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Abstract: This work describes the implementation of an updated radar reflectivity assimilation
scheme with the three-dimensional variational (3D-Var) system of Weather Research and Forecast
(WRF). The updated scheme, instead of the original scheme assuming the relative humidity to a fixed
value where radar reflectivity is higher than a threshold, assimilates pseudo water vapor retrieved by
the Bayesian method, which would be consistent with clouds/precipitations provided by the model
in theory. To verify the effect of the updated scheme to the improvement of precipitation simulation,
a convective case in Wenquan County and the continuous monthly simulation with contrasting exper-
iments in Xinjiang were performed. The test of single reflectivity observation demonstrates that the
water vapor retrieved by the Bayesian method is consistent with the meteorological situation around.
In the convective case, both the updated and original scheme results show that the assimilation of
pseudo water vapor can adjust to the environmental conditions of water vapor and temperature.
This can improve the hourly precipitation forecast skill more than the contrasting experiment, which
was designed to only assimilate conventional observations and radar radial velocity data. In the
continuous monthly experiments, the updated scheme reveals that the analysis of water vapor is
more reasonable, and obtains a better precipitation forecast skill for 6 h accumulated precipitation
than the contrasting experiments.

Keywords: assimilation; water vapor retrieved; radar reflectivity; Bayesian method; Xinjiang

1. Introduction

Uncertainties of weather forecasts are mostly due to inaccuracies in initial conditions
and shortcomings of physics in the models of numerical weather prediction (NWP). The
former plays the most significant role in resolving convection, and representing clouds and
precipitation reasonably. Radar data is particularly well suited to convective-scale data
assimilation (DA) because it provides high resolutions of temporal and spatial data, which
are in general higher than the conventional observations; it also contains hydrometeor and
dynamical information [1–4].

Advances in data assimilation techniques including complex cloud analysis [5–7],
three-dimensional or four-dimensional variational data assimilation (3D-Var or 4D-Var) [8–12],
the ensemble Kalman filter (EnKF), hybrid variational using ensemble approaches [13–15],
and the assimilation of radar data including reflectivity and radial velocity have been
extensively used in convective-scale NWP models. The observations of radar radial velocity
contain dynamical information which is an important component of the atmospheric
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wind field. The observations of radar reflectivity provide various kinds of hydrometeor
information. However, many challenges for the assimilation of radar data still exist because
the radial velocity and reflectivity cannot directly be predicted by NWP models [8,10,11].
The transform relationships between radar reflectivity and hydrometeor variables are
generally nonlinear [16].

In complex cloud analysis schemes, the hydrometeor and thermodynamic variables
are tuned up based on surface observations, radar and satellite data, etc. [17], which can
alleviate the spin-up problem of precipitation forecast quite effectively [5,18]. However,
typically empirical relationships are widely used in complex cloud analysis algorithms in
which many uncertainties need to be dealt with. Moreover, background and observation
error information, which can give statistically optimal estimations, are also not to be
fully utilized in complex cloud analysis schemes. The phenomenon of overpredicting
precipitation often occurs when the complex cloud analysis schemes are used in cycled
data assimilation, especially in radar reflectivity assimilation [5].

Within variational framework, the prognostic variables from models including rain-
water, snow, crystal and graupel, etc., are necessary to be transformed into the observed
reflectivity. The Z–R relationship based on Marshall–Palmer distribution of raindrop size
was used to perform the transformation in early studies [1,9,19]; it was developed for
warm cloud precipitation. To improve this deficiency of limited application, several further
studies, which involve snow and graupel in the observation operator of reflectivity assimi-
lation, effectively improve the hydrometeor analysis, and can be applied to the cold-cloud
process [8,20]. For the convective-scale NWP models, the complex microphysical processes
are especially important. The direct observation operator involves physical processes which
are characterized by discontinuities and nonlinearities, and there is need of simplification
in the linearized versions to get some good results [21]. In the existing 4D-Var systems,
radar reflectivity assimilation assumes that the microphysics for warm rain appear first and
then transform reflectivity to a rainwater mixing ratio [1,11]. However, the minimization
convergence of assimilation becomes a nonnegligible problem, since the cost function’s
gradient of the reflectivity observation term would be abnormally large. Since the rainwater
mixing ratio in the background is actually quite small, the analysis error of rainwater is
extremely large [4,11,18].

The studies above mentioned have confirmed that the scheme of direct radar reflectiv-
ity can improve the initial conditions for the convective-scale weather and also can benefit
the subsequent forecasts. However, one problem is the direct assimilation method de-
pends on empirical algorithms to transform the hydrometeor variables, which were usually
developed for S-band radar or a certain area, and in which many uncertain parameters
require tuning up. Another problem is caused by the linearization of the tangent linear (TL)
operator and adjoint (AD) operator [8,9].

In the variational method, assimilating the reflectivity-retrieved hydrometeor profiles
is a common indirect approach that became involved to avoid the problem of linearization
of the TL/AD operators. Additionally, some studies found that the assimilation of humidity
profiles has a larger impact on the precipitation forecasts compared to hydrometeor profiles
assimilation [18]. A set of simulation experiments using an observing system test found
that water vapor and horizontal wind observations have the greatest contribution to
short-range forecasts and storm-scale analyses among all types of measurements [22].
Water vapor has great influence on radiation transfer and the thermodynamic structure
of the entire atmosphere [23–25]. Water vapor assimilation can effectively improve the
simulation of convection intensity and updraft height by enhancing the content and vertical
distribution of water vapor [26]. Realizing the important role of water vapor assimilation
in convective-scale precipitation forecasts, many studies have focused on using different
indirect assimilation methods to assimilate radar reflectivity, such as pseudo relative
humidity, and water vapor observations retrieved. Wang et al. (2013) developed pseudo
relative humidity and water vapor retrieved with WRF 3D-Var and successfully promoted
the development of the convective system [10]. Caumont et al. (2010) developed a one-
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dimensional (1D) approach to assimilate volumes of radar reflectivity data used in the
Arome model at Meteo-France [27,28].

In this paper, the 3D-Var method is chosen for the reason that it has a significantly
lower computational burden than the more advanced 4D-Var, EnKF, and hybrid meth-
ods. An updated scheme of indirect radar reflectivity assimilation is implemented into
the framework of the WRF-DA system, which assimilates water vapor profiles retrieved
through the Bayesian method. This is referring to Caumont et al. (2010), and based on the
original scheme developed by Wang et al. (2013) [10,27,28]. The original scheme, which
assumes the relative humidity to a fixed value where radar reflectivity is higher than a
threshold, does not take the background hydrometeor information into consideration.

The rest of this paper is organized as follows. In Section 2, the water vapor retrieval
and radar reflectivity assimilation algorithm are introduced. In Section 3, to verify the
effect for the updated scheme, a convective case on 30 July 2019 in Wenquan County and
the continuous monthly experiments from 1 July to 31 July 2019 in Xinjiang are designed.
Section 4 presents the analysis and forecast results with contrasting experiments. Finally, a
summary and conclusions are given in Section 5.

2. Methodology

The sequence of operations of water vapor retrieval and assimilation methods are
illustrated in Figure 1. The first step is to retrieve vertical profiles of pseudo relative
humidity from the vertical profiles of observed and simulated reflectivity. The second step
is the retrieval of vertical profiles of pseudo water vapor using the observation operator of
reflectivity assimilation [10]. The third step consists of assimilating the pseudo water vapor
with the WRF 3D-Var system which was built during the second step.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Flowchart of the sequence of operations of water vapor retrieval and assimilation. 

2.1. Water Vapor Retrieval 
The water vapor is retrieved by the observation operator from Equation (8) below, in 

which the saturated specific humidity can be obtained from the model background. The 
relative humidity retrieval uses the Bayesian method, which assumes that the simulated 
profiles occur with almost the same relative frequency from a large database as those 
found in the region or in nature [29,30]. In the following, the Bayesian method is briefly 
recalled [27,28], and how the water vapor retrieval is applied to this study is presented. 

In Equation (1), the best estimate of X  given the set of observations oY  is 

dXYYXXPXXE otrue )|(×)( ===  , (1) 

where X  is the model state vector of a vertical profile to retrieve, trueX  is the true state 

vector, and the vector oY  is a set of available observations. Based on Bayes’ theorem [31], 
Equation (1) could be rewritten as Equation (2), 

dXXXPXXYYPXXE truetrueo )()|(×)( ====  . (2) 

In this case, let us assume that the errors are Gaussian and uncorrelated in the ob-
served and simulated observations. Equation (2) could be rewritten as Equation (3), 

Figure 1. Flowchart of the sequence of operations of water vapor retrieval and assimilation.



Remote Sens. 2022, 14, 5897 4 of 18

2.1. Water Vapor Retrieval

The water vapor is retrieved by the observation operator from Equation (8) below, in
which the saturated specific humidity can be obtained from the model background. The
relative humidity retrieval uses the Bayesian method, which assumes that the simulated
profiles occur with almost the same relative frequency from a large database as those
found in the region or in nature [29,30]. In the following, the Bayesian method is briefly
recalled [27,28], and how the water vapor retrieval is applied to this study is presented.

In Equation (1), the best estimate of X given the set of observations Yo is

E(X) =
∫

X× P(X = Xtrue|Y = Yo)dX (1)

where X is the model state vector of a vertical profile to retrieve, Xtrue is the true state
vector, and the vector Yo is a set of available observations. Based on Bayes’ theorem [31],
Equation (1) could be rewritten as Equation (2),

E(X) =
∫

X× P(Y = Yo|X = Xtrue )P(X = Xtrue)dX (2)

In this case, let us assume that the errors are Gaussian and uncorrelated in the observed
and simulated observations. Equation (2) could be rewritten as Equation (3),

P(Y = Yo|X = Xtrue) ∝ exp[− 1
2 (Yo−H(X))T R−1(Yo−H(X))] (3)

where R represents the error covariance matrices of observation and simulation, and H
represents the observation operator which can simulate observations from the NWP model.
Using this assumption which was mentioned before, Equation (2) can be approximated by
Equation (4),

E(X) = ∑
i

Xi
ωi

∑
j

ωj
(4)

with Equation (5),

ωi = exp[− 1
2 (Yo−H(Xi))

T R−1(Yo−H(Xi))] (5)

where ωi is the weight of a model profile, and subscript i represents the index of a model
profile in the vicinity of the observed profile of reflectivity.

The observed reflectivity from the plan position indicator (PPI) planes can be interpo-
lated to a Cartesian grid in different elevation. The observations in a column can be treated
as a vertical profile. For each vertical profile of observed reflectivity (YZ), a vertical profile
of pseudo relative humidity observations Yrh

po is expressed as Equation (6),

Yrh
po = ∑

i
Xrh

i
ωi

∑
j

ωj
(6)

with Equation (7),

ωi = exp[− 1
2 (YZ−HZ(Xi))

T R−1
Z (YZ−HZ(Xi))] (7)

where Xi are the columns of model background state, a square window of 21 × 21 columns,
in the vicinity of YZ, Xrh

i are the corresponding vertical profiles of model relative humidity
interpolated at each observation elevation, HZ(Xi) are the corresponding vertical profiles of
simulated reflectivity, and RZ is the observation and simulation error covariance matrices
of reflectivity, which is chosen as a diagonal term equal to 0.2 n dBZ, where n is the number
of observations in a vertical profile [27,28].
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A vertical profile of pseudo water vapor observations, Yqv
po is calculated by the obser-

vation operator H with Equation (8), which was developed by Wang et al. (2013) in the
WRF-DA system [10],

Yqv
po = Yrh

po×Xqs (8)

where Xqs are the corresponding vertical profiles of model saturated specific humidity
interpolated at each observation elevation.

2.2. Radar Reflectivity Assimilation

Each vertical profile of pseudo water vapor is assimilated, as any other observations,
with the WRF-DA system [32]. In 3D-Var method, the following cost function J(X) with
Equation (9), is minimized for a state vector X that represents all model variables at all
grid points,

J(X) =
1
2
(X− Xb)

T B−1(X− Xb) +
1
2
[Y− H(X)]T R−1[Y− H(X)]T (9)

where Xb represents the background state vector, the observation operator H of water vapor
is consistent with Equation (8) before, and B represents the background error covariance
matrix. The statistics of background error covariance were calculated by the National
Meteorological Center (NMC) method [33], using pairs of the differences between the 12
and 24 h forecasts. There were 31 day forecasts from 1 July to 31 July 2019 used to generate
the B with U and V as the part of control variables.

The gradient of cost function is calculated for its minimization as follows, Equation (10),

∂J
∂X

= B−1(X− Xb)− HT R−1[Y− H(X)] (10)

with the necessary condition ∂J
∂X = 0, J(X) to be a minimum. In Equation (11),

Xa = Xb +
[

B−1 + HT R−1H−1
]−1

(11)

where Xa is the analysis state vector. Superscript T represents the process of matrix
transposition. The observation operator HT , through the simplification process, is mainly
affected by water vapor and temperature. When a positive increment of water vapor is
assimilated, positive increments of temperature will also be obtained [10].

3. Model and Experimental Design
3.1. Model Configuration

The Advanced Research WRF model and WRF-DA system in version 3.9.1 [34,35]
were used for deterministic numerical weather forecasting. The fundamental configuration
of WRF is listed in Table 1. Two nested domains were built in the mode. Domain 1 covered
most of the Central Asia region, with a grid spacing of 9 km and 712 × 532 grid points.
Domain 2 was centered on Xinjiang, China, with a grid spacing of 3 km and 832 × 652 grid
points (Figure 1). A total of 50 vertical computational layers were used with the pressure
maximum of 10 hPa. Atmospheric and surface fields from the final operational global
analysis data from the Global Forecasting System of National Centers for Environment
Prediction (NCEP-FNL) were introduced as the initial and lateral boundary conditions
which are collected at 6 h intervals and a horizontal resolution of 0.25◦ × 0.25◦ [36]. The
physics schemes included WSM6 microphysics, the shortwave and longwave scheme of
RRTMG, the Unified Noah land-surface model, Kain–Fritsch deep convection, and ACM2
PBL in domain 1 [37–41]. Domain 2 uses the same physical parameterization configuration
described here except for no parameterization of deep convection.
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Table 1. Experimental configurations of the WRF model.

Model and Configurations

Version v3.9.1, nonhydrostatic = true
Domain 1 712 × 532, nominal 9 km
Domain 2 832 × 652, nominal 3 km

Vertical computation layers 50
Pressure top 10 hPa

Lateral boundary conditions NCEP-FNL
Microphysics WSM6

Longwave radiation RRTMG
Shortwave radiation RRTMG

Land surface Unified Noah land-surface model
Deep convection Kain–Fritsch

Planetary-boundary and surface layer ACM2

3.2. Data Used for Assimilation and Validation

Conventional observation data of specific synoptic hours (SYNOP) from global surface
weather stations are shown as the red dots in Figure 2a, assimilated in domain 1 and
domain 2. In addition to conventional data, reflectivity and radial velocity from C-band
Doppler radar data were also assimilated at a different step, in which an analysis obtained
by assimilating SYNOP is used as a background in domain 2 in Figure 2b. Both hourly
data assimilated from conventional observations and radar are obtained from the National
Meteorological Information Center [42].
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Figure 2. (a) The model forecast domains and observations assimilated. The outside box indicates
domain 1, and the inner black box indicates domain 2. The red dots indicate SYNOP stations. (b) The
radar station and radar data assimilated available range in domain 2. The location of Wenquan
national meteorological station, west of Bole’s radar, is represented by the back cross marker which is
same below. The black dots show the locations of the nine radar stations. The altitude (unit m) of
ground above sea level is represented by the colour shades.

The pre-processing and quality control of radar data include clutter removal, data
thinning of 10 km resolution, and so on. In Figure 2b, radar data of Bole and Yining are
used for the convective case in Wenquan County. All nine Doppler station’s radar data
are used for continuous monthly experiments in Xinjiang. Hourly and 6 h accumulated
precipitation from SYNOP are taken for verifying the forecast skill in convective case
and continuous monthly experiments, respectively. Before the calculation of forecast skill
score, the accumulated precipitation at the model grid points was interpolated near the
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observation stations of SYNOP. The interpolation method is a weighted sum of values in
the interpolation area of 5 × 5 grids nearest the observation station, in which the weight
given to each model grid point is the reciprocal of the square of the distance.

3.3. Experimental Design

To determine the impact of pseudo water vapor assimilated by the 3D-VAR method,
a convective case and continuous experiments were performed. A convective case, a
moderate-to-heavy precipitation event was selected: 30 July 2019 over the central and
northeastern part of Wenquan County (Figure 2b) in which the main precipitation periods
were at 0900 UTC. For the convective case study selected, Figure 3a shows the flowchart of
the cycled data assimilation and forecast. The model is cold started at 0000 UTC, and runs
through 6 h (noted as the ‘spin up’) to reach equilibrium at the simulation initial condition,
then the data assimilation is cycled at 1 h intervals from 0600 to 0800 UTC. The forecasts
are launched every hour. The flowchart of continuous monthly experiments is shown in
Figure 3b, in which the main precipitation periods were concentrated between 1200 and
1800 UTC. The model is cold started at 0600 UTC, then runs spin up for 6 h, then assimilates
observations and forecasts for 6 h.

For the convective case (continuous experiments), data from 2 Doppler radars over-
lapped in the simulation domain (Figure 2b). Three groups of experiments were performed.
The contrasting runs, labeled as C1Con and E1Con, respectively, assimilated radar radial
velocity and surface conventional observations from SYNOP. Experiments of C2Rad and
E2Rad were the same as the contrasting experiments, but added the assimilation of pseudo
water vapor retrieved by reflectivity based on the original scheme. In this, the relative
humidity retrieved depended on empirical values of different observed reflectivity ranges.
For example, the relative humidity is assumed to be 85%, at which the observed radar
reflectivity is higher than 25 dBZ and lower than 45 dBZ above cloud base [10]. The original
scheme does not take the background hydrometeor information into account. Experiments
of C3RadBy and E3RadBy were the same as C2Rad and E2Rad but different in the relative
humidity retrieval using the Bayesian method. The details of each experiment are shown
in Table 2.

Table 2. List of Experiments.

Experiments Observations Pseudo Water Vapor

30 July 2019 case
C1Con Domain 1: SYNOP

Domain 2: SYNOP + radar radial velocity _

C2Rad
Domain 1: SYNOP

Domain 2: SYNOP + radar radial velocity +
reflectivity

The original scheme:
Yqv

po = Yrh
po × Xqs, With

Yrh
po = 85%, 25 ≤ YZ ≤ 40,

Yrh
po = 95%, 40 < YZ ≤ 50.

C3RadBy Same as C2Rad
The updated scheme:
Yqv

po = Yrh
po × Xqs, With

Yrh
po = ∑

i
Xrh

i
ωi

∑
j

ωj
.

July 2019 Continuous
experiments

E1Con Same as C1Con _
E2Rad Same as C2Rad Same as C2Rad

E3RadBy Same as C2Rad Same as C3RadBy
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4. Result
4.1. Test of Single Reflectivity Observation

Before the experiments were conducted, the test of a single reflectivity observation is
performed to verify the response of relative humidity retrieval. The model’s first guess is
interpolated from the global analysis data of NCEP-FNL at 0800 UTC 30 July 2019 [36]. The
single reflectivity observation of 35.9 dBZ is assumed at 44.91◦N, 80.95◦E, 12th model level,
approximately 3000 m. The 21 × 21 grid points centered on the point of single reflectivity
observation were used to retrieve relative humidity (Figure 4a,b). Figure 4c shows the
weight of each neighbouring grid point. It is expected that, the smaller the differences
between simulated and observed reflectivity, the larger the weight is [27,28]. Figure 4e
shows that the relative humidity retrieved is a linear combination of neighbouring grids
taken from the simulated relative humidity. The relative humidity retrieved at the single
reflectivity observation point by the updated scheme is set to 95.8% (Figure 4e) and is
set to 85% based on the original scheme (Figure 4f), where simulated relative humidity
is 78%. The result of relative humidity retrieved was more consistent with the model
meteorological situation around in the updated scheme than the original scheme [22,28].
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Figure 4. The single reflectivity (unit dBZ) observation test of the relative humidity (unit %) retrieved
at 12th model level. (a) Assimilated reflectivity. (b) Observed reflectivity. (c) Weight of each
assimilated reflectivity. (d) Assimilated relative humidity. (e) Relative humidity retrieved using
the updated scheme. (f) Relative humidity retrieved using the original scheme. The black square
indicates the window of 21 × 21 grid points used for the Bayesian method. The red square indicates
the single reflectivity observation point.
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4.2. 30 July 2019 Case

On 30 July 2019, a moderate-to-heavy precipitation event lashed the central and
northeastern part of Wenquan County. An hourly accumulated precipitation of more than
12.1 mm (Figure 5) in this precipitation event caused serious damage to the property and
local economy in arid areas [43]. Environmental conditions (Figure 5) that are associated
with sufficient water vapor condition and mid-level low pressure systems favored the
development of thunderstorms across the Wenquan County. Early at 0700 UTC, the
convective cells initiated in the western part of Wenquan County, then gradually moved
eastward, reaching Wenquan station at about 0800 UTC. At the same time, new convective
cells initiated in the southwest of Wenquan County. The two thunderstorms continued
to move eastward and developed gradually, producing the moderate-to-heavy rainfall
(Figure 6).
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During each successive data assimilation cycle, the horizontal and vertical cross-
sections of assimilated reflectivity for C2Rad (Figure 7a–c), C1Con and C3RadBy omitted
show little difference between each other at 0800 UTC because very few radar observations
assimilated at 0600 UTC and at 0700 UTC in which most of radar reflectivity lower than
25 dBZ. The observed and assimilated reflectivity fields have large differences at 0800 UTC
in horizontal space which are displaced by about 10–30 km from each other. There are
multiple thunderstorms forecasts at the western and north-eastern of Wenquan station
(Figure 7a,b) which accompanied with strong ascending and descending movements
(Figure 7c,d).

The analysis increment (analysis minus background) at the different vertical cross-
sections of water vapor and temperature at 0800 UTC are shown in Figure 8. First of all,
the water vapor has positive analysis increments near Wenquan station, as well as positive
temperature increments. The positive increment of the water vapor arises because the
innovation (pseudo-observations minus background) is assigned to be greater than 0%
and lower than 20%. The temperature increment is a result of the water vapor observation
operator minimization, and the temperature increment is pretty small [10]. Along line AB,
the most significant increments of water vapor are about 0.35 g/kg in C2Rad (Figure 8c) at
5000 m, and about 0.26 g/kg in C2RadBy (Figure 8d) at 3000 m, which is accompanied with
larger increments of temperature. The distribution characteristics of the analysis increments
of water vapor and temperature are similar along the line of CD (Figure 9c,d). Vertical
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cross-sections along the lines of AB and CD near Wenquan station all exist with a negative
divergence, which means it is more conducive to effective convergence of water vapor.
Compared to C2Rad, C3RadBy has fewer positive analysis increments of water vapor in
terms of scope and intensity between 5000 m and 7000 m.
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reflectivity assimilated, in which observed radar reflectivity is higher than 25 dBZ which is same
below. The shades of gray indicate the model terrain height in each plot which is same below.
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Figure 7. Horizontal and vertical cross-sections of assimilated composite reflectivity fields (unit dBZ)
from (a) C2Rad for 1-h forecasts beginning at 0700 UTC 30 July 2019. The wind vector (unit m/s,
black arrows) is calculated by u and w wind in which w speed is multiplied by 10.0 in (b,c) which
is the same below. The red triangle in each plot of vertical cross-sections indicates the location of
Wenquan station. The red lines indicate vertical cross-sections through AB and CD. The color points
indicate the vertical distribution of observed reflectivity fields (unit dBZ).

In order to better analyze the horizontal spatial distribution of the water vapor in-
crement, different horizontal cross-sections at 3000 m, 5000 m, 7000 m at 0800 UTC were
performed (Figure 10). The positive increment of the water vapor of C2Rad (Figures 11c
and 12c) has more positive analysis increments than C3RadBy (Figures 11d and 12d) at
5000 m (Figure 11e) and 7000 m (Figure 12e), especially at 5000 m. The most significant
increments of water vapor average about 0.3 g/kg in C2Rad (Figure 11c), and 0.21 g/kg in
C2RadBy (Figure 11d) at 5000 m. There is obvious wind shear between 3000 m and 5000 m
at the southwestern part of Wenquan station, where the center of negative divergence
in the lower ellipse exists, which is the main areal coverage of precipitation. The whole
atmosphere is dominated by southwest wind at 5000 m and 7000 m, and there also exists
a center of negative divergence which is favorable to precipitation in the next hour at the
eastern section of Wenquan station in the upper ellipse. Showing the same data as analyzed
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in vertical cross-sections, C3RadBy has more positive analysis increments of water vapor at
a lower atmosphere at 3000 m.
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Figure 8. Vertical cross-section of the analysis and the increment of water vapor (unit g/kg) along
line AB at 0800 UTC. (a) The analysis from C2Rad. (b) The analysis from C2RadBy. (c) The increment
from C2Rad. (d) The increment from C2RadBy. (e) The difference of increment between C2Rad and
C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red
lines indicate the increment of temperature (unit 0.001 ◦C). The dashed blue lines indicate negative
divergence (unit 1/s).
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Figure 9. Vertical cross-section of the analysis and the increment of water vapor (unit g/kg) along
line CD at 0800 UTC. (a) The analysis from C2Rad. (b) The analysis from C2RadBy. (c) The increment
from C2Rad. (d) The increment from C2RadBy. (e) The difference of increment between C2Rad and
C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red
lines indicate the increment of temperature (unit 0.001 ◦C). The dashed blue lines indicate negative
divergence (unit 1/s).
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In order to further analyze the impact of water vapor assimilation to precipitation,
precipitable water (PW) and convective available potential energy (CAPE) were calculated.
The PW for C2Rad is greater than C2RadBy around the bottom-right side of the upper
ellipse, and less than C2RadBy around the bottom side of the lower ellipse (Figure 13c).
Meanwhile, the difference of CAPE between C2Rad and C2RadBy is that the value of CAPE
for C2RadBy is greater than C2Rad in the lower ellipse, and almost less in the upper ellipse
(Figure 13f). All of the above would impact the generation of a heavy precipitation center
in Wenquan County (Figure 14).

The hourly accumulated precipitation forecast performance after water vapor assimi-
lation was evaluated by subjective spatial distribution patterns and objective forecast skill
scores at 0900 UTC 30 July 2019. The neighborhood observations of SYNOP are used for the
verification. On subjective spatial distribution patterns, compared to C1Con, C2Rad and
C3RadBy (Figure 14a–c) are both able to produce similar precipitation areal coverage and
intensity to what was observed, but heavy precipitation at the center of Wenquan station
has a position deviation. C3RadBy gives a more positive impact of the forecast, as is seen
where the same intensity of a heavy precipitation center is simulated south of Wenquan
station in the lower ellipse, and less impact in the southeastern part of Wenquan station in
the upper ellipse (Figure 14c) than C3Rad (Figure 14b). This is proven by objective skill
scores including Equitable threat score (ETS) and Bias (Figure 15). The closer ETS equals to
1, the better the forecast is; the closer Bias equals to 1, the lower the false or missing alarm
rate [44]. For the ETS, E1Con achieved little forecast skill at the threshold of greater than
3.1 mm, and approached 0.22 at the thresholds of 0.1 mm which was higher than E1Rad
and E1RadBy. E1Rad and E1RadBy had better ETS performance, an average increase of
20%, than E1Con at the thresholds of 3.1, and 6.1 mm, especially for E1Rad at the thresholds
of 6.1 and 12.1 mm, and in E1RadBy at the thresholds of 3.1 mm. For the Bias score, the
performance was different at at different thresholds. Overall, the Bias of E1Con, E1Rad, and
E1RadBy at different thresholds all were lower than 1.0, which means they were missing
the forecast of precipitation.
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Figure 10. Horizontal cross-section of the analysis and the increment of water vapor (unit g/kg) at
0800 UTC at 3000m. (a) The analysis from C2Rad. (b) The analysis from C2RadBy. (c) The increment
from C2Rad. (d) The increment from C2RadBy. (e) The difference of increment between C2Rad and
C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red
lines indicate the increment of temperature (unit 0.001 ◦C). The dashed blue lines indicate the analysis
of negative divergence (unit 1/s). The ellipse of dashed red lines indicates the main areal coverage of
precipitation which is the same below.
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Figure 11. Horizontal cross-section of the analysis and the increment of water vapor (unit g/kg) at
0800 UTC at 5000 m. (a) The analysis from C2Rad. (b) The analysis from C2RadBy. (c) The increment
from C2Rad. (d) The increment from C2RadBy. (e) The difference of increment between C2Rad and
C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red
lines indicate the increment of temperature (unit 0.001 ◦C). The dashed blue lines indicate the analysis
of negative divergence (unit 1/s).
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Figure 12. Horizontal cross-section of the analysis and the increment of water vapor (unit g/kg) at
0800 UTC at7000 m. (a) The analysis from C2Rad. (b) The analysis from C2RadBy. (c) The increment
from C2Rad. (d) The increment from C2RadBy. (e) The difference of increment between C2Rad and
C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red
lines indicate the increment of temperature (unit 0.001 ◦C). The dashed blue lines indicate the analysis
of negative divergence (unit 1/s).
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Figure 14. Hourly accumulated precipitation of (a) C1Con, (b) C1Rad, and (c) C3RadBy at 0900 UTC. 
The colored dots show the locations and hourly accumulated precipitation (in millimeters) of obser-
vations of SYNOP. The Forecast hourly accumulated precipitation (unit mm) is represented by the 
colour shades. 

The hourly accumulated precipitation forecast performance after water vapor assim-
ilation was evaluated by subjective spatial distribution patterns and objective forecast skill 
scores at 0900 UTC 30 July 2019. The neighborhood observations of SYNOP are used for 
the verification. On subjective spatial distribution patterns, compared to C1Con, C2Rad 
and C3RadBy (Figure 14a–c) are both able to produce similar precipitation areal coverage 

Figure 13. The increment and difference of precipitable water (PW, unit mm) and convective available
potential energy (CAPE, unit J/kg) at 0800 UTC 30 July 2019. (a) The increment of PW from C2Rad.
(b) The increment of PW from C2RadBy. (c) The difference of PW between (a,b). (d) The increment
of CAPE from C2RadBy. (e) The increment of CAPE from C2RadBy. (f) The difference of CAPE
between (d,e).
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Figure 14. Hourly accumulated precipitation of (a) C1Con, (b) C1Rad, and (c) C3RadBy at 0900
UTC. The colored dots show the locations and hourly accumulated precipitation (in millimeters) of
observations of SYNOP. The Forecast hourly accumulated precipitation (unit mm) is represented by
the colour shades.
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4.3. Continuous Monthly Experiments

Continuous monthly experiments from 1 July to 31 July 2019 confirmed that the
updated scheme of radar reflectivity assimilation has a positive impact on the analysis of
water vapor and precipitation forecast. The analysis of water vapor from E3RadBy is more
close with the background than E2Rad (Figure 16a,b). The most obvious difference for
distribution of the analysis increment is mainly concentrated between 3000 m and 5000 m
(Figure 16c), in which the analysis increments from E2Rad are significantly greater than
that from E3RadBy. The maximum probability density is about 42% (30%), and the analysis
increment is 0.5 g/kg (1.2 g/kg) from E2RadBy (E2Rad).
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Figure 17 shows the ETS and Bias for six hours accumulated precipitation forecast
performance in Xinjiang at 1800 UTC from 1 July to 31 July 2019. For the ETS, E1Con
achieved no forecast skill at the threshold of greater than 6.1 mm, and approached 0.35
and 0.27 at the thresholds of 0.1 and 3.1 mm, respectively. E1Rad and E1RadBy both have
better ETS performance, an average increase of 20%, than E1Con at the thresholds of 0.1,
3.1, and 6.1 mm, especially in E1RadBy at the thresholds of 3.1 and 6.1 mm. For the Bias,
the performance was similar to ETS. In addition, the Bias of E1Con, E1Rad, and E1RadBy
at different thresholds all were lower than 1.0, which means they were missing the forecast
of precipitation.
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5. Discussion

A updated radar reflectivity assimilation scheme, instead of original scheme developed
by Wang et al. [10], was implemented with the three-dimensional variational (3D-Var)
system of Weather Research and Forecast (WRF). The difference between the updated and
original scheme is how one retrieves the relative humidity. The original scheme assumes
the relative humidity to be a fixed value where radar reflectivity is higher than a threshold.
The updated scheme retrieves the relative humidity using the Bayesian method, which
is consistent with clouds/precipitations provided by the model in theory. However, the
possibility of disadvantages for the updated scheme exists if model is too far from the
reality. For example, if a developed convective cell is observed, but there is no convection
in the square window of 21 × 21 columns from the model, this will cause the lack of a
supporting database for the Bayesian method [27,28]. The original scheme does not take
the background hydrometeor information into account, which has less limited conditions
than the updated scheme. However, the phenomenon of overpredicting precipitation may
often occur when the original scheme is used in cycled data assimilation [5,10].

6. Conclusions

To verify the effect of the updated scheme on the improvement of precipitation simu-
lation, a convective case in Wenquan County on 30 July 2019, and the continuous monthly
simulation from 1 July to 31 July 2019 with contrasting experiments in Xinjiang, were per-
formed. A single reflectivity observation test shows that relative humidity retrieval by the
Bayesian method is consistent with the meteorological situation around. In the convective
case, the results revealed that radar reflectivity assimilation using the original scheme and
updated scheme both can increase the increment of water vapor and temperature and
improve hourly precipitation forecast skill more than E1Con of the contrasting experiment.
On subjective spatial distribution patterns, all the experiments can be able to produce
similar areal coverage and intensity of precipitation to what is observed, but the heavy
precipitation center of Wenquan County has a position deviation. The C3RadBy using the
updated scheme gives more positive impact to the forecast. On objective skill scores, the
E1Rad and E1RadBy have better ETS performance than E1Con at the thresholds of 3.1, and
6.1 mm, especially in E1Rad at the thresholds of 6.1 and 12.1 mm, and in E1RadBy at the
threshold of 3.1 mm.

The continuous monthly experiments further proved that ingesting Doppler radar
information could help improve the analysis and short-term (6 h) precipitation forecast
skill in Xinjiang more than the contrasting experiments. The analysis of water vapor is
closer with the background in the updated scheme than the original scheme. The most
obvious difference for distribution of the analysis increment is mainly concentrated between
3000 m and 5000 m. E1Rad and E1RadBy both have better ETS performance than E1Con
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at the thresholds of 0.1, 3.1, and 6.1 mm, especially in E1RadBy at the thresholds of 3.1
and 6.1 mm.

In this study, the Bias of all the experiments at different thresholds all were lower than
1.0, which means they were missing the forecast of precipitation. To make better use of
radar reflectivity data, future work should consider assimilating all the radar reflectivity
whether or not greater than 25 dBZ, and combine advantages from the updated scheme
and the original scheme.
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