-band
Synthetic Aperture Radar-2 quadruple polarimetric scatter signals were compared and found to be
nonlinearly correlated due to the influence of the incidence angle and the effective scattering area.

Keywords: CyGNSS; GNSS-R; inundation; wetland; Mekong Delta

1. Introduction

Global Navigation Satellite System Reflectometry (GNSS-R) data have the potential
to regionalize methane (CH4) emissions from land surface images by detecting their in-
undation status. Methane is an important greenhouse gas (GHG); its global warming
potential over a 100-year horizon is 28 times higher than that of carbon dioxide (CO2) [1].
In 2011, the CH4 concentration was 1803 ppb, 150% higher than the preindustrial level,
and a predominantly biogenic post-2006 increase has also been reported [2]. Concurrently,
atmospheric methane’s δ13CCH4 value has trended towards lighter (13C-depleted) values,
implying a significant shift in the balance between the sources and sinks of CH4 [3] and
a greater contribution of biogenic CH4 emission sources rather than fuel combustion to
this rapid CH4 concentration increase [2]. Several hypotheses have been postulated for
the cause of this isotopic shift, and these hypotheses can be summarized as one or a com-
bination of the following: (i) a change in the oxidative capacity of the atmosphere [4]; (ii)
changes in the relative strengths of anthropogenic sources, such as land-use changes on
tropical wetlands to agriculture or waste and fossil fuel emissions with an overall net effect
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of increasing emissions (e.g., [5]); and (iii) an increase in natural sources such as wetlands,
potentially as a feedback effect from regional climatic change (e.g., [3]). Large gaps still
exist between top-down and bottom-up CH4 total global emissions calculations, with much
of the uncertainty associated with the emissions of wetlands and other natural emissions
categories [6,7], particularly in tropical wetlands [7–9].

Because CH4 is emitted from inundated soil, which is spatiotemporally heterogeneous
and has a flux pattern characterized by non-Gaussian/nonlinear behaviors [7], the appro-
priate evaluation of the CH4 flux requires the monitoring of the inundation status with
spatiotemporally high-resolution techniques [10]. GNSS-R data became a popular input
source in microwave remote sensing techniques following the deployment of the Cyclone
Global Navigation Satellite System (CyGNSS), an eight-microsatellite constellation data
system [11]. Every single CyGNSS microsatellite has two left-hand circular polarization
(LHCP) down-looking antennas pointing to the Earth’s surface with an inclination angle of
approximately 28 degrees on either side of the satellite ground track [12].

The data can be used to globally detect the land surface inundation status almost daily
with high-spatial-resolution L-band microwave signals (with estimated spatial resolutions
of approximately 500–7000 m [13]) compared to common passive L-band microwave ra-
diometers. A few studies have reported that the use of CyGNSS-based inundation maps for
land surface methane emission simulations improved the representation of the CH4 emis-
sion status compared to the results obtained using common wetland maps (e.g., simulating
a greater amount of CH4 emissions by detecting inundation under clouds/vegetation with
GNSS-R data [14]).

There are several studies on the detection of inundation over wetlands with GNSS-R
data e.g., [15–19]. However, the results in most studies remain spatiotemporally sparse.
In most cases, the spatiotemporal interpolation is conducted with monthly observation
datasets, or spatially interpolated with optical observation sensors e.g., [15,19]. Due to the
limitations of L-band fine-spatial-resolution microwave remote sensing data like GNSS-R,
there are only a few studies conducting the cross-validation of GNSS-R and L-band SARs
observations [15]. Furthermore, from the perspective of the application of this study, most
of the time, this sort of fine-spatial-resolution, satellite-derived wetland/inundation obser-
vation is downsampled or spatially thinned (a.k.a., superobservations) before being used
in advanced simulation modeling approaches accompanied with high computation costs
(e.g., coarse-spatial-resolution ensemble simulations or the use of superobservations to
deal with observation error covariance in data assimilation tasks) by degrading the spatial
resolution or thinning the observations (e.g., [14,20]). Due to the local heterogeneity of the
inundation status and the non-Gaussian/nonlinear characteristics of the spatiotemporal
CH4 emission distribution at the local scale [7–9], the deterioration of the spatial resolution
of data can introduce large discrepancies to the emission values obtained between the
top-down approach and bottom-up approach [6–9,20]. Therefore, the regionalization of
CH4 emissions based on high-spatial-resolution L-band microwave data as a bottom-up
approach still remains important [7–9,17]. Since most studies have used GNSS-R data
for regional-scale simulations at a relatively coarse spatial resolution compared to remote
sensing observations (e.g., 0.01◦-resolution CyGNSS-based watermasks are downsampled
to a 0.5◦ resolution to match the WetCHARTs simulation grid [14]), few studies have paid
attention to the differences among each specular point’s footprint size (i.e., the glistening
area). To rasterize each piece of specular point-scale vector data without downsampling
for use in local-scale simulations, one must consider the difference among each specular
point’s footprint size to use these signals in fine-spatial-resolution, local-scale simulations
(e.g., 10–50 m resolution irrigation models [10]). This information would also be essential
for determining the spatial localization scale to ensure efficient data assimilation by deter-
mining the spatial localization scale at each specular point and adequately addressing the
spatial observation error covariance.

More fundamentally, the amount of data of a certain quality provided by the GNSS-R
microsatellite constellation is still limited, and the observations are prone to being con-
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ducted sparsely in space; in addition, the incidence angle varies widely among specular
points, which is known to cause biases in the microwave reflectivity observations (unlike
other spatially continuous microwave remote sensing observations, such as those obtained
from passive microwave radiometers or synthetic aperture radars). The local incidence
angles of the Phased-Array L-band Synthetic Aperture Radar-2 (PALSAR-2) ScanSAR
instruments vary from 25 to 50 degrees, while CyGNSS incidence angles vary from 0 to
70 degrees [13,17]). To prepare inundation maps based on GNSS-R data for future appli-
cations or to be assimilated into simulation models, the spatiotemporal interpolation step
needs to be processed before the data can be used in applications. Therefore, an adaptive
quality control method that considers the size of each specular point and depends on each
specular point vector and incidence angle but does not require ad hoc parameter tuning
or region-specific empirical parameterization with external data, such as the normalized
differential vegetation index (NDVI) or digital elevation model (DEM) data, is essential for
this robust interpolation preprocessing step. To realize this globally consistent rasterization
at a fine spatial resolution, the authors have developed a precision index calibration scheme
implemented while processing the raw specular vector data to rasterize data while con-
sidering the differences in incidence angles and specular points’ sizes/shapes/velocities.
To compensate for the spatially sparse distribution of GNSS-R specular data, the temporal
Kalman smoother is applied by using the precision index as the reciprocal observation error
number in each 15-day cycle over the Mekong Delta as a demonstration; this case study
area consists of double-/triple-rice-cropping systems, aquacultural ponds, mangroves
and peatlands. Cross-validation with the PALSAR-2 quadruple polarimetric data (3–6 m
resolution) product is also conducted, and the results are validated with ground inundation
observation datasets [7–9,17]. The goal of this study is to demonstrate the usefulness of this
quality control method by applying it to fine-spatiotemporal-resolution analyses over the
Mekong Delta [i.e., (I) comparing it with a common change detection algorithm with the
daily temporal resolution, (II) applying it with a 500 m rasterization with a 15-day temporal
resolution, (III) and surveying the consistency with 3–6 m spatial-resolution L-band SAR
backscatter intensities].

2. Materials and Methods

This study consists of (1) the introduction of the “precision index” for use in the
quality control assessment of GNSS-R data; (2) a daily rasterization demonstration over
the Mekong Delta based on the precision index obtained from the Lv. 2 product; (3)
a demonstration of the temporal Kalman smoother over the Mekong Delta using the
precision index as the reciprocal number of observation errors (Lv. 3 product); and (4)
cross-validation with PALSAR-2 quadruple polarimetric data that have been preprocessed
with a polarimetric decomposition method and ground observation data. A flowchart
presenting the methodology of this study is illustrated in Figure 1.

2.1. Sites along with the Collection of Field Data

We prepared ground observation datasets obtained at six sites (A–E) located in six
different districts: Site A, in Thot Not, Can Tho (10◦10′N, 105◦33′E); Site B, in Chau Thanh
(10◦16′N, 105◦08′E); Site C, in Cho Moi (10◦25′N, 105◦27′E); Site D, in Thoai Son (10◦16′N,
105◦08′E); and Site E, in Tri Ton, An Giang (10◦23′N, 105◦06′E) [7,8,10,21–27] Figure S1. The
soils at sites A–C are classified as silty clay fluvisol (a type of alluvial soil; [17]), while the
soils at sites D and E are classified as sulfuric humaquepts (a type of alluvial soil [17]).

In Can Tho and An Giang, 50 farmers’ rice paddies (30 in site A, five each in sites B–E)
were chosen as regions of interest (ROIs). At the center of each ROI, field water level data
were collected for the supervised classification of the satellite remote sensing data with a
water level gauge (daily, 10:00 AM–12:00 PM at site A) or with a HOBO CO-U20L-04 water
level data logger (Onset Computer Corporation, United States; collected every 4 h at sites
B–E). At the same time, we collected information about the history of field operations (e.g.,
fertilization and land preparation/sowing/harvesting dates) at each ROI throughout the
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observation period. The numbers of ROIs in the inundated/non-inundated rice paddies
are described in the cited literature [10].
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2.2. CyGNSS GNSS-R Datasets and Their Preprocessing Methods

All CyGNSS [10] Lv.1 Version 3.0 data observed from the first observation (Au-
gust 2018) until December 2021 were downloaded from https://podaac.jpl.nasa.gov/
dataset/CYGNSS_L1_V3.0 (accessed on 15 January 2022). The reflectivity (Γ) data were
calibrated [28] using Equation (1):

Γ(θ) =
(4π)2(PDDM − N)(Rr + Rt)

2

λ2GrGtPt
(1)

where PDDM is the maximum value of the analog power in the delay/Doppler maps (DDM),
N is the noise floor related to the DDM, Rr is the receiver–specular point (SP) distance, Rt is
the transmitter–SP distance, λ is the wavelength, θ is the incidence angle, Gr is the receiver
antenna gain in the direction of the SP and GtPt is the transmitter equivalent isotropically
radiated power (EIRP). The noise floor is computed as the mean value of the DDM subset,
where the signal is absent (located above the characteristic horseshoe shape of the DDMs).
The effect of the scattering area with the highest analog power in the DDM maps was used
as the size of the specular point. Since the CyGNSS GPS signal integration time is fixed at
1 s, the footprint shape was inversely computed using the integration time, the velocity of
the SP and the effective scattering area.

Our precision index model’s design was inspired by the spatial localization technique
of common data assimilation methods such as the local ensemble transform Kalman filter
or local particle filters [10]. The precision index (PI) was calibrated using the following
equation in the grid covered by the SP footprint, as shown in Equation (2):

PI =
cos(θ)× GS

sqrt(ESA)× exp(3.0× (DistSP/SemiDSP)2)
∝ ObsEr (2)

where θ is the incidence angle, GS is the grid spacing, ESA is the effective scattering area,
DistSP is the distance from the center of the specular point, SemiDSP is the semidiameter of
the ellipsoidal-shaped specular point, and ObsEr is the observation error (Figure 2).

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V3.0
https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V3.0
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Figure 2. Illustration of the precision index. The light blue tiles are rasterization grid cells. The yellow
circular area is the effective scattering area. The red tile in the yellow/green circle effective scattering
area is the corresponding grid. The green, blue and red arrows are equivalent to the GS, DistSP and
SemiDSP terms in Equation (2).

Each specular point in the CyGNSS data format contains analog power in a 17× 11 array
of DDM bins [17 rows for Delay with a 0.25-chip resolution, 11 columns for Doppler with a
500-Hz resolution]. We also analyzed the analog power in the DDM by regarding the power
as a probability density of a 3-dimensional histogram (representing skewness and kurtosis)
as described in Equation (3) and Figure 3 by targeting 5 × 5 arrays surrounding the element
containing the maximum analog power over the DDM at each specular point. If the kurtosis
value was greater than 0.01, the precision index (P) zeroed out before its use to omit the noise
derived from the specular effects over highly rough land surfaces.
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∑
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2]
4

(3)

where SKW is skewness, KTS is kurtosis, P00 is the maximum analog power value (W) on
the DDM arrays of each specular point [“00” indicates the index of the element containing
the maximum analog power among all arrays in the DDM; i.e., P00 in Equation (3) is
equivalent to PDDM in Equation (1)], i and j are array indexes over the DDM surrounding
the maximum analog power element (i is the Delay row index and j is the Doppler column
index), TP indicates the sum of the power analog values of all arrays in the DDM, and DPL
and DLY indicate the doppler–delay index of the target element (i.e., Pij or P00) over the
DDM array.
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assuming that the analog power is equivalent to the probability density of the DDM 3D histogram
(Delay, Doppler and Analogue power).

After calibrating the reflectivity (Γ) and PI on a latitude/longitude map (with a 500 m
resolution and a daily temporal resolution) (Lv. 2, Figure 4), the data were applied to a
temporal Kalman smoother on each 15-day cycle (temporal localization scale: 14 days.
1σ = 5 days) to obtain the Lv. 3 product (Figure 5) for the subsequent spatiotemporal
analysis. The Lv. 2 data were also applied for the temporal analysis (with a slight modifi-
cation to the change detection algorithm described in [29]) just after being applied in the
Γ(θ)-normalization task with Equation (4) and in a 30-day moving average filter; then, the
results were compared with the ALOS-2/PALSAR-2 products reported in [10]. To generate
the Lv. 3 products, this study simply used a linear Kalman filter (i.e., the time-evolution
of the model was assumed to be negligible). Γ-reflectivity was treated as both the states
and measurements.

Γnormalized = Γ−Γmin
Γmax−Γmin

referring to a paper [29]

Γ(θ)normalized =
Γ(θ)− Γ(θ)min

Γ(θ)max − Γ(θ)min
(4)

where Γ(θ)max/min is the temporal maximum/minimum value of the corresponding inci-
dence angle bin. Due to the data quantity limitations of specular points obtained during
the 2018–2022 period, we calibrated the incidence angle bins prepared for every 5◦ interval
(i.e., 0–5◦, 5–10◦, 10–15◦, 15–20◦, 20–25◦, 25–30◦, 30–35◦, 35–40◦, 40–45◦, 45–50◦, 50–55◦,
55–60◦, 60–65◦ and 65–70◦ bins) in each grid.
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Figure 5. A sample of the Lv. 3 15−day−cycle Kalman smoother product based on the precision
index [Γ(dB) without or with applying the precision index (a,b), zeroed out based on the kurtosis
threshold and DDM 3D statistics such as skewness (c) and kurtosis (d)] clipped at Mekong Delta on 1
August 2018.
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After calibrating the reflectivity (Γ) and PI on a latitude/longitude map (with a 500 m
resolution and a daily temporal resolution) (Lv. 2, Figure 4), the data were applied to a
temporal Kalman smoother on each 15-day cycle (temporal localization scale: 14 days.
1σ = 5 days) to obtain the Lv. 3 product (Figure 5) for the subsequent spatiotemporal
analysis. The Lv. 2 data were also applied for the temporal analysis (with a slight modifi-
cation to the change detection algorithm described in [29]) just after being applied in the
Γ(θ)-normalization task with Equation (4) and in a 30-day moving average filter; then, the
results were compared with the ALOS-2/PALSAR-2 products reported in [10].

2.3. PALSAR-2 Datasets, Corresponding Preprocessing Methods and Cross-Validation Scheme
with CyGNSS Data

PALSAR-2′s quadruple observation datasets (Lv. 1.1; 40–50 km observation widths,
70 km observation length; 307 scenes; August 2018–December 2021, Table S1) containing
observations of the Mekong Delta were prepared after the radiometric and polarimetric
calibration factors of the PALSAR-2 standard product were updated (on 24 March 2017 [30]).
The high-spatial-resolution (4.3 m azimuthal resolution and 5.1 m range resolution at a 37◦

incidence angle) quadruple data were decomposed to characterize the microwave scattering
pattern in inundated paddy soils and non-inundated paddy soils at different rice growth
stages. The phase and polarimetry data in PALSAR-2′s quadruple observation datasets
were converted into a coherency matrix; a refined Lee filter (7 × 7 window) was applied
to ease speckle noise; and the data were then decomposed with Singh 7 components [31].
The digital number of the HH/HV/VH/VV microwave data was used in the backscatter
reflectivity calibration expressed in Equation (5):

σ0 = 10·Log10 < I2 + Q2 > − 105.0 (5)

where σ0 is the backscattering coefficient, I is the value of the imaginary component and Q
is the value of the quadrature component of the digital numbers. The value of −105 is the
calibration factor noted in the literature [30]. An inundation detection classification task
(i.e., to determine whether the field water level was higher than the soil surface or not) was
conducted with a support vector obtained in the previous supervised classification study [9]
during ground observation collection (a total of 624 ROIs considering different rice growth
stages), as mentioned above in Section 2.1. The backward geocoding of the abovementioned
products was conducted by the Newton–Raphson method with ellipsoidal height data
(DEM: Shuttle Radar Topography Mission 3 (SRTM3) version 4 and the EGM2008 geoid
model) and the ALOS-2 orbital data (3D-spline-interpolated on every azimuth line).

The cross-validation was conducted with the PALSAR-2 preprocessed quadruple data
and the CyGNSS specular points Lv. 2 data product following the calibration described in
Section 2.2; these data were observed over the same locations as the PALSAR-2 geocoded
images within ±3 days of the PALSAR-2 observation date. First, the PALSAR-2 data
were spatially downsampled to a 500 m resolution, and then the precision index of each
corresponding specular point was calibrated over the geocoded PALSAR-2 images. Finally,
each weighted mean of PALSAR-2 signals (e.g., the 7-component scattering intensities,
σ0, and the spatial inundation rate) was further weighted based on the precision index
derived value over the PALSAR-2 image, and the results were compared with the CyGNSS
reflectivity Γ data.

These SAR data processes were necessary for the robust validation to compensate for
the footprint size difference of the inundation status that was observed between the ground
point observations and the GNSS-R data that were detected from space.

3. Results
3.1. Spatiotemporal Dynamics Evaluation over the Mekong Delta by CyGNSS
GNSS-R Measurements

The annual/seasonal dynamics of Γ (i.e., high values in the rainy season from June
to October, and low values in the dry season from February to May) could clearly be
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visualized in the CyGNSS GNSS-R product, as shown in Figure 6. By improving the change
detection algorithm by considering the difference in the local incidence angle among each
grid cell (i.e., from Γ-normalization to Γ(θ)-normalization), two peaks with high Γ values
could be detected annually.
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For the Lv. 2 product, a moving average was required to see the seasonal dynamics.
However, this seasonal pattern was clearly illustrated in the Lv. 3 product even if the
change detection algorithm was not applied (Figure 6e). Particularly for high incidence
angles (>55◦), the non-normalized Γ series shows a wide distribution among relatively
high dB values (−20>) during the rainy season. This indicated that our proposed precision
index worked adequately as a Kalman smoother weight-mean processing tool and enabled
robust spatiotemporal comparisons. Compared with the result that was obtained from
the 3000 m grid spacing rasterization result without the precision index (Figure 6d), the
500 m grid spacing rasterization that was enabled by using the precision index displayed
the seasonal contrast more clearly (Figure 6e).

The Γ normalization step applied to each incidence angle [i.e., Γ(θ)normalized] signifi-
cantly improved the sensitivity of the results to the temporal dynamics of the incidence
angle by increasing the dynamic range [0.2–0.4 for Γ and 0.1–0.7 for Γ(θ)]. Γ(θ) values with
lower incidence angles tended to show a greater dynamic range than values with higher
incidence angles (Figure 6b).

The Lv. 3 product’s spatial distribution snapshot maps showed relatively strong
Γ values in the northwest triple-rice-cropping region (a.k.a., Dong Thap and An Giang
provinces, Figure 7). Irrespective of seasonal differences, the northeastern non-rice-cropping
upland zone showed low Γ reflectivity (Figure 7). These results were consistent with the L-
band SAR data-based rice paddy distribution map and rice floodability map (Figure 8 [21]).
The southwestern coastal wetland zone (comprising mangrove forests, fishponds and
peatlands) showed continuously high Γ values throughout the year. High Γ (dB) noise
occasionally remained in the specular data in the fine-spatial-resolution (i.e., low effective
scattering area) Lv. 3 product (Figure 5). However, the noise was accompanied by high
DDM 3D skewness/kurtosis values because the noise was derived from the locally high
land surface roughness.

3.2. Cross-Validation with PALSAR-2 Quadruple Observation Products

The relationship between CyGNSS reflectivity Γ values and PALSAR-2 backscatter σ0
values was differentiated depending on the specular point incidence angles and effective
scattering area (Tables S2 and S3). Positive relationships between the Γ values and σ0 values
were found with 0–10◦ incidence angles (Figures S2–S6a,b; Table S2). For specular points
obtained at 10–70◦, the correlations became negative, with a few exceptions observed for a
fine specular point group (i.e., for incidence angles of 30–35◦, the square root value of the
effective scattering area is smaller than 6 km, Table S2, Figure 9). The spatial inundation
rates and Γ values showed mostly positive correlations among the groups with incidence
angles of 10–50◦. In contrast, negative correlations tended to be dominant for low-end
incidence angle groups of 0–10◦ and high-end incidence angle groups of 50–70◦ (Table S2,
Figure S2). In such high-/low-end incidence angle groups, the double bounce factor tended
to show the most significant co-relationship with the Γ values among the 7-component
scatterings (odd/double/volume scatterings listed in Table S1 and shown in Figures S3–S5.
The remaining component analysis results are not shown in this paper since the correlations
were weaker than those of the odd/double/volume scatterings. In contrast, for the middle-
incidence-angle groups (10–50◦), the volume diffusion results tended to show the most
significant correlations with the Γ values (Table S2, Figures S3–S5). Among the PALSAR-2
HH/HV/VV backscatters, HV tended to show the most significant correlations with the Γ
values (Table S2, Figure S6).



Remote Sens. 2022, 14, 5903 11 of 20
Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 7. Samples of nonnormalized Γ values in 2020 (a–d) and 2021 (e–h). The left-hand side scenes 
are snapshots obtained in dry seasons (a,c,e,g). The right-hand side scenes are snapshots obtained 
in rainy seasons (b,d,f,h). 

Figure 7. Samples of nonnormalized Γ values in 2020 (a–d) and 2021 (e–h). The left-hand side scenes
are snapshots obtained in dry seasons (a,c,e,g). The right-hand side scenes are snapshots obtained in
rainy seasons (b,d,f,h).
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Figure 8. PALSAR-2 data-based rice map ((a); white pixels indicate rice paddies), PALSAR-2 data-
based rice floodability map (b) and inundation detection snapshot obtained by PALSAR-2 above one
of the study sites [Thot not, Can Tho city, Vietnam, on 6 May 2016 (69 days after sowing)] with the
corresponding aerial photo (c); CF: Continuously inundated paddy; AWD: Alternate wetting and
drying paddy; the temporal water level dynamics of these blocks are presented in the referenced
literature [21,26,27]).

The CyGNSS reflectivity Γ and PALSAR-2 backscatter data series showed a highly
nonlinear relationship, and this was one of the causes of the low Pearson correlation
coefficients (Table S2). Particularly for the relationship between the Γ values and the
PALSAR-2-based spatial inundation percentages, three domains with unique characteristics
were found (Figure S2g,m). First, for the specular points whose Γ values are approximately
smaller than −20 dB, relatively high inundation percentages were found (Figure S2g,m;
domain shown by the green arrow). In such a domain, the Γ values tended to show a
linearly positive correlation with the inundation percentages. Second, for specular points
with Γ values between approximately −20 dB and 0 dB, specular points with 0% spatial
inundation percentages were detected (Figure S2g,m; domain shown by the red arrow). In
this domain, the Γ values tended to correspond to upwardly convex negative nonlinear
correlations. Finally, for the specular points with Γ values greater than approximately 0 dB
(Figure S2g,m; domain shown by the blue arrow), relatively high inundation percentages
were detected. In this domain, the Γ values tended to show upwardly convex positive
nonlinear correlations.



Remote Sens. 2022, 14, 5903 13 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

tended to show the most significant correlations with the Γ values (Table S2, Figures S3–
S5). Among the PALSAR-2 HH/HV/VV backscatters, HV tended to show the most signif-
icant correlations with the Γ values (Table S2, Figure S6). 

 
Figure 9. Two-dimensional scatterplots between the CyGNSS reflectivity Γ (dB) and PALSAR-2 
based spatial inundation percentage (a) and PALSAR-2 back scatters σ0 (dB) values ((b) HV, (c) odd 
scattering, (d) volume diffusion, (e) double bounce) at specular points with 30–35° incidence angles. 
The statistical analysis results representing these relationships are described in Tables S2. 

The CyGNSS reflectivity Γ and PALSAR-2 backscatter data series showed a highly 
nonlinear relationship, and this was one of the causes of the low Pearson correlation coef-
ficients (Table S2). Particularly for the relationship between the Γ values and the PALSAR-
2-based spatial inundation percentages, three domains with unique characteristics were 
found (Figure S2g,m). First, for the specular points whose Γ values are approximately 
smaller than −20 dB, relatively high inundation percentages were found (Figure S2g,m; 
domain shown by the green arrow). In such a domain, the Γ values tended to show a 
linearly positive correlation with the inundation percentages. Second, for specular points 

Figure 9. Two-dimensional scatterplots between the CyGNSS reflectivity Γ (dB) and PALSAR-2
based spatial inundation percentage (a) and PALSAR-2 back scatters σ0 (dB) values ((b) HV, (c) odd
scattering, (d) volume diffusion, (e) double bounce) at specular points with 30–35◦ incidence angles.
The statistical analysis results representing these relationships are described in Table S2.

Since the relationship between the CyGNSS reflectivity Γ and PALSAR-2 backscatter-
ing σ0 values was also highly nonlinear (Figures S3–S6), a quadratic polynomial fitting
analysis was carried out to survey the direction of convexity (downwardly convex, linear,
or upwardly convex; Table S3). Although the relationship was mostly downwardly convex
for the groups with incidence angles of 0–60◦, an upwardly convex nonlinear relationship
became dominant for groups with incidence angles of 5–15◦ and 60–70◦ (Table S3, Figures
S3–S6). In contrast, for the middle-incidence-angle groups (15–60◦), downwardly convex
nonlinear relationships represented the majority.



Remote Sens. 2022, 14, 5903 14 of 20

4. Discussion
4.1. Performance of the Precision Index in the Rasterization Process without Sacrificing
Spatial Resolution

The specular point vector data derived from the Lv. 1 product were rasterized to form
the Lv. 2 product, as shown in Figure 4. All the specular points depicted from southwest
to northeast had relatively fine spatial resolutions due to the low effective-scattering-area
values. In contrast, all the specular points depicted from northwest to southeast had rela-
tively coarse spatial resolutions due to the relatively large effective scattering areas. It is
known that the effective scattering area and footprint size/shape are mainly controlled
by the Delay and Doppler effects [32]. This indicates that the relationship between the
velocity (particularly in the advancing direction) of the GNSS receiver and the transmitter
is the main factor controlling the spatial resolution of each specular point rather than the
difference in the incidence angle or land surface roughness over lowlands such as the
Mekong Delta (which has an elevation approximately 2 m above the sea surface) [21]. In
this context, further GNSS-R receivers are expected to flexibly choose/adjust their trans-
mitters to continuously receive only fine-spatial-resolution GNSS signals. The future use
of geostationary GNSS transmitters or quasi-zenith-satellite-system-boarded transmitters
(QZSSs) is also expected to be selected occasionally in specific regions.

The precision index developed in this study was designed to be maximized at the
centers of the specular points, as the maximum analog power was detected at the center
of the DDM (i.e., the neutral Delay/Doppler position), as shown in Figure 3. Since high-
delay specular points are occasionally found in the Mekong Delta, hollow-ring-shaped
Gaussian kernels might be appropriate for such unique specular points [32]. To further
improve the index, such spatial localization regarding the dst.centerSP/semidiameter.SP ratio
in the denominator of Equation (2) should be implemented for the further development of
specular points with relatively high-delay chips. Considering the unique specular points for
which the maximum analog power is located in the non-neutral Doppler bin, performing
spatial localization while considering the specular advancing direction and Doppler effect
would also be desirable, although such specular points were rarely found over the delta in
this study.

The temporally Kalman-smoothed product (Lv. 3) clearly visualized the spatial pattern
throughout the year, even without spatial interpolation/filtering/smoothing. This indi-
cated that spatial inundation mapping can be accomplished even without performing a bias
correction, depending on ad hoc parameter tuning to deal with incidence angle differences
or even without depending on external NDVI data to deal with vegetation interactions.
Although noise associated with relatively high Γ values is occasionally detected with small
effective scattering specular points (Figure 5a), such specular noise was seemingly found to
be accompanied by high DDM 3D skewness/kurtosis values (Figure 5c,d) and could thus
be denoised naturally, as shown in Figure 5b.

4.2. Spatiotemporal Dynamics or Inundation Detection by CyGNSS

The Γ(θ) normalization results obtained for the Lv. 2 product indicated two peaks
annually. The first peak was generally detected in the latter half of the dry season from
April to June (Figure 6b), and the second peak was detected in the latter half of the rainy
season from August to October. These findings indicate that the inundation status over
the entire Mekong Delta is primarily controlled by double-/triple-rice-cropping irrigation
activities. Approximately 57.4% of the rice-cropping area in 2012 was estimated to be triple-
cropped [33]. Interestingly, the northwestern region where the most intensive triple rice
cropping is conducted (i.e., the An Giang and Dong Thap Districts) showed significantly
greater reflectivity Γ values in the rainy season than in the dry season. Interestingly, the
southwestern coastal wetlands consisted of mangroves and peatlands surrounded by
acid-sulfate soils [21]. The spatially high reflectivity values found in such coastal regions,
even in the dry season, might have been the result of aquacultural activities, including
prawn-rice cropping rotations [34]. Because the delta receives greater attention for being



Remote Sens. 2022, 14, 5903 15 of 20

exposed to salinity intrusions exacerbated by rising sea levels [35], increased upstream
dam construction [36] and groundwater depletion [37], further long-term observations over
the delta are necessary for future assessments of the freshwater inundation status and the
salinity intrusion succession status.

One of the novel features of our work that is presented in this paper is that our
methodology realized the generation of spatiotemporally continuous data sets with a finer
resolution (500 m spatial resolution, 15-day temporal resolution) than commonly used
methods (that mostly have 3 km and 30-day resolutions, e.g., [13]), even though we did not
use any spatiotemporal interpolation methods. Simple gridding without considering the
size/shape of specular points cannot spatially rasterize the continuous CyGNSS GNSS-R
data even with a lower resolution due to the data quantity limitation [13].

4.3. Comparison with Quadruple Polarimetric L-Band SAR Backscattering Signals

Statistically significant Pearson correlations were confirmed through the precision-
index-based comparison between the CyGNSS reflectivity Γ and the PALSAR-2 backscat-
tering intensity σ0 or the spatial inundation percentage. We defined the inundation status
based on PALSAR-2’s 3–6 m resolution quadruple polarimetric data and ground truth
observations [10]. To compensate for the spatial footprint size difference between the
GNSS-R data and the inundation status observations with a finer spatiotemporal resolution
in this study, we employed the product based on SAR data. There was still a discrepancy
between the CyGNSS observations and the SAR-based inundation status product due to
the heterogeneity surrounding the rice paddies over the Mekong Delta (e.g., buildings,
forests, dykes), which was contaminated in the GNSS-R specular observations. The rela-
tionship was highly nonlinear, and its convexity was highly dependent on incidence angle
differences. However, correlations were still found between these different microwave
remote sensing methodologies even with the different observation resolutions over the
heterogenous ground objects in this study.

As with other error-causing factors, notably, there are various factors causing geomet-
ric errors. For example, to propose a methodology that was independent from external
data in this study, the ellipsoidal height that was derived from DEM and geoidal height
information was not used for the rasterization process of the specular points. Most im-
portantly, the grid-based rasterization of specular points was conducted by assuming that
the velocity at each specular point was constant throughout each integration time (i.e.,
the acceleration of each specular point was assumed to be 0). It is still expected that the
cross-validation performance could be better improved by rasterizing each specular point
without the velocity-constant assumption. Regarding the geometric error correction, we
also conducted a tuning experiment of the Gaussian function parameter of the precision
index model [i.e., a value of 3.0 was used in this study, as described in Equation (2)] with-
out downsampling. However, the tuning of the model parameter did not significantly
differentiate the validation performance with the PALSAR-2 product (data not shown).
Hence, rasterization with the consideration of acceleration was more important for tuning
this model parameter. Without the acceleration information, the model tuning did not
reliably improve the validation performance. For the current data interpretation, we also
have to note the temporal differences between the observation times/dates of the CyGNSS
and PALSAR-2 products. Due to the quantitative limitation of available specular points
in this study, a low effective scattering area specular point group occasionally showed the
opposite correlation with the PALSAR-2 backscatters (i.e., 30–35◦ incidence angles, 0–6 km
square root values of the effective scattering area, Table S2). One of the causes of this result
is the limited availability of quantitative specular points from CyGNSS over the Mekong
Delta and the limited observable swath data of the quadruple PALSAR-2 observations
(only 40–50 km widths were used to avoid incidence-angle-difference-derived biases in
the polarimetric decomposition analysis). These data quantity limitations might have only
partially caused the local optimization of the nonlinear function. Further observations are
expected to enable the global optimization of the nonlinear function when estimating the
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spatial inundation percentage or backscatter intensity from CyGNSS specular reflectivity
data. The most importantly, we need to reshape this gaussian function along with the
specular points velocity vector (i.e., shifting the gaussian center considering the doppler
frequency, and reshape the skewness regarding its delay time in DDM information [32]).

Unlike the specular points with incidence angles wider than 10◦, a positive relationship
was found between the CyGNSS reflectivity Γ and PALSAR-2 backscattering intensity σ0

series for specular points with incidence angles narrower than 10◦. Since the difference be-
tween the microwave-energy-advancing vector directions of the backscatters and specular
reflection values decreased as the incidence angle decreased, these positive relationships
could have been found for specular points with such low incidence angles. This indicates
that the reflectivity is highly dependent on the dielectric properties, particularly for low-
incidence-angle specular points. Because such specular points tend to have low effective
scattering areas (i.e., fine spatial resolutions), the incidence angle bias correction on such
low-incidence-angle specular points is necessary to enable high-quality information on
land surface properties to be derived. For most specular points with incidence angles
ranging from 15 to 60◦, the CyGNSS reflectivity Γ and PALSAR-2 backscatter intensity σ0

tended to show downwardly convex relationships (Table S3). This indicated that wetlands
on relatively dry ground with a relatively low dielectric constant do not activate multi-time
scattering (e.g., the double/triple bounce effect). Hence, the negative correlations between
Γ values and σ0 values tended to appear to be simply controlled by the specular reflection
or single scattering effect. However, wetlands on wet ground, which have high dielectric
constants at a certain level, also enhance multi-time scattering to emit relatively strong
power levels not only oriented forwards but also backward. The specular points with
incidence angles wider than 60◦ tended to show upwardly convex negative relationships
between the CyGNSS reflectivity Γ and PALSAR-2 backscattering intensity σ0 series. These
findings indicated that if the incidence angle was wider than a certain level, the ground-
volume interactions between inundated soil and wetland vegetation would be more prone
to occur than if the specular points had lower incidence angles.

The three domains classified in the 2D scatter plots between the CyGNSS reflectivity
Γ values and PALSAR-2-based spatial inundation percentages indicated a microwave
scattering status difference among each domain (Figure S2g,m). The specular points in
the first domain with Γ values lower than approximately −20 dB (Figure S2g,m; domain
shown with the green arrow) tended to reflect relatively high odd/double bounce values.
This finding indicated that the ground-volume interaction between inundated soil and
the land-covering vegetation in wetlands plays a dominant role in the scattering process
in this domain. Because positive correlations tended to appear between the CyGNSS
reflectivity Γ and spatial inundation percentage series in this domain, this domain would
be more sensitive to inundation than to soil moisture. In the second domain, where the Γ
values were between approximately −20 dB and 0 dB, specular points with a 0% spatial
inundation percentage were detected (Figure S2g,m; domain shown with the red arrow). In
this domain, the Γ values mostly showed negative correlations with the spatial inundation
rate and backscattering intensities. This indicates that the multi-time scattering effect
would not have played a major role in this domain. Instead, the single scattering effect
would have played a major role in such dry ground areas with relatively low dielectric
constants. The negative correlations also indicate the possibility that the soil moisture and
the vegetation water content may have greater roles than the spatial inundation percentage
in such non-inundated wetland ROIs. In the third domain, where the specular points
had Γ values greater than approximately 0 dB (Figure S2g,m; domain shown with the
blue arrow), the Γ values tended to become significantly high, although the PALSAR-
2 backscatter intensity values (including the odd scattering and double bounce values)
tended to be low. These results indicate that the contribution of multi-time scattering was
negligible and that the surface roughness in this domain would also be low. The presence
of a water body without vegetation would have enabled such strong specular reflection
conditions under weak backscattering effects. Consistently, Arai et al. [7,8,10] also reported
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three similar domains from HH/HV backscatter 2D distribution plots. Thus, this might
be a common characteristic of L-band active microwave scattering signals collected over
tropical wetlands.

For further development, the application of a precision index to a finer-spatial-
resolution GNSS-R product (e.g., the CyGNSS interferometric coherence ratio product [38])
would be desirable to improve the spatial resolution of the resulting reflectivity Γ prod-
uct. Since the differentiation of multi-time scattering processes using the phase infor-
mation of scattered microwaves is mandatory to improve the inundation detection per-
formance, the Stokes vector-based pseudo-3-component decomposition approach [39]
or multi-polarimetric reflectivity/phase information (e.g., HydroGNSS) also need to be
addressed for use with the GNSS-R data. To prepare for a robust comparison between
SAR data and such polarimetric GNSS-R data, further improvement must be made to the
precision index model.

In this study, effective scattering area was employed as the footprint size for the following
two reasons. The L-band SAR polarimetric decomposition study of the rice paddies revealed
that the SAR backscattering intensity is mainly controlled by ground vegetation and is sensitive
to both canopy structure and ground inundation status and coherence was mostly low,
impeding the possibility of using polinsar approach [10,21,23]. From this study, we also
detected that most of the rice paddies whose L-band SAR backscattering intensity is relatively
high showed low GNSS-R reflectivity (Figure 9). This indicated that the GNSS-R signal over
the lowland wetlands/rice paddy is sensitive to ground-vegetation interaction and that the
reflective property is incoherent rather than coherent. In subsequent studies study, the First
Fresnel zone [40] should be considered as the footprint size, particularly for non-vegetated
wetlands or paddies with immature rice paddies whose number of days since sowing is
shorter than three weeks.

Regarding the nonlinear relationships between the CyGNSS reflectivity Γ and PALSAR-
2 backscattering intensity σ0 and between the CyGNSS reflectivity Γ and the inundation
percentages as affected by incidence angle differences, a model parameterization scheme
with an improved precision index model is desirable if both SAR data and GNSS-R data
are to be used cooperatively to overcome their observation scale differences.

5. Conclusions

For the operational use of GNSS-R data for sustainable tropical wetland management,
a simple quality control method was proposed in this study. Even without ad hoc parameter
tuning, the proposed simple model comprising the “precision index” and DDM 3D statistics
showed a fine performance in visualizing the spatiotemporal dynamics of wetlands at a
fine spatiotemporal resolution (500 m spatial resolution, 15-day temporal resolution). Even
without using a common change detection algorithm, the precision-index-model-based
approach showed temporal dynamics similar to those obtained using a change detection
algorithm. By considering the incidence angle difference, we also succeeded in improving
the sensitivity and dynamic range of the change detection results. As a result, we now are
able to detect two annual inundation peaks over the Mekong Delta, indicating that the multi-
cropping rice system dominating this region plays a major role in controlling the inundation
status of the delta. The DDM 3D statistics approach was applied to successfully denoise
the locally abnormal specular points by adaptively detecting specular points collected
over rough land surfaces. The comparison with L-band microwave SAR data based on
the precision index showed a reasonable mutual correlation and provided knowledge
of how the microwave scattering pattern is affected by the incidence angle over tropical
wetlands. Further study is required with a shorter-integration-time coherence product or
a polarimetric decomposition product (e.g., stokes vector) containing GNSS-R data with
1st-/2nd-order specular point velocity (e.g., acceleration) derivatives to enable more precise
comparisons with L-band SAR data.
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