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Abstract: For successful dosing of plant protection products, the characteristics of the vine canopies
should be known, based on which the spray amount should be dosed. In the field experiment,
we compared two optical experimental methods, terrestrial lidar and aerial photogrammetry, with
manual defoliation of some selected vines. Like those of other authors, our results show that both
terrestrial lidar and aerial photogrammetry were able to represent the canopy well with correlation
coefficients around 0.9 between the measured variables and the number of leaves. We found that
in the case of aerial photogrammetry, significantly more points were found in the point cloud, but
this depended on the choice of the ground sampling distance. Our results show that in the case
of aerial UAS photogrammetry, subdividing the vine canopy segments to 5 × 5 cm gives the best
representation of the volume of vine canopies.

Keywords: precision agriculture; remote sensing; 3D point clouds; vineyard; canopy reconstruction;
terrestrial lidar; aerial photogrammetry; manual defoliation

1. Introduction

In viticulture, chemical spraying remains the primary method of crop protection,
despite its well-documented harmful effects on the environment, farmers, and food. Plant
protection products (PPPs) should ideally be applied in the minimum amount necessary
to reduce drift while providing reliable protection against pests and diseases. Societal
pressure to eliminate or reduce the use of chemical sprays is increasing, leading to changes
in national spraying regulations. To achieve the goal of sustainable protection and to
produce a high quality and quantity of grapes, a mix of complementary approaches is
needed. These include the use of more resistant varieties, spraying with biological PPPs, im-
proving the application methodology, incorporating novel dosing algorithms and spraying
techniques tailored to individual plants, and other methods and practices [1,2]. A review
of measurement and spraying methods in permanent crops can be found in [3].

In recent decades, many authors have pointed out the importance of actual measure-
ments of the parameters of the canopy being sprayed. A review of measurement and
spraying methods in permanent crops can be found in [3]. Measurement of canopies and
adjustment of the spray dose for permanent crops was attempted decades ago, both in
vineyards and orchards. Early approaches included using the leaf wall area (LWA) [4]
and tree row volume (TRV) [5], which averaged geometric canopy parameters such as
thickness and height with inter-row spacing. Although this was a valuable improvement
over using a constant dosage per hectare, LWA or TRV also have disadvantages. These are
limited measurement accuracy due to manual estimation of orchard parameters at a limited
number of points and the inability to account for general varieties of vineyard conditions,
training systems and management strategies, individual plant growth, changes due to soil
variations, changes in vineyard location and slope, etc.

The disadvantages of LWA and TRV methods can be overcome by the introduction of
automatic measurement techniques. In the recent past, ultrasound, lidar (light detection and
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ranging), terrestrial imaging, and aerial imaging have been among the most commonly used
sensing methods [2,3,6]. Ultrasonic methods have been in the past decade displaced [7–9] by
optical methods due to their higher reliability, repeatability, and much better spatial resolution.

Non-destructive optical methods, including point infrared sensors, terrestrial and
airborne lidar, and terrestrial and airborne imaging, offer the advantage of providing
sufficient information about canopy geometric properties such as height, width, density,
and so on. In the past, optical methods were limited to single-point light-sensitive infrared
sensors for spray control (on/off). Optical measurement systems based on scanning infrared
laser beams reflected from the object back to the sensor receiver (lidar) have only recently
been introduced. The lidar measurement method is based on the principle of time-of-flight
measurement from the sensor to the object and back. Some lidar sensors make additional
use of frequency modulated light measurement; 2D lidars perform measurements by
scanning the entire measurement plane. This is usually achieved by rotating a mirror to
scan a 2D plane perpendicular to the mirror’s axis of rotation. When driving along the
vineyard or orchard, the high operating frequency of up to 400 Hz per scan plane enables
3D reconstruction with a large number of points within the cloud. Terrestrial lidar allows
for the collection and subsequent interpretation of plant-level data for analysis of individual
plants or at the level of the entire orchard, with individual plant data averaged or otherwise
processed. The data allow comparison with LWA and TWA methods [10], and the high
point cloud density allows estimation [11–13] of distributions of tree canopy properties
(including size, geometry, height, volume, cross-section, density, etc.). Measurements of
tree canopy properties with lidar have a measurement uncertainty of more than 10% for leaf
area [14], due to the large irregularity and 3D spatial structure with overlapping leaves and
branches protruding from the tree canopy, etc. There are some other problems, including
estimation of the thickness of the row when measured by methods that can only measure
from one side (also applies to other terrestrial methods), the occlusion of the interior of the
tree canopy by branches and leaves near the sensor, the tilt of the system and sensor, etc.
In addition, it is impossible to distinguish individual branches because they may overlap
considerably. Lidar has been very recently successfully used in aerial application also. In
orchards, [15] succeeded with a very high reliability of 99% in detecting a number of trees
and estimating canopy characteristics (TRV, LWA, canopy volume, and canopy cover) with
lidar mounted on an unmanned aerial system.

Compared to terrestrial and airborne use of lidar, much fewer authors have used
aerial photogrammetry in vineyards or orchards [16–20]. Among them, [21] measured
orchard and vineyard properties using different flight heights, ground sampling distances,
and sensor inclinations, achieving about R2 = 80% agreement with conventional TRV
and LWA methods. The authors have found that ground sampling distance is the most
important parameter in photogrammetric image acquisition. The authors frequently use
multispectral cameras to measure canopy characteristics [22], and the multispectral camera
acquisition approach has become one of the most widely used remote sensing methods in
aerial applications.

Flight planning has emerged as an important parameter in photogrammetry appli-
cations [21,23,24]. The most important parameters of photogrammetry flight planning to
achieve the desired photogrammetry result are the ground sample distance, the area of
interest, the characteristics and calibration of the camera and optics, and the selection and
distribution of ground control points [25] with their precise location. For practical reasons,
additional information about the unmanned aerial system UAS must be considered, such
as the capacity of the batteries, the maximum distance to the ground control station, the
distance to obstacles, the minimum allowable flight altitude, the use of the autopilot, etc.
According to [24], the authors estimate that the ground sampling distance should be in the
range of cm/pixel to detect rows and measure geometric features such as canopy height,
width, and volume. The authors of [26] used overlaps of 30% to 90% to detect and measure
characteristics of individual apple trees in terrestrial photogrammetry applications.
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Research on optimized tree canopy spraying [27,28] often uses various canopy detec-
tion methods without considering the relationship between measured variables and actual
canopy properties. Point cloud measurements should be compared to manual measure-
ments whenever possible. Manual measurements may include measurement of width,
height, number of leaves, distribution of leaf sizes, etc. The authors of [10,14] conducted a
comparison between ultrasound, lidar, and manual measurement methods in a vineyard.
Unfortunately, manual measurements are time-consuming and expensive and may not
be feasible in non-experimental orchards. When counting leaves in individual segments,
high variance may occur due to overlapping leaves. Researchers often evaluate canopy
characteristics as a function of height, i.e., the number of leaves near the top of the canopy
should be different than in the middle. Comparisons or correlations of variables such as
height, width, number of leaves, density, etc., should therefore be made for the entire plant
or within vertical segments [2] at the same vertical position. From the canopy measure-
ments, authors usually derive the geometric characterization of the canopy [29] and, to a
lesser extent, the spray characterization, i.e., the establishment of a relationship between
the amount of pesticides sprayed and the deposition obtained on the foliage [30].

As mentioned earlier, canopy characterization has been explored using different
sensing methods [31]. In addition, many point cloud processing methods and algorithms
have been used to better characterize the canopy. These include spatial characterization
using various modeling, classification, clustering, machine learning, detection, and filtering
methods [31]. This can later be used as a basis for multiparametric statistical modeling
or some other form of experimental modeling of tree canopy spraying, so that exactly the
right distribution of spray to plants and plant sections can be provided throughout the
growing season.

As we have shown above, recent publications indicate that permanent crop canopy
measurements are rapidly evolving with high-resolution measurement methods. New
acquisition and processing methods are being used that provide steadily improving canopy
measurements, preferably throughout the growing season. Yet very few authors have
compared manual defoliation methods with terrestrial lidar and airborne photogrammetry
acquisition methods. Therefore, in this paper, we:

- Compare both terrestrial lidar and UAS photogrammetry with manual leaf counting
and defoliation measurements;

- Evaluate a UAS photogrammetry method and compare the measurements to terrestrial
lidar method for leaf area and canopy volume assessment.

2. Materials and Methods

The measurements were carried out on the vineyard of the Wine Petrič winery in
Slovenia (Goriška region). The measurement methods included terrestrial lidar and UAS
photogrammetry. For the terrestrial lidar measurements, the lidar was attached to the field
sprayer while driving in the vineyard. In the UAS photogrammetry method, images were
taken with the camera, mounted on the UAS. In both methods, the two half-sides of the
vine canopies were surveyed to record the method’s own point cloud.

Both the terrestrial lidar and UAS photogrammetry measurements were compared to
manual defoliation of a few selected vine canopies. All measurements were made on 30
September 2021, immediately after harvest, in a single campaign. Leaf area analysis of the
defoliated vine canopies was then performed under laboratory conditions. The data were
post-processed using custom algorithms and software to determine the number of leaves,
the number of points in the cloud, the volume of the vine canopies, and the leaf area.

2.1. Vineyard Description

For experimental purposes, we used the vineyard of the Urban Petrič farm, Slap 53a,
5271 Vipava, Slovenia. The location of the experiment was at the coordinates 45◦50′17.4′′N,
13◦55′33.9′′E (EPSG:4326). The location of the vineyard is shown in Figure 1 and marked
with red color. In an intensively planted vineyard, grafted SO4-based vine seedlings are
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planted, which behave well on different soils, including limestone, and produce early and
good maturity of the wood. The row spacing between seedlings is 2.30 m. In the vineyard
experiment to evaluate the leaf area, we selected the grape variety Yellow Muscat (age 8 years).
The training method was a simple cordon (with up to ten eyes) with a cane (one to three eyes
on the cane), with a trunk height of about 0.70 m and an average distance between vines of
0.92 m. The phenological growth phase during the experiment was BBCH91 [32].
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Within the vineyard, a survey area of 7 m × 28 m (shown in Figures 1 and 2) was
selected for digital reconstruction of the vines, using 3D reconstruction of point clouds. A
more detailed portion of the survey area was used to compare terrestrial lidar and UAS
photogrammetry methods with manual defoliation.
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We wanted to accurately position points in the cloud from the UAS and terrestrial lidar
measurements. In doing so, we wanted to accurately overlap the UAS photogrammetry
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and lidar point clouds. In this way, both measurements could be compared to the manual
defoliation measurements. A series of ground control points (GCPs) and manual tie points
(MTPs) were used to align the points in the clouds (Figure 2).

2.2. Terrestrial Lidar Measurement System

A high-speed 2D lidar sensor (model LMS111, SICK, Inc., Waldkirch, Germany) was
used to characterize the vine canopies. The SICK LMS111 lidar is an industrial, fully auto-
mated outdoor laser scanner based on time-of-flight (TOF) and high-frequency modulation
principles using near-infrared light at a wavelength of 905 nm. By rotating a mirror, the
lidar emits light beams in a 2D plane to make measurements from a central point in polar
coordinates (r,ϕ). The working distance ranges from 0.50 m to 20 m. When measuring
distance, the scanner has a measurement error of ±0.03 m. Throughout the experiment, the
lidar operated in a continuous mode.

The lidar was set to measure distances in the 2D plane perpendicular to the row of
vines, as shown in Figure 3. The angular interval of the lidar beam ranged from−45◦ to 90◦

for the right side and from 90◦ to 225◦ for the left side. The lidar operated with an angular
resolution of 0.5◦ and an acquisition rate of 50 Hz, and was set to receive a single return
echo per measurement point. The lidar thus continuously measured and transmitted up to
541 measurement points (r,ϕ) within a measurement cycle of 0.02 s for each vertical plane.

The lidar was attached to a metal bracket on the front of the prototype sprayer. The
sprayer used was a small mounted Agromehanika AGP100 sprayer. Throughout the
measurement, the lidar was mounted at a height 1.50 m above the ground. The distance of
the lidar was set differently due to the deviation of the position of the lidar measurement
system (lidar sensor) in the trajectory of the tractor’s movement between the two rows
in the vineyard in the horizontal y-direction. The lidar was positioned in the horizontal
y-direction 1.28 m from the center plane of the canopy for the right side and 1.22 m for the
left side. The maximum height of the canopy above the ground was 2.10 m for the left side
and 2.08 m for the right side, as shown in Figure 3. The average travel speed of the sprayer
was 0.60 m/s on both sides, as measured by the high-precision dual-frequency real-time
kinematic (RTK) differential GNSS system with a frequency of 10 Hz (Ublox ZED -F9P
module). This travel speed was used to obtain a higher density of points in the direction
of the motion path of the lidar measurement system. Together with the frequency of the
lidar operation, this resulted in a resolution in the x-direction of motion of 0.0119 m. The
x-direction of motion was defined using the following equation:

∆x = v·t (1)

where v represents the average velocity of motion (m/s) and t is the lidar measurement
cycle [s]. For data acquisition, the lidar was connected to a microcontroller (Teensy 3.5
from PJRC) using the Ethernet module (W5500 from WIZnet Co., Ltd., Seongnam, South
Korea). A lidar data acquisition and control software was developed using the Arduino
software library. The software was written in the C++ language. It consists of five main
parts: initializing the lidar sensor, starting the measurement data streaming, acquiring
the raw hexadecimal lidar data, processing the raw lidar data into decimal values, and
transferring data to the external portable computer. The transmission of the processed lidar
and RTK difference data GPS from the microcontroller to the external portable computer
was done via a USB cable at a speed of 11 Mbps. In this process, the header of each lidar
data string was first identified and then the expected length of the string was parsed on
the microcontroller. Then, a frame containing 541 measurement points was sent to the
external portable computer. The lidar measurement frames were stored in a text file and
later used for further processing and analysis using the Matlab version 2021b environment
(The MathWorks Inc., Natick, MA, USA).



Remote Sens. 2022, 14, 5894 6 of 23

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 26 
 

 

 
Figure 3. Positioning of the lidar with respect to the vines and numbering of the segments of the vine canopy (two vines on the whole test area). View from the
beginning of the row (in the center), with lidar position and detected points on the vine. The left and right images show the canopy view and the annotations that
the lidar saw on the left and right sides of the canopy as it moved through the vineyard.



Remote Sens. 2022, 14, 5894 7 of 23

2.3. UAS Photogrammetry Measurement System

The flight path with the UAS was carefully planned to obtain images of high quality
and resolution necessary for the reconstruction of the vine canopies. To achieve this, we
focused on selecting the appropriate ground sampling distance (GSD) and altitude above
the ground.

As suggested in the literature [33], six GCPs were placed throughout the test vineyard.
Their absolute coordinates were measured using a dual frequency RTK differential GNSS,
which was also used to measure the speed of the sprayer. The base station GNSS module
used for the corrections was placed near the vineyard and sufficient time was allowed
to achieve a satisfactory position of the base station and GCPs with an RMS accuracy of
±0.02 m. In addition to the GCPs, 9 MTPs were used to correctly position the captured
images in the vineyard during the vineyard reconstruction. The MTPs were needed because
the images were taken from a height of only 4.00 m above ground level (AGL), which
limited the viewing angle and area of each image. This also resulted in a very high similarity
of scenes within the images. The MTPs were therefore placed on the vines supports so that
multiple MTPs were visible in the image in each UAS camera position. The placement of
the GCPs and MTPs within the vineyard is shown in Figure 2. Both the GCPs and MTPs
were 0.20 m × 0.29 m in size.

The UAS used in the measurement campaign was the DJI Mavic Pro 2 (SZ DJI Tech-
nology Co., Ltd., Shenzhen, China). The UAS uses its own GPS and GLONASS receiver for
positioning. The UAS also has its own Hasselblad camera with a 13.2 mm wide CMOS sensor
(SW) with a focal length (FL) of 10.26 mm. The resolution of the images is 5472 × 3648 pixels
(image width (Iw) × image height (Ih)). The GSD can be expressed as follows,

GSD =
AGL·SW

FL·Iw
(2)

where AGL is the height of the UAS when the image is acquired (cm), SW is the sensor
width (mm), FL is the focal length (mm), and Iw is the image width (pix).

For a complete digital reconstruction of the vine, a 3D photogrammetric model of the
vine canopies was needed. To create a 3D model, a variety of camera angles and heights
must be used, as recommended in [21]. To obtain images with a sufficiently high resolution
for further analysis [21], a range of GSDs from the lowest value of 0.09 cm/pix at 4 m AGL
to the highest value of 0.24 cm/pix at 10 m AGL was chosen, as explained above. The
flights were conducted on the same day between 10 a.m. and 1 p.m. Two flight missions
with the flight parameters summarized in Table 1 were planned and conducted as follows.

Table 1. Summary of flight parameters for the flight missions.

Flight Mission 1—Planned and Flown with the Pix4D Capture Application

Height AGL (m) Camera Angle (◦) GSD (cm/pix) Number of Images (-) Image Overlap (%)

10 60 0.24 360 90

Flight mission 2—manually planned and flown with the DJI GO 4 application

Left canopy side (shadow)

Height AGL (m) Camera angle (◦) GSD (cm/pix) Number of images (-) Image overlap (%)

4 32 0.09 34 74

6 47 0.14 37 84

8 56 0.19 50 91

Right canopy side (sun)

Height AGL (m) Camera angle (◦) GSD (cm/pix) Number of images (-) Image overlap (%)

8 56 0.19 36 88

6 47 0.14 34 83

4 32 0.09 35 75
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The first mission was a double-grid flight mission using the Pix4D Capture application
(Pix4D SA, Prilly, Switzerland) version 4.11.0. It was flown at a height of 10 m AGL, with
90% overlap of the images. The area covered was 30 m × 46 m and the camera angle was
60◦ from horizon to ground. The angle ensured that the vine on the image did not obscure
the vine in the row behind it and that good reconstruction data were obtained. The flight
provided 360 images in about 15 min.

A lower AGL height was used for the second mission. Since the lowest AGL height
with Pix4D Capture is 10 m, the flight was manually planned and flown with the flight
planning application DJI GO 4 version 4.3.37 (SZ DJI Technology Co., Ltd., Shenzhen, China)
using a waypoint hyperlapse mission procedure. The AGL heights were 4 m, 6 m, and 8 m.
The area covered by this flight included a single vineyard line 45 m long with an average
overlap of 80% between images. Different camera angles were used due to the different
AGL heights and to obtain better data for the 3D model. The second mission provided
an additional dataset with improved image quality for later use in 3D photogrammetry
reconstruction. Both sides of the vineyard were observed and an additional 226 images
were acquired in about 21 min.

2.4. Manual Defoliation

After measuring the leaf area of the vines using terrestrial lidar and UAS photogram-
metry, we manually defoliated the two vines in the selected area of the vineyard. During
manual defoliation, we plucked each leaf from each segment of the vine and stored it in a
plastic bag for further visual analysis.

The total test area for manual defoliation was divided into a total of 24 segments, as
shown in Figure 3. For the defoliation measurements, we used the following number of
consecutive segments in each coordinate:

Four in the horizontal (travel) direction x;
Three in the vertical direction z;
Two in the canopy depth y direction, one for the left half of the vine and the other for

the right half.
The length of the segments in the x-direction was set at 0.50 m each. In the vertical

direction, the height of the segments was 0.50 m, with leaf removal height for the right half
side (in the z-direction) ranging from 0.58 m to 1.08 m for the lowest segment, 1.08 m to
1.58 m for the second segment, 1.58 m to 2.08 m for the third segment, and 2.08 m to 2.58 m
for the highest segment (Figure 3). For the left half of the canopy (in the z-direction), the
range varied as follows due to the uneven ground. For the lowest segment it ranged from
0.60 m to 1.10 m, for the second segment from 1.10 m to 1.60 m, for the third from 1.60 m to
2.10 m, and for the highest segment from 2.10 m to 2.60 m (Figure 3).

The leaf area of a single vine segment was later evaluated under laboratory conditions
using a modular automated imaging system. The modular automated imaging system con-
sisted of the following components: laptop (Lenovo legion y540-17 i5-9300h), photocopier
(Konica Minolta bizhub C364e), and software (Easy Leaf Area). In the laboratory, all leaves
in all segments were counted.

For three randomly selected segments SR1, SR2, and SR3, the mass of all leaves was
measured and all leaves were scanned by surface area. The leaf mass was measured by
the KERN ABT 120-5DM instrument (KERN & Sohn GmbH, Balingen, Germany). SR1
was selected to be in the lowest (first) row, SR2 in the middle (second) row, and SR3 in
the highest (third) row (Figure 3). Thus, for segment SR1, a factor f 1 of the total surface
area/total mass was calculated from the surface area SSR1 and the mass mSR1

f1 =
SSR1

mSR1
(3)

For all other segments Sx, only the total mass of the leaves was measured, and the
surface area was calculated according to

SSx = mSx· fx (4)
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The procedure is described in more detail in [34].
For the manual measurement of defoliation, in order to separate each segment from

the others, we set up a simple frame structure by attaching the tape, poles, and ropes to the
structure of the vineyard, as shown in Figure 4. The ribbon was positioned in the center of
the vine as close as possible to the y = 0 coordinate and also served as a reference in the
vertical z-direction.
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Figure 4. A (blue) section of the vineyard used for manual defoliation measurements, with local
coordinate system (X, Y, Z). The green vertical poles and the red ribbon (collinear with x) can be seen;
the horizontal ropes were somewhat hidden by the leaves.

2.5. Canopy Reconstruction Method with Terrestrial Lidar

The laser beams reflected from the vine canopies are represented by individual points
that together form the point cloud and allow 3D reconstruction. The actual number of
points recorded in the point cloud for each vine was much smaller than the number of
points scanned by the lidar, as described in Section 2.2. The reasons for this are the limited
size of the canopies and the holes in the canopies. The holes in the vine canopies allow the
lidar beam with its small diameter to penetrate the canopies without causing a reflection.
Point clouds do not show each individual leaf of the canopy, but a detailed representation
of the outer contour and shape of the canopy is still possible.

For comparison, the number of points in the cloud, the volume of the canopy, and the
total leaf area per segment were evaluated. This subsection explains how the number of
points in the cloud and the volume of the vine canopy per segment were calculated. The
3D reconstruction of the vine canopies for each segment was performed using the in-house
developed source code in the Matlab version 2021b environment (The MathWorks Inc.,
Natick, MA, USA). As an example, in Figure 5, the points in the cloud are color coded
(yellow, blue, red) for each height of the segment. This procedure was performed separately
for the left and right halves of the grapevine canopies. The lidar measurements resulted in
a total of 172·103 points for the two measured vines.

The number of points in each segment was determined by simply counting the reflec-
tions within the geometric boundaries of the segment.
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Figure 5. Representation of the calculation of vine canopy volumes of individual scans. A section of
segments S13, S14, and S15 colored with yellow, blue, and red is on the left and representation of the
volume calculation from multiple points within segment S14 using the trapezoidal method is on the right.

The volumes of the vine canopy segments were calculated using the trapezoidal
method. For each vertical scan, the trapezoidal method was used to approximate the outer
contour line of the vine canopy. Linear interpolation was performed between adjacent
points forming the outer line of the trapezoid with area Ai,n. Here, the index n runs over
the number of points within the vertical scan, while i represents the number of scans within
the segment (in the x-direction), as shown in Figure 5. The volume of the trapezoid Vi,n
was calculated from the areas Ai,n by multiplying it by the distance ∆x travelled by the
lidar between two scans according to Equation (5):

Vin = Ai,n·∆x (5)

As explained in Section 2.2, the distance ∆x was equal to 0.0119 m during the experi-
ment. Summing up all vertical scans of the vine canopy gave the volume of the segment,
which was calculated as follows:

V =
42

∑
i=1

∑
n=1

Vi,n (6)

Forty-two vertical scans were taken into each segment with the selected travel speed
and segment length in the x-direction.

2.6. Canopy Reconstruction Method with UAS Photogrammetry

The measurement system described in Section 2.3 provided a set of 586 images. The
photogrammetric software Pix4Dmapper (Pix4D SA, Prilly, Switzerland) version 4.6.4 was
used to reconstruct the 3D model of the vine. All of the images acquired during the flight
missions were inserted into a single 3D model project of the Pix4Dmapper processing template.

Pix4Dmapper uses an automatic process for initial camera calibration based on GPS
and automatic feature selection within captured images from a single flight mission. How-
ever, the automatic post-processing was unable to produce matching point clouds generated
from series of images from different flight missions. Manual adjustments were made to
account for camera position and image distortion. We used multiple MTPs to ensure
consistency of the point clouds. In addition to the 9 MTPs shown in Figure 2, 41 MTPs
that were uniquely identifiable (e.g., pile ends, edges on other structures, points on the
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vine, etc.) were marked in different images. After recalibrating the camera from successive
flights, a single point cloud of the vineyard section under study was created using the full
resolution of the images (Figure 6). Parameters used in UAS photogrammetry included full
resolution of images and a minimum number of three matches—a point in the point cloud
was created whenever it was correctly reprojected in at least three images. The process
took about 7 h 13 min on an AMD Ryzen 7 2700X eight-core processor with 16 GB RAM
and NVIDIA GeForce GX 1080 Ti. There were 195.7 million points generated, with an
average density of 2.6 million points per m3. In the part of the vine where the comparison
of reconstruction methods was performed (see Figure 4), 9.3 million points were generated.
Further processing for comparison with Lidar and visualization of the UAS point cloud
was performed in the Matlab environment.
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Figure 6. The UAS surveyed experimental vineyard as a point cloud from UAS photogrammetry
measurements with about 195 million points (a), and the section used for the method comparison
with about 30 million points (b).

For the transformation of the coordinates of the point cloud from the UTM zone
33N (easting, northing) to the local coordinate system, the coordinates were rotated and
translated. The origin of the local coordinate system of the vines was determined by
selecting the origin position on several images, resulting in an additional point in the point
cloud. The same procedure was used for a complementary point at the other end of the
vine. The location of the points provided information about the rotation and translation
angle between the coordinate system of UTM zone 33N (east and north directions) and
the local coordinate system of the vineyard (X, Y). In the vertical direction, the height
of the terrain under the vines was subtracted from the height of the points (coordinate z
representing the vineyard in the UTM coordinate system).

For volume assessment using UAS photogrammetry, the vine point cloud was divided
into segments, similar to the use of terrestrial lidar and manual defoliation (Figure 3).
Further vertical and horizontal subdivisions of the points in the segments were made
to obtain a smaller number of points, on which a 3D convex hull algorithm in Matlab
environment was applied to calculate the digital volume. The algorithm is based on a
Delaunay triangulation in 3D space. The facets of the triangulation, shared only by a
tetrahedron, represent the boundary of the convex hull [35]. The digital volumes computed
by the convex hull algorithm on the points in the subdivisions within the segment were
then summed to obtain the digital volume of the segment for method comparison.

3. Results

Measurements results are presented for lidar, UAS photogrammetry, and manual
defoliation, and as a comparison between the three methods. The comparison is made
using the statistical method of linear regression and evaluated by the correlation coefficient.
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Figure 6 shows the experimental vineyard in a point cloud representation from UAS
photogrammetry measurements.

The UAS photogrammetric and terrestrial lidar measurements were converted to a
local coordinate system, and the points are shown in Figures 7–10. The dense blue points
represent the photogrammetric points and the red points represent the lidar points. The
figures show both side and top views of the portion of the vineyard that was completely de-
foliated after the terrestrial lidar and photogrammetric measurements. In Figures 8 and 10,
the terrestrial lidar and UAS photogrammetry point clouds were aligned so that the X-Z
midplanes matched, as described in Section 2. The result is that both types of points start at
y = 0. Figure 7 can be used with Figure 4 for comparison.
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In Figure 10, the point clouds at X < 1.30 m do not overlap well with several outliers in
the terrestrial lidar dataset. We found that the most likely reason for this was a combination
of uneven ground surface, driving path, and sun glare. Driving on the uneven surface
caused unwanted displacement and rotation of the lidar. The glare from the sun caused
the lidar beam to be pointed into the sun, which was confirmed by the lidar orientation
and the altitude and direction of the sun. The performance of the UAS photogrammetry
method was not affected by the glare from the sun, as the camera was not pointed directly
into the sun at any time during the experiment.
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Since the track of the tractor and lidar was not strictly parallel to the vines, this was a
source of positional error of the point cloud in a local coordinate system. One source of
error in photogrammetry was the windy weather that caused the movement of the leaves.
Since the overlap of the images taken during photogrammetry was very large, so that there
were many images of the area of interest, the movement of the leaves could cause an error
in the point positioning due to the different positions of the leaves. This can be seen, for
example, in Figures 7 and 9, where points are missing due to the positioning of the middle
plane because the points beyond the middle plane were not included.

3.1. Selected Variables Comparison

The analysis of vine canopy properties for the variables leaf area, number of leaves,
number of points in a cloud, and volume was performed in 24 segments, as explained
in Section 2. The results are presented in Table 2 and include terrestrial lidar and UAS
photogrammetry data and comparison with manual measurements. Data are shown
separately for the left and right halves of the canopies.



Remote Sens. 2022, 14, 5894 14 of 23

Table 2. Results of terrestrial lidar, UAS photogrammetry, and manual measurements for the left and
right halves of the vine canopy.

Left Canopy Side (Shadow)

Manual Defoliation Measurements Lidar Measurements Photogrammetric Measurements

Segment Leaf area (m2) Number of Leaves (-) Number of Points in a Cloud (-) Volume (m3) Number of Points in a Cloud (-) Volume (m3)

S1 0.03 4 220 0.00 49,619 0.01

S2 0.36 33 1495 0.04 147,555 0.04

S3 0.27 37 886 0.03 135,637 0.02

S4 0.03 5 496 0.01 59,143 0.01

S5 0.27 30 1657 0.04 146,823 0.03

S6 0.16 29 828 0.02 69,025 0.01

S7 0.06 8 544 0.01 62,551 0.01

S8 0.33 61 1505 0.03 169,873 0.03

S9 0.17 45 372 0.01 56,335 0.01

S10 0.00 2 376 0.00 66,550 0.01

S11 0.31 44 997 0.03 103,101 0.02

S12 0.15 33 243 0.00 19,846 0.00

Right canopy side (sun)

Manual defoliation
measurements Lidar measurements Photogrammetric measurements

Segment Leaf area (m2) Number of leaves (-) Number of points in a cloud (-) Volume (m3) Number of points in a cloud (-) Volume (m3)

S13 0.06 10 569 0.02 45,549 0.02

S14 0.59 75 1527 0.04 147,211 0.04

S15 0.21 39 750 0.01 91,827 0.01

S16 0.09 16 343 0.00 24,788 0.01

S17 0.27 53 1202 0.02 110,339 0.02

S18 0.40 73 1090 0.02 115,609 0.02

S19 0.03 5 128 0.00 20,969 0.00

S20 0.23 40 976 0.01 90,513 0.02

S21 0.30 63 1159 0.03 116,947 0.03

S22 0.04 10 409 0.01 63,008 0.01

S23 0.38 55 1497 0.03 163,401 0.04

S24 0.09 21 792 0.02 112,904 0.01

Table 2 shows the number of points in the clouds and the total volume in each segment
for the left and right sides. As can be seen in Table 2, the lowest segments on the left (S1, S4,
S7, and S10) and right (S13, S16, S19, and S22) sides of the vine canopy had a low leaf area
and number of leaves from manual measurements, while they also had a limited number of
points in the cloud and low volume from terrestrial lidar measurements. The low number
of leaves and leaf area found in the manual measurements is due to both growth practice
and selection of heights for each segment.

Comparing canopy volume to the number of leaves in all lower segments (S1, S4, S7,
and S10 on the left side and S13, S16, S19, and S22 on the right side of the canopies), we
found that a large proportion of the points in the cloud originated from the trunk, branches,
or support wires. The number of detected points in all upper segments was many times
higher. Segments 2 and 3 had the highest number of points in the cloud, which is consistent
with the characteristics of the Yellow Muscat cultivar and the age of the vine in which the
vine canopies were grown. No significant differences were found between the left and right
sides of the canopy in the lidar measurements, except that the vegetation was slightly more
abundant on the sunny side, and therefore parameters such as the number of leaves and
leaf area were higher.

Sometimes segments showed high volume, although they had a low number of points
in the cloud. This is due to the fact that the vines grew in such a way that individual
branches extended away from the mid-plane of the vine canopy. This fits a situation where
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the volume was high and the number of points in the cloud was low. One of the reasons
was also the aforementioned glare from the sun, especially in sections S2, S3 and S5, S6.

The results of the terrestrial lidar measurements are shown in Figure 11. The left and
right parts of the vine canopies are shown separately. The vegetation on the right side of
the sun (Figure 11, right) was somewhat more lush.
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Figure 11. Reconstruction of the canopy from lidar measurement points. Segments of the same height
are shown in different colors: (a) left side of the canopy, (b) right side of the canopy.

As we have shown above, estimating volume of vine canopies is more challenging than
estimating surface area. One of the most commonly used methods for estimating volume
from individual measurement points is the trapezoidal method. The method is quite
simple and well established in the literature. It can be used well with lidar, which mostly
measures the outer contour of the canopy and produces a relatively small number of points
in the cloud. The situation is different with UAS photogrammetry. UAS photogrammetry
produces much denser point clouds. Here, a high proportion of the points were located
deep in the canopy, which was due to the fact that many different camera angles were used
in the image acquisition. To our surprise, this led to difficulties in determining the volume
of the vine canopies even with the convex hull algorithm (Section 2). Since the vine leaves
were not evenly distributed and had gaps, the convex hull algorithm computed on the
entire point cloud would overestimate the actual volume. On the other hand, if the selected
point boxes were too small and thus did not contain enough points, the convex hull could
not be assigned. Therefore, a subdivision of the segment with n = 10 was chosen to best
represent the vine visually (Figure 12).
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Figure 12. Photogrammetric side view of canopy volume and a 3D projection at different segment
subdivisions (n = 1 to n = 15) for the right half of the vine. Segments of the same height are shown in
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Depending on the number of subdivisions, the convex hull algorithm produced the
canopy volumes shown in Figure 12 (a through d). The n = 1 subdivision (Figure 12a)
corresponds to the same segment size used in the manual defoliation measurements (see
Figure 3). The convex hulls generated from this set of points overestimated the canopy
volume because the algorithm places the boundary of the volume on the outermost facets.
As the number of subdivisions n increased in the X and Z directions, gaps appeared in
the lowest segments (S13, S16, S19, S22) between the trunks and in the highest segments
at the top of the vine (S15, S18, S21, S24). Gaps occurred because there were no points
present in the subdivided section. As n increased, the sections became smaller and could
reproduce the gaps present in the vine. However, subdividing beyond n = 10 resulted in
omitting individual points that were distant from other groups of points, coincident groups
of points, and points that were on the edge of the convex hull. This led to gaps in the vine,
which was again wrong.

Since the subdivision n = 10, which resulted in a resolution of the convex hull of
5 cm × 5 cm (X-Z plane), gave the most visually similar reproduction of the vine, this
subdivision was chosen for the photogrammetric digital volume estimation.

3.2. Correlations between Measured Variables

The correlation between the variable number of points in the lidar point cloud and
leaf area is shown in Figure 13. The correlation coefficient was R = 0.89 for the left side and
R = 0.93 for the right side of the vine canopies. The correlation value confirms the suitability
of lidar for measuring the characteristics of the leaf canopy of grapevines. Moreover, it is
comparable with the results obtained by other authors. A better correlation of the results
on the right side of the canopy was also expected due to the problems with glare from the
sun, described at the beginning of the results section.
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Figure 13. Correlation between number of points in segment (lidar measurements) and leaf area in
segment (manual measurements): (a) left side of canopy and (b) right side of canopy. Correlation
was performed for all 12 segments.

The correlation between the digital lidar canopy volume and leaf area variables is
shown in Figure 14. The correlation coefficient was R = 0.90 for the left side and R = 0.87 for
the right side. The correlation was high, as expected, but was also affected by the definition
of the midplane and the unwanted movements of the lidar, as described above. A similarly
good correlation is shown in Figure 15, where photogrammetric canopy volume results are
compared with leaf area from manual measurements and are R = 0.92 for the left side and
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R = 0.90 for the right side. Here, the better correlation on the left side was most likely the
result of more homogeneous canopy growth on the shaded side.
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Figure 15. Correlation between vine canopy volume (photogrammetric measurements) and leaf area
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When comparing the photogrammetric variables with the lidar variables, a good
correlation can be seen in Figures 16 and 17. Although the number of points obtained from
the photogrammetric measurements was higher by order of magnitude 2, the correlation
between the number of points in the segment measured by lidar and photogrammetric
measurements was 0.93 for the left side and 0.95 for the right side. One of the reasons
for the lower value of the correlation coefficient was the outliers in the left canopy, as
can be seen in Figure 10. This also affected the correlation coefficient between the digital
volumes of the vine canopies calculated from lidar and photogrammetric measurements
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(see Figure 17). It was 0.93 for the left side and 0.91 for the right side. In addition, the
correlation was influenced by the definition of the relative positioning of the lidar points in
the local coordinate system and the different procedures for volume calculation.
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4. Discussion

For discussion on terrestrial lidar and aerial photogrammetry methods comparison,
one should notice, that terrestrial lidar can only be deployed in vineyards from one side
of the canopy. This presents some operational challenges. To obtain a complete 3D point
cloud of the entire canopy, data collected from the left and right sides of the vineyard row
must typically be merged. Both measurements are often taken at different times of the day
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or growing seasons [36] and finding the midplane between left and right measurements
is difficult. Several tedious and difficult methods have been proposed, such as placing
reference elements at specific points in the row that can be identified in the point cloud
of canopies. Among the reports relevant to discuss is the study of [14], in which it is
hypothesized that the vegetation volume or the volume of the tree rows determined by a
lidar measurement system has a high correlation with the leaf area. According to field and
computational work [14], tree row volume and leaf area were compared with a correlation
coefficient R2 = 0.86, a value largely consistent with what we found in this work. Our results
can also be compared with the work of Moral-Martinez et al. [37]. They presented the use
of a terrestrial lidar measurement system to scan the vegetation of tree crops and estimate
the so-called pixelated leaf area. When rows are scanned laterally and only vegetation
from halfway up the canopy to the trunk line is considered, the pixelated leaf area (PLWA)
refers to the vertical projected area without gaps detected by the lidar. Their discussion
shows the importance of the problem of area or volume determination, which we also
discuss above in Figure 12 for the case of UAS photogrammetry. In [37], the PLWA varied
depending on the location from which the lidar was deployed. Among other reports
relevant to the discussion of the importance of reliably estimating canopy surface area and
volume, a slightly different approach was used by Bastianelli et al. [38]. They investigated
the estimation of canopy area by the tree area index in grapevines and compared it with
the proportion of pesticides actually applied. The tree area index was estimated based on
the probability of light interruption within the plant cover.

There is, of course, the question of the extent to which the performance of lidar mea-
surements is affected by the characteristics of the measuring devices and their positioning
in the vineyard, the analysis of the data collected, and the enormous variability of plant
growth. In the work of Cheraiet et al. [31], a Bayesian algorithm for the classification of
point clouds was applied to different grapevine varieties, using two different training
modes. To evaluate the quality of the tree canopy parameter estimation, the algorithm
in [31] was compared with a manual expert method and the protolidar method of Rinaldi
et al. [39], obtaining a very high correlation with R2 = 0.94 and 0.89, respectively. The
much higher correlation compared to this work shows that canopy height and width (and
thus surface area) are easier to estimate than canopy volume. One of the most important
problems, as we show, is the determination of the midplane. As mentioned earlier, lidar
methods have the disadvantage that in order to sense both sides of the canopy it is required
that sensors be placed in each row of the vineyard. While this has been possible in research-
based studies, the reality in agricultural practice is that vineyards are traversed only every
second or third row, depending on the configuration of the equipment. It is likely that only
one side of the canopy (half-canopy scan) is captured during a single vineyard operation.
This remains problematic because approaches to estimating canopy dimensions using
half-canopy lidar scans and their accuracy are not well developed [31] and were confirmed
in this study by the growth differences of the sunny and shady sides of the canopy.

Nevertheless, most researchers agree [40] that lidar systems are capable of measur-
ing crop geometric features with sufficient accuracy for most site-specific agricultural
applications.

Results of manual defoliation of selected vines from Table 2 showed that both terrestrial
lidar and UAS photogrammetry provided results good enough for subsequent dosing of
pesticides, possibly with a canopy-optimized sprayer or similar methods.

The most important advantage of terrestrial lidar over UAS photogrammetry was seen
in the immediate availability of measurement data that could be readily used for automated
processing of the scanned data, such as spraying at a practical driving speed. Although
UAS photogrammetry offered better spatial resolution, the results were not immediately
available, so another method of data storage, communication with the machine, and
positioning in the vineyard had to be implemented. However, in the near future, with fast
data transmissions (5G networks) and fast image processing (powerful image processing
computers), the UAS photogrammetric measurement system will be a very powerful tool.
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5. Conclusions

Optical measurement methods are widely used in agriculture. We have shown that
UAS photogrammetry, which is still rarely used, is capable of representing the canopy of
grapevines better than the more established method of terrestrial lidar. The most important
feature is that UAS photogrammetry can provide many more points within the cloud, often
deep in the canopy. We have found that the most appropriate algorithm for estimating
canopy volume is the convex hull algorithm with segments size around 5 × 5 cm.

In the future and with the advent of increasingly powerful computers and data transfer
possibilities, the focus of vine canopy measurements will likely shift from terrestrial lidar
to UAS photogrammetry. This will provide users with denser point clouds. In addition to
introducing different and possibly novel methods for processing point clouds, users will
also need to find answers to operational constraints, such as the use of anti-hail nets.

We have shown that a terrestrial lidar and UAS photogrammetry measurement system
both allow efficient scanning of large sections of vineyards. We have also shown that it
is possible to digitally reconstruct the vine canopy even on smaller segments, which will
allow uniform spraying on individual segments in the future. Thus, precision spraying
and good crop protection will be possible while reducing pesticide drift and pollution and
promoting the production of healthy grapes.

Further studies are needed to improve terrestrial lidar and UAS photogrammetry leaf
area measurements. These include the fusion of different detection methods together with
the use of intelligent algorithms. A cost analysis of savings on plant protection products,
water, and energy should also be performed.
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