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Abstract: A novel model selection and averaging approach is proposed—through integrating the
corrected Akaike information criterion (AICc), the Gibbs sampler, and the Poisson regression
models, to improve tropical cyclone seasonal forecasting in the Australian and the South Pacific
Ocean regions and sub-regions. It has been found by the new approach that indices which describe
tropical cyclone inter-annual variability such as the Dipole Mode Index (DMI) and the El Niño
Modoki Index (EMI) are among the most important predictors used by the selected models. The
core computational method underlying the proposed approach is a new stochastic search algorithm
that we have developed, and is named Metropolis–Gibbs random scan (MGRS). By applying MGRS
to minimize AICc over all candidate models, a set of the most important predictors are identified
which can form a small number of optimal Poisson regression models. These optimal models
are then averaged to improve their overall predictability. Results from our case study of tropical
cyclone seasonal forecasting show that the MGRS-AICc method performs significantly better than
the commonly used step-wise AICc method.

Keywords: tropical cyclones; seasonal forecasting; Metropolis–Gibbs sampler; model selection; model
averaging; Australian region; South Pacific Ocean regions

1. Introduction

Tropical cyclones (TCs) are severe weather events which impact countries in tropical
regions including Australia and Pacific Island nations [1,2]. Hazards associated with TCs
include damaging winds, storm surges, and heavy rainfall, which often cause flooding
and landslides, likely resulting in loss of life, economic losses and damage to the natural
environment [3]. In the Southern Hemisphere, TC season usually starts in November and
lasts six months to April next year; however, rare TC events occur outside of the season. It is
of great importance to accurately forecast TC seasonal activities and increase preparedness
ahead of the coming TC season [4].

The pioneering studies by Nicholls [5,6] and Gray [7,8] discovered the relation-
ship between TC seasonal activity and the El Niño-Southern Oscillation (ENSO) in the
Australian region and the Atlantic basin, respectively; since then several TC seasonal
prediction models have been developed using linear regression based on ENSO indices.
Nicholls [9] developed the Poisson regression model to improve TC seasonal forecasting
in the Australian region, becoming a popular choice in TC seasonal activity analysis.
The Niño 3.4 (NINO3.4) and the Southern Oscillation Index (SOI) are the two most
commonly used indices to describe ENSO’s state. McDonnell and Holbrook [10] used the
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Poisson regression to investigate the tropical cyclogenesis for the Australia–Southwest
Pacific Ocean region with different sets of potential variables. Jagger and Elsner [11]
applied the Bayesian model averaging approach with the Poisson model to improve the
hindcast performance of U.S hurricane counts. Kuleshov et al. [12] used the principal
component analysis (PCA) to derive a new climatic index, called 5VAR, to describe TC
activity. Wijnands et al. [13] introduced the machine learning method based on support
vector regression (SVR) to TC seasonal forecasting.

In addition to statistical models, other techniques were developed such as dynam-
ical climate models which demonstrated their skill in seasonal TC forecasting in some
basins [14,15]. For example, since 2017, the ECMWF seasonal forecasts are produced with
SEAS5 [16] whose real-time component consists of a 51-member ensemble of 7-month
forecasts produced on the 1st of each month at a 36 km resolution. These forecasts are
issued over each WMO ocean basin, except for the North Indian Ocean because of the
lack of skill over this basin. The SEAS5 model displays skill in predicting TC inter-annual
variability, particularly over the regions in the Northern Hemisphere. However, predictive
skill over the regions in the Southern Hemisphere is low. A methodology for a hybrid
statistical/dynamical TC seasonal forecasting [17] has been also developed. For detailed
description of currently employed TC forecasting methodologies to predict TC seasonal
basin wide activity and regional activity refer to [18].

In the Southern Hemisphere regions, operational meteorological agencies such as the
Australian Bureau of Meteorology and the Fiji Meteorological Service employ statistical
techniques which use statistical relationship to predict TC number in a coming season
using ENSO indices [4].

These statistical models use a small set of specifically selected indices based on prior
knowledge of the relationship between TC activity and key climate drivers. This study aims
to explore a large set of 36 potential variables based on 12 potential climate indices using
data available for three months (August, September and October) prior to the Southern
Hemisphere TC season (November to April inclusive). There are two main goals:

i. Identify the most important climate indices that greatly influence TC seasonal activity.
ii. Improve the forecast utility using the approach of model averaging from the best

models selected in (i).

In this study, potential variables were selected based on recommendations from earlier
studies [19–21] which identified the Indian Ocean Dipole (IOD) and the ENSO as key
climate drivers which modulate TC activity in the regions of the Southern Hemisphere on
seasonal to inter-annual time scales. While many of the selected potential variables are
representative of ENSO, it should be noted that this phenomenon has various modes. There
are several different types of El Niño events, e.g., the canonical eastern Pacific El Niño and
the central Pacific El Niño–Modoki types being the two that were studied in detail.

We also choose the Poisson regression widely used in predicting TC seasonal activity
to achieve those goals. Our contributions are twofold. First, we use the corrected Akaike
information criterion (AICc) [22] to select the best models. Here we implement model
selection by a new stochastic variable search algorithm, called Metropolis–Gibbs sampling
with random scan (MGRS), which improves over the Gibbs sampler method in [23] by in-
jecting Metropolis sampling sequentially [24] on a permutation of all univariate conditional
distributions in Gibbs sampling. Second, a model averaging approach is conducted on the
set of top models selected by MGRS based on using the extended smooth-AICc weights.

The paper is organized as follows. The data are described in Section 2, and the
MGRS algorithm is illustrated in Section 3. The results are presented in Section 4, and the
discussion and summary are presented in Section 5.

2. Data
2.1. Study Area and TC Data

The study area is the Australian region (AR; 5◦S to 40◦S, 90◦E to 160◦E) and the South
Pacific Ocean region (SPO; 5◦S to 40◦S, 142.5◦E to 120◦W) (Figure 1). These definitions of the
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AR and the SPO region are broadly consistent with definition of storm basins as defined by
WMO. However, exact boundaries are defined based on the regions’ definitions by the Aus-
tralian Bureau of Meteorology (see http://www.bom.gov.au/climate/cyclones/australia/
and http://www.bom.gov.au/climate/cyclones/south-pacific/ for detail; accessed on 13
November 2022).

In this study, we use TC best track data for 45 seasons (1970/71 to 2014/15) from the
Southern Hemisphere TC archive developed by the Australian Bureau of Meteorology in
close collaboration with international partners: Regional Specialised Meteorological Cen-
tres (RSMCs) Nadi (Fiji) and La Reunion (France); and Tropical Cyclone Warning Centres
(TCWCs) Brisbane, Darwin and Perth (Australia), and Wellington (New Zealand) [25].
To the best of our knowledge, the Southern Hemisphere TC data archive consists of
the most accurate historical data records for occurrences of TCs in our study area for
so-called “satellite era”, i.e., from the 1970s when satellite remote sensing data from
geostationary and polar-orbiting meteorological satellites became available for oper-
ational use at meteorological services of Australia, New Zealand and Pacific Island
countries [25–27]. Using these satellite remote sensing data, this study developed a
novel methodology for improving accuracy of TC seasonal forecasting in the AR and the
SPO region. The number of TCs for each season was obtained from the Southern Hemi-
sphere TC archive via the Pacific Tropical Cyclone Data Portal of the Australian Bureau
of Meteorology (http://www.bom.gov.au/cyclone/history/tracks/ (last assessed on
8 August 2022)). Note that in the Southern Hemisphere TC season coincides with the
austral summer, typically starting in November and ending in April. As such, Southern
Hemisphere TC season is described using two years, e.g., the season starting in 1970 and
ending in 1971 is denoted as 1970/71.

TC intensity is usually defined in terms of maximum mean wind speed or minimum
central pressure. To keep consistency with previous studies, the genesis of a TC is defined
when a cyclonic system first attains a central pressure equal to or less than 995 hPa. Exam-
ining TC best track data in the Southern Hemisphere for “satellite era” (from the 1970s), it
was recommended to classify a tropical system as a TC when this system attains minimum
central pressure of 995 hPa or lower which corresponds to Category 1 on Australian tropi-
cal cyclone intensity scale [28]. In this study, the total number of tropical systems which
attained TC intensity (995 hPa or lower) during TC season was used as a metric to calculate
TC number for that season.

The Australian Bureau of Meteorology has operational responsibilities to issue TC
seasonal outlooks for both AR and SPO regions and to provide Australians and the popula-
tion of countries in the South Pacific Ocean with early warning advice about TC activity
expected in the coming season [4,25]. These outlooks use the statistical relationships be-
tween TC numbers and two indicators: the SOI and the Niño3.4 sea surface temperature
(SST) anomaly. These two indicators provide a measure of the atmospheric and oceanic
state, respectively, of ENSO. Over the entire AR (5◦S to 40◦S, 90◦E to 160◦E), this statisti-
cal relationship has proven to be highly accurate, or a skilful way to forecast TC activity.
However, across the sub-regions this relationship, and thus forecast skill, can vary. Some
regions have much higher forecast skill than others. The North-western sub-region (5◦S
to 25◦S, 105◦E to 130◦E) has good skill, while the Western (5◦S to 40◦S, 90◦E to 125◦E)
and Eastern (5◦S to 40◦S, 142.5◦E to 160◦E) regions both have low skill and the North-
ern region (5◦S to 40◦S, 125◦E to 142.5◦E) has very low skill (http://www.bom.gov.au/
climate/cyclones/australia/#tabs=Further-information; accessed on 13 November 2022).
The statistical model used for the SPO region outlook has a high level of accuracy pre-
dicting cyclone numbers in the western sub-region (5◦S to 40◦S, 142.5◦E to 165◦E), but
a very low level of accuracy for the eastern sub-region (5◦S to 40◦S, 165◦E to 120◦W)
(http://www.bom.gov.au/climate/cyclones/south-pacific/#tabs=Further-information; ac-
cessed on 13 November 2022). Low forecasting skill in sub-regions of the AR and the SPO
region is identified as a deficiency of currently employed statistical TC forecasting methods.
In this study, we attempt to improve statistical methodology for TC seasonal forecasting

http://www.bom.gov.au/climate/cyclones/australia/
http://www.bom.gov.au/climate/cyclones/south-pacific/
http://www.bom.gov.au/cyclone/history/tracks/
http://www.bom.gov.au/climate/cyclones/australia/#tabs=Further-information
http://www.bom.gov.au/climate/cyclones/australia/#tabs=Further-information
http://www.bom.gov.au/climate/cyclones/south-pacific/#tabs=Further-information
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in the AR and the SPO region by selecting and averaging models via Metropolis–Gibbs
sampling. There is an overlap between the two areas under investigation. This overlap is
considered in this study; if a TC is recorded in both AR and SPO regions, we include it in
our analysis for both areas.

To summarise, the focus of our study is on finding those climate indices which can
significantly improve skill of TC seasonal forecasting in the AR and the SPO regions.

Figure 1. Study area: the Australian region (AR) and the South Pacific Ocean region (SPO), and their
sub-regions: northwestern AR (AR-NW), western AR (AR-W), northern AR (AR-N), eastern AR
(AR-E), western SPO (SPO-W), and eastern SPO (SPO-E).

2.2. Model Covariates

Relationships between TC inter-annual variability in the regions of the Southern
Hemisphere and key climate drivers – ENSO and IOD – were examined in [4,13,19,21,29].
These earlier studies have demonstrated that in the South Pacific Ocean TCs tend to
form more towards the north-east of the region in El Niño years compared with La Niña
years. In the south-west Indian Ocean, during positive (negative) phase of the IOD TC
genesis is enhanced (suppressed) over the western (south-eastern) equatorial Indian Ocean.
The results of [20,29] demonstrate that warm SSTs, enhanced atmospheric convection,
increased relative humidity and reduced vertical wind shear are critical components in
determining areas favourable for TC genesis in the Southern Hemisphere.

In the AR and the SPO region which are two regions under investigation in this study,
ENSO significantly affected not only TC spatial distribution but also total annual number
of TCs. In La Niña years, on average 10.3 TCs affected the AR while in El Niño years its
average annual number was reduced to 8.2. In the SPO region, an increase in TC activity
was observed in El Niño years (9.1 TCs on average) and a decrease in La Niña years
(6.9 TCs on average) [4]. This modulation of TC activity by ENSO is based on changes in
physical characteristics of atmospheric and oceanic environment. Warmer than normal
SSTs, positive relative humidity anomalies and reduced vertical wind shear are found in
the eastern (western) part of the SPO region during El Niño (La Niña) events, helping to
explain the observed cyclogenesis.

As ENSO is a coupled ocean-atmosphere phenomenon, several indices which capture
relative changes in both the atmospheric and oceanic environment potentially favourable
for TC genesis over a large domain covering the equatorial central and eastern Pacific
regions, were selected as potential variables to be examined in this study. These indices are
described in Table 1 and considered in this analysis as the model covariates.

Variables Niño1+2 (hereafter, N12 ), Niño3 (N3), Niño3.4 (N34) and Niño4 (N4), as well
as the El Niño Modoki Index (EMI) describe SST anomalies in various parts of the equatorial
Pacific Ocean. Data for N12, N3, N34, and N4 come from the National Climatic Data Center
(NCDC) (www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-
sea-surface-temperature-ersst-v5; accessed on 13 November 2022). Data for EMI come from
the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) (www.jamstec.go.
jp/frsgc/research/d1/iod/DATA/emi.monthly.txt; accessed on 13 November 2022).

www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5
www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5
www.jamstec.go.jp/frsgc/research/d1/iod/DATA/emi.monthly.txt
www.jamstec.go.jp/frsgc/research/d1/iod/DATA/emi.monthly.txt
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Table 1. List of the observed climate variables, in August, September and October each year,
in this study.

Variable Description

N12.Aug Niño1+2 SST anomalies (August)

N12.Sep Niño1+2 SST anomalies (September)

N12.Oct Niño1+2 SST anomalies (October)

N3.Aug Niño3 SST anomalies (August)

N3.Sep Niño3 SST anomalies (September)

N3.Oct Niño3 SST anomalies (October)

N34.Aug Niño3.4 SST anomalies (August)

N34.Sep Niño3.4 SST anomalies (September)

N34.Oct Niño3.4 SST anomalies (October)

N4.Aug Niño4 SST anomalies (August)

N4.Sep Niño4 SST anomalies (September)

N4.Oct Niño4 SST anomalies (October)

EMI.Aug El Niño Modoki Index (August)

EMI.Sep El Niño Modoki Index (September)

EMI.Oct El Niño Modoki Index (October)

DMI.Aug Dipole Mode Index (August)

DMI.Sep Dipole Mode Index (September)

DMI.Oct Dipole Mode Index (October)

DMIW.Aug Dipole Mode Index West (August)

DMIW.Sep Dipole Mode Index West (September)

DMIW.Oct Dipole Mode Index West (October)

DMIE.Aug Dipole Mode Index East (August)

DMIE.Sep Dipole Mode Index East (September)

DMIE.Oct Dipole Mode Index East (October)

QBO.Aug Quasi-biennial oscillation (August)

QBO.Sep Quasi-biennial oscillation (September)

QBO.Oct Quasi-biennial oscillation (October)

SOI.Aug Southern Oscillation Index (August)

SOI.Sep Southern Oscillation Index (September)

SOI.Oct Southern Oscillation Index (October)

TMSLP.Aug Tahiti mean sea level pressure (August)

TMSLP.Sep Tahiti mean sea level pressure (September)

TMSLP.Oct Tahiti mean sea level pressure (October)

DMSLP.Aug Darwin mean sea level pressure (August)

DMSLP.Sep Darwin mean sea level pressure (September)

DMSLP.Oct Darwin mean sea level pressure (October)

The Southern Oscillation Index (SOI) measures the ENSO-event-related atmospheric
pressure differences. Specifically, SOI is a standardized index based on the observed mean
sea level pressure (MSLP) differences between Tahiti and Darwin. Data for SOI, Tahiti MSLP,
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and Darwin MSLP were obtained from the Bureau of Meteorology (http://www.bom.gov.
au/clim-ate/current/soi2.shtml; accessed on 13 November 2022).

Similar to the ENSO, the IOD is a coupled ocean-atmosphere phenomenon in the
Indian Ocean. A positive IOD event is characterised by warmer than average SSTs in
the western equatorial Indian Ocean and cooler than average SSTs in the south-eastern
equatorial Indian Ocean. Typically, SSTs in the north Australian–Indonesian region and
in the Coral Sea are also cooler than average during a positive IOD event. Associated
with a westward shift of warmer ocean waters, the area of increased convection also
shifts from the eastern to the western equatorial Indian Ocean. These coupled ocean–
atmosphere changes during a positive IOD mode bring less favourable conditions for
TC genesis to the AR and the western SPO region. On the other hand, during a negative
IOD event, warmer than average SSTs over the south-eastern equatorial Indian Ocean,
the Australian–Indonesian region and the Coral Sea lead to increased atmospheric
convection over these regions and an associated increase in mid-tropospheric relative
humidity creating a favourable environment for enhanced tropical cyclogenesis over this
area. These relative changes in the oceanic and atmospheric environment associated with
negative and positive phases of the IOD which impact on TC activity suggest that the
Dipole Mode Index (DMI) which describes IOD’s status could be one of the key predictors
for statistical models.

The DMI describes SST gradient between the western equatorial Indian Ocean
(50◦E–70◦E and 10◦S–10◦N) and the southeastern equatorial Indian Ocean (90◦E–110◦E and
10◦S–0◦N). In this study, DMI, DMI West and DMI East indices which describe IOD’s state
were selected as potential variables to be examined. Data for DMI, DMI West and DMI East
were obtained from NOAA’s Physical Sciences Laboratory (PSL) (https://psl.noaa.gov/
gcos_wgsp/Timeseries/DMI/; accessed on 13 November 2022).

The Quasi-Biennial oscillation (QBO) is characterized by downward propagating al-
ternating easterly and westerly winds in the equatorial lower stratosphere with a period
of approximately 28 months. Although the QBO is a stratospheric phenomenon, it has
been linked to changes in many aspects of tropical convection, including variations in TC
frequency and tracks in the Atlantic basin [30,31]. Moreover, QBO and ENSO are found to
have combined influence on TC activity over the North Atlantic Ocean [32]. The emerging
relationship between the QBO and the Madden–Julian oscillation (MJO) has been recently
found [33]. Besides dominating sub-seasonal variability of rainfall and surface winds across
the Indo-Pacific warm pool, the MJO drives variations in TC activity [34,35] and so is an im-
portant source of sub-seasonal climate predictability. As a potential indicator of TC seasonal
activity in the Southern Hemisphere, QBO was not previously evaluated, and it was in-
cluded in this study to be examined. Data for QBO is obtained from the National Oceanic and
Atmospheric Administration (NOAA) (https://psl.noaa.gov/data/correlation/qbo.data;
accessed on 13 November 2022).

3. Methods

Traditional statistical method of TC seasonal forecasting uses a particular small set
of specifically selected indices based on prior knowledge of the relationship between
TC activity and key climate drivers (e.g., SOI and Niño3.4 in the Australian Bureau
of Meteorology’s operational model). This means that this traditional model has not
included in it all important climate variables influencing TC activity in the best way.
Improved seasonal forecasting results would be obtained by an improved operational
model. This paper concerns finding the most important climate variables influencing
TC activity and using them to establish a better model for seasonal TC forecasting.
Model evaluation and hindcast analysis late in Section 4 confirm that our new approach
improves TC seasonal forecasting.

We achieve improved TC seasonal forecasting by a new variable selection and model
averaging approach. Variable selection is performed on Poisson regression model space
by our stochastic search algorithm MGRS. Model averaging integrates and accordingly

http://www.bom.gov.au/clim-ate/current/soi2.shtml
http://www.bom.gov.au/clim-ate/current/soi2.shtml
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://psl.noaa.gov/data/correlation/qbo.data
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improves the forecasting performance of a small number of optimal Poisson models deter-
mined from variable selection.

3.1. Poisson Regression Model

We use the Poisson regression model to predict the TC number in a coming season
in each given region. The Poisson distribution, describing the response variable (i.e., TC
number) in the model, is widely used to describe count data, especially for events that
happen in a fixed period, such as tropical cyclone numbers/counts, cold spells or frequency
of droughts ([36]). Log-linear regression for Poisson-distributed data is a popular model
used to study the associations between TC counts and various climate index covariates
and to forecast seasonal TC activities. We assume the response variable Y is the tropical
cyclone count in each season from 1970/71 to 2014/15, and follows a Poisson distribution
P(Y = k) = (k!)−1µke−µ, k = 0, 1, 2, · · · , where µ = E[Y] is the mean of Y.

Let x = (x1, · · · , xp)T be a column vector of p covariates. Here p = 36 covariates
are used, containing the August, September and October observations preceding each TC
season for all the climate variables listed in Table 1. The Poisson log-linear regression takes
the following form to model the relationship between Y and x:

log(µ) = xT β (1)

where β = (β1, · · · , βp) is the unknown coefficient vector. Normally the coefficient β is
estimated by the maximum likelihood method but a Bayesian approach can also be applied
to estimate the posterior distribution of β (see e.g., [11]).

By fitting the seasonal TC data in Section 2 to the Poisson regression model (1), we
obtain an estimate of the mean of Y at each given x: µ̂ = exp(xT β̂). This estimate µ̂ is
actually a forecast of seasonal TC count for the season following the one when x is observed.
Confidence interval for this forecast can be subsequently calculated based on the standard
error of each µ̂.

3.2. Model Selection and Averaging

We proceed to present statistical and computational details underpinning model
selection and averaging. Let v = (v1, · · · , vp) be a binary vector. Define a subset of x,
denoted xv, as such that xj ∈ xv if and only if vj = 1. Namely, the jth element of v indicates
whether the jth covariate xj is included in the underlying candidate Poisson regression
model. The candidate model specified by xv or equivalently by v, denoted by Mv, is
written as

Mv : log(µ) = xT
v βv, (2)

where βv is a sub-vector of β indexed by v which can also be estimated by the maximal
likelihood method. Let Ω be the space of all candidate models:

Ω = {Mv|v is a binary vector} = {v|vi = 0 or 1}

Now we can use v to represent the corresponding candidate model Mv. By model
selection we mean to find the best model Mv or xv or v in the candidate model space.

To evaluate the utility of a candidate model (2), the Akaike information criterion
(AIC) ([37]) is a popular and widely used choice (e.g., [38]). It is efficient and intends to
select a model having the smallest predictive mean square errors. That is, the model with
the minimal AIC value will have the best prediction performance. However, AIC has
a tendency of over-fitting, especially in cases with small samples. Recall that there are
only 45 samples in the seasonal tropical cyclone data set in Section 2. This suggests an
improvement to be made on AIC. One such improvement, called corrected AIC (AICc), is
developed in [22] and is defined for each model Mv as

AICc(v) = −2 logL(β̂v) + 2pv +
2pv(pv + 1)
n− pv − 1

(3)
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where L is the log likelihood for model Mv evaluated at the maximal likelihood estimator
β̂v, n is the sample size, and pv is the number of parameters included in the model Mv.

Treating AICc as a function on the candidate model space Ω, finding the best model
is equivalent to finding the minimal value of AICc(v). When p is small, it is feasible to
apply an all subset selection procedure to calculate AICc(v) for every model v. However,
the number of candidate models |Ω| = 2p grows with p exponentially, and it becomes
infeasible to perform all subset selection even when p is moderately large. A step-wise
selection method has been used to tackle the difficulty which, however, cannot guarantee
the selection of the globally best model but a locally optimal model instead, see [39].

To address the aforementioned difficulties, in this paper we turn to consider computa-
tionally feasible stochastic search approaches which is capable of finding the globally best
model with probability 1 in the limit. Specifically, we propose a stochastic search algorithm
of Metropolis–Gibbs sampling with random scan, denoted by MGRS, for model selection
from Ω. This new algorithm is motivated by the Gibbs sampler variable selection method
developed in [23] but improves the computing performance over the latter. We proceed to
describe the new algorithm in the following.

Define a probability distribution hk on the candidate model space Ω by

hk(v) =
1
Z

e−k AICc(v) (4)

where Z = ∑v∈Ω e−k AICc(v) is a normalization constant, and k > 0 is a tuning parameter.
Clearly it is difficult to directly calculate the normalization constant Z when 2p is enormous.
On the other hand, the conditional distribution for each vi is Bernoulli, which does not
involve Z and has the probability of “success”:

hk(vi = 1|v−i) =
hk(vi = 1, v−i)

hk(vi = 1, v−i) + hk(vi = 0, v−i)

where v−i = (v1, · · · , vi−1, vi+1, · · · , vp). Generating samples of v from the joint distribu-
tion hk(v) can be achieved by Gibbs sampling through generating all conditional distri-
butions hk(vi|v−i) in sequence at random and progressively, i = 1, · · · , p. By [24], each
conditional distribution hk(vi|v−i) can be generated, rather than directly, but by Metropolis
acceptance sampling, resulting in the aforementioned MGRS Algorithm 1.

Four remarks for the Metropolis–Gibbs random scan algorithm MGRS are made here.
First, from the definition of the probability distribution hk, it is obvious that the best

model with the minimal AICc value will have the largest probability.
Second, for the tuning parameter k, a large k will put more probabilities on the better

models having relatively small AICc values and expedites the equilibrium of the generated
Markov chain, while it tends to hold on to a local best model. The converse is true for small
k. In practice, a pilot run of the algorithm is often needed to determine a plausible range
for k. In the current seasonal TC forecasting study, we find it sufficient to set k between 0.5
and 10.

Third, the permutation σ is used to harness random scan. That is, the order by which
the components of v are randomly and sequentially updated in each round is determined
by the current permutation. This way the generated Markov chain will be recurrent and
reversible, so that the globally best model can be selected with probability 1 in the limit.

Last, the Metropolis sampling used in updating each component vj in Gibbs sampler
is in effect generating vj with a probability larger than the conditional probability of vj
specified by the corresponding conditional distribution in the Gibbs sampler. This implies
the resultant generated Markov chain will converge to the equilibrium faster than the one
generated by using Gibbs sampler alone.



Remote Sens. 2022, 14, 5872 9 of 19

Algorithm 1: Metropolis–Gibbs sampling with random scan (MGRS)

i. Randomly choose an initial model v(1) from Ω, e.g., v(1) = (1, 1, 0, · · · , 0).

ii. Suppose v(1) until v(t) = (v(t)1 , · · · , v(t)p ) have been generated. Next is to generate
v(t+1). Let σ = (σ(1), · · · , σ(p)) be a permutation of (1, 2, · · · , p).

1. Set v∗ = 1− v(t)
σ(1). Accept v(t+1)

σ(1) = v∗ (vs. = v(t)
σ(1)) with the probability

min

1,
hk(v∗, v(t)

σ(2), · · · , v(t)
σ(p))

hk(v
(t)
σ(1), v(t)

σ(2), · · · , v(t)
σ(p))


2. Set v∗ = 1− v(t)

σ(2). Accept v(t+1)
σ(2) = v∗ (vs. = v(t)

σ(2)) with the probability

min

1,
hk(v

(t+1)
σ(1) , v∗, v(t)

σ(3), · · · , v(t)
σ(p))

hk(v
(t+1)
σ(1) , v(t)

σ(2), v(t)
σ(3), · · · , v(t)

σ(p))


...
p. Set v∗ = 1− v(t)

σ(p). Accept v(t+1)
σ(p) = v∗ (vs. = v(t)

σ(p)) with the probability

min

1,
hk(v

(t+1)
σ(1) , · · · , v(t+1)

σ(p−1), v∗)

hk(v
(t+1)
σ(1) , · · · , v(t+1)

σ(p−1), v(t)
σ(p))


iii. Set v(t+1) = (v(t+1)

1 , · · · , v(t+1)
p ). Then repeat step ii to generate a Markov chain

S = {v(1), · · · , v(n), · · · }

which can be regarded as samples of v from hk(v) when n is sufficiently large.

Let S = {v(1), · · · , v(n), · · · } be the generated Markov chain sequence. It can be shown
that S is an irreducible and reversible Markov chain with its stationary distribution being
hk(v), because hk satisfies the detailed balance condition, cf. [40].

Practically, we choose to use the I-chart method to determine whether the sample
sequence S reaches equilibrium after taking a burn-in period ([41]). It is equivalent to
checking whether the corresponding sequence of the AICc values has reached equilibrium.
With this generated AICc sequence, we can plot a modified individual point control chart or
I-chart to do the checking. Knowing that AICc is actually a function of the random variable
v which follows the probability distribution hk defined on Ω, it can be easily proved that

P
(

AICc−min AICc ≥ b
√

Var(AICc) + [E(AICc)−min AICc]2
)
≤ b−2

for any b > 0. Using this result, the lower control limit of the I-chart can be set to be
m̂in AICc, the minimum of the AICc series. The upper control limit of the I-chart can

be chosen to be m̂in AICc+b
√

s2(AICc) + (AICc− m̃in AICc)2, where s2(AICc), AICc,

and m̃in AICc are, respectively, the sample variance, the sample mean, and the sample
minimum of the second half of the AICc series.

The generated AICc sequence is always above the lower control limit. On the other
hand, when this sequence reaches equilibrium and s2(AICc), AICc, and m̃in AICc are
consistent estimates, there would be less than 100b−2% of the AICc sequence over the
upper control limit. Therefore, we can claim that there is no significant statistical evidence
that the AICc sequence, and accordingly the generated model sequence S, have not reached
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equilibrium. Consequently, we will treat the model sequence S as though they were
generated from the probability distribution hk(v), and then perform model selection and
model averaging based on S and the associated AICc sequence. The I-chart proposed here
will be said to be created by a level 100× (1− b−2)% rule. Usually we use a level 90% rule
to create the I-chart, corresponding to setting b equal

√
10.

Suppose the n generated models Sn = {v(1), · · · , v(n)} have formed a Markov chain in
equilibrium, which is also true for the sequence {AICc(v(1)), · · · , AICc(v(n))}. It is easy to
find a model v∗ ∈ Sn, named the estimated optimal model, such that

AICc(v∗) denoted
= AICc∗ = min{AICc(v(1)), · · · , AICc(v(n))}. Given a small positive in-

teger s, it is also feasible to identify the top s models from Sn, denoted Ω∗ = {v∗1 , · · · , v∗s },
such that AICc∗ = AICc(v∗1) ≤ AICc(v∗2) · · · ≤ AICc(v∗s ).

In addition to being used for finding the best models, Sn and the associated AICc
sequence can be used to rank the importance to the response Y of each covariate component
of x. The importance of each covariate xi is determined by the frequency of the event
{vi = 1} appearing in Sn. This frequency gives a consistent estimate of the marginal
probability of {vi = 1} with respect to the probability distribution hk(v). The marginal
distribution of vi with respect to hk(v) is Bernoulli with the probability of “success”:

πi = P(vi = 1) = ∑
v∈Ω∩{vi=1}

hk(vi = 1, v−i)

which is the probability of covariate xi being included in a model generated by the MGRS
algorithm. Note that using covariate importance ranking for model selection is similar to
Bayesian variable selection ([42]).

Let Sni = {v
(1)
i , · · · , v(n)i } be the sub-chain of Sn consisting of all the ith components of

v ∈ Sn. Although Sni may not be a Markov chain when p > 2, the sampling distribution of
Sni converges to the marginal distribution of vi with respect to hk(v), where the probability
of “success” πi is estimated by

π̂i =
∑n

j=1 v(j)
i

n
(5)

Now we can use π̂i to represent the importance of covariate xi regarding its effect to the
response Y. The most important covariates in x are therefore determined by those having
the largest values among π̂i’s. Specifically, we can identify those important covariates by a
pre-specified threshold τ such that x∗ = {xi|π̂i > τ}.

In cases where the top s models from Sn do not have a clear-cut winner, model av-
eraging may be a better approach to finding a new model having improved predicting
performance. Recall the top s models Ω∗ = {v∗1 , · · · , v∗s } that have their respective coeffi-
cient estimates as β̂∗1, · · · , β̂∗s . We define an extended smooth-AICc weight for each model

in Ω∗ by ωj = e−k AICc(v∗j )
(

∑s
j′=1 e

−k AICc(v∗j′ )
)−1

, j = 1, · · · , s.
When k = 1/2, the ωj’s become the Akaike weights used in [43], which are commonly

used among the model averaging methods. Here we choose the same k value used in the
MGRS algorithm. Then the Poisson averaged regression model is defined as

log(µ) =
s

∑
j=1

ωjxT
v∗j

β̂∗j . (6)

When the prediction is the goal, it is recommended to use the model averaging method
rather than the best model strategy ([44]). Model (6) is obtained by a Gibbs sampling
induced model averaging approach, and is thus named the GMA model.

3.3. Model Evaluation

The leave-one-out cross-validation (LOOCV) approach is adopted in [45] to evaluate the
predicting performance of a particular model characterizing Australian seasonal rainfall.
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We follow the same approach here. Namely, each season in the data is treated as a single
fold, and the prediction of TC count in each season is obtained based on the fitted model
using the data in all other seasons.

The mean square error (MSE) and the forecast skill score (SS) of a forecasting scheme
in climatology defined by [36] are used in this paper:

MSE =
1
n

n

∑
i=1

(yi − µ̂i)
2 (7)

MAE =
1
n

n

∑
i=1
|yi − µ̂i| (8)

nRMSE =
√

MSE/σy (9)

SS = (1− MSE
MSEClimatology

)× 100% (10)

where σy is the standard deviation of the TC counts y, and MSEClimatology is the mean
square error of the climatology model.

4. Results
4.1. Model Selection

This section presents and discusses the results of model selection and variable selection
from analyzing the seasonal TC frequency data in AR and SPO regions across 1970/71
to 2014/15 seasons by the proposed MGRS algorithm and also the widely used step-
wise selection method. We denote by BEST the best Poisson regression model selected by
MGRS, and by STEP the final Poisson regression model selected by the step-wise method.
In implementing MGRS we set the tuning parameter k = 2, and generate a sequence of
n = 1000 models which is shown to achieve the equilibrium.

Figure 2 presents the level 90% I-charts for the generated AICc sequence in the Aus-
tralian and South Pacific ocean regions and sub-regions. There is no significant statistical
evidence to suggest that the generated AICc sequence has not reached equilibrium.

AICc values of the BEST models selected by MGRS from the generated model se-
quences for all regions are listed in Table 2, together with AICc values of the corresponding
STEP models selected by the step-wise method. Table 2 shows that each model BEST always
outperforms the corresponding model STEP by having a smaller AICc value.

Table 2. The AICc values for the models STEP and BEST in each region.

AR AR-W AR-NW AR-N AR-E SPO SPO-W SPO-E

STEP 216.3 195.9 191.6 152.6 175.0 233.8 177.7 216.1

BEST 214.7 194.5 189.9 150.3 169.8 226.8 177.2 215.6

For each model generated by MGRS for each region, we plot its frequency of occurrence
in the generated model sequence against its AICc value. Results for all the generated models
are displayed in Figure 3. Figure 3a–e shows that each BEST model has not only the smallest
AICc value but also the highest sampling frequency within its respective AR sub-region.
This conforms to what the probability distribution hk(v) in (4) suggests.
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Figure 2. The I-chart for the generated AICc sequence in each region. The blue dashed line is the
upper control limit for generations 1:1000, and the red dotted line is for generations 1:500.
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Figure 3. Sampling frequency of each model present in the generated model sequence versus its
AICc value for each sub-region.

Moreover, from both Table 2 and Figure 3 we see the model STEP selected by the
step-wise method for most regions is far from being top ranked regarding the AICc value.
For example, for sub-region AR-E, the model STEP has an AICc value equal to 175.0 while
we see 175.0 is located in the middle of the AICc range from Figure 3e. The model BEST
for AR-E has a much smaller AICc value equal to 169.8. This shows the step-wise model
selection method does not work well in AR-E region and fails to find a model even close to
the best model. Similar conclusions on the performance of the step-wise method can be
drawn about the other AR sub-regions based on Figure 3a,c,d.
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For the South Pacific Ocean region and sub-regions, Figure 3f–h displays the sampling
frequencies for all generated models together with their AICc values. Unlike what is
seen in the AR regions, both the BEST model and another model have the largest sampling
frequency in SPO; the BEST model does not have the largest frequency in sub-region SPO-W;
and only in SPO-E we see model BEST has the largest sampling frequency. This illustrates
the uncertainty involved in model selection.

The marginal probability estimate π̂i given in (5) can be used to assess the importance
of predictor xi in impacting the response variable y. Figure 4a–h display the 10 most
important predictors with the associated 10 largest marginal probabilities in their impacting
the seasonal TC frequency in each of AR and SPO sub-regions.

For the AR region, DMI.Oct is the only one most important predictor with the marginal
probability larger than 0.5, the next two EMI.Oct and DMIW.Oct are highly correlated. In
summary, DMI and EMI are the two most important indices for seasonal TC forecasting in
AR. For the AR-W sub-region, DMI.Oct is the most important and DMSLP.Sep is the second.
Then we see DMI.Oct is the most important index in both AR and AR-W regions. For AR-N
sub-region, DMSLP.Aug and N12.Aug are the top two important indices. However, for AR-NW
and AR-E, no index has its marginal probability larger than 0.6, showing the limitation of
the variable selection approach.

Figure 4f–h shows the top ten predictor indices with largest marginal probabilities for
the SPO regions. For SPO we find EMI.Sep, DMI.Aug and TMSLP.Sep are the top three indices.
For SPO-W we find N12.Sep and DMIW.Oct are the top two indices, while for SPO-E there are
seven indices that have marginal probabilities greater than 0.4, including DMI.Oct having a
marginal probability of nearly 1.

Finally, we can conclude DMI and EMI are among the most important indices for most
regions. No other indices seem to be universally important across all sub-regions.
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Figure 4. The marginal probabilities for top ten predictors in each region.

4.2. Hindcast Analysis

This section considers hindcast analysis of seasonal TC forecasting for AR and SPO and
their sub-regions. Besides using the best models STEP and BEST selected by the step-wise
method and the MGRS algorithm, we use two other models for assessing the performance
of hindcast analysis. The first one is a weighted averaging Poisson model based on (6),
denoted GMA, which averages the s = 5 top log-linear regression models selected by
MGRS to calculate the forecasting. The second one, denoted by X5VAR, is the Poisson
regression model containing only the single index variable 5VAR proposed in [12] to calculate
the forecasting.

Performance of the hindcast analysis by each of the aforementioned four models is
evaluated by the three statistics nRMSE, MAE and SS defined in Section 3.3, which are
computed using leave-one-out cross-validation (LOOCV). The results are summarized in
Tables 3–5, where the best results for nRMSE and MAE are underlined.

Table 3. nRMSE statistic for the hindcast analysis under LOOCV. The best result for each region
is underlined.

AR AR-W AR-NW AR-N AR-E SPO SPO-W SPO-E

X5VAR 0.87 0.64 0.61 0.40 0.55 1.07 0.58 1.00

STEP 0.67 0.59 0.59 0.34 0.49 0.90 0.49 0.75

BEST 0.70 0.53 0.60 0.31 0.47 0.88 0.48 0.76

GMA 0.66 0.52 0.58 0.30 0.45 0.86 0.47 0.74
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Table 4. MAE statistic for the hindcast analysis under LOOCV. The best result for each region is under-
lined.

AR AR-W AR-NW AR-N AR-E SPO SPO-W SPO-E

X5VAR 2.35 1.82 1.69 1.06 1.37 2.89 1.48 2.76

STEP 1.71 1.57 1.58 0.86 1.27 2.57 1.24 1.97

BEST 1.84 1.42 1.70 0.75 1.17 2.40 1.11 2.00

GMA 1.73 1.38 1.63 0.71 1.14 2.41 1.10 1.94

Table 5. Forecast skill score (SS) for the hindcast analysis under LOOCV.

AR AR-W AR-NW AR-N AR-E SPO SPO-W SPO-E

X5VAR 29.0% 27.2% 12.3% −3.7% 10.1% −5.5% 9.3% 1.4%

STEP 58.1% 37.5% 18.9% 24.6% 28.9% 25.2% 34.5% 44.7%

BEST 53.9% 50.9% 15.6% 39.4% 33.8% 29.9% 38.6% 43.2%

GMA 58.8% 51.6% 20.4% 42.4% 38.5% 32.0% 40.5% 45.9%

Tables 3 and 4 show that the model X5VAR has the worst performance among the four
models in that it has the largest nRMSE and MAE and the smallest SS everywhere except
for AR-NW with second largest MAE. Generally, it suggests the model X5VAR is not a good
candidate for forecasting the seasonal TC activities, especially in SPO regions.

Regarding models STEP and BEST, their performances of hindcast analysis are
close to each other. Tables 3 and 4 show that model BEST performs better only in
regions AR-W, AR-N, AR-E, SPO and SPO-W. However, the results from Section 4.1 show
that model BEST has a smaller AICc value than model STEP in every region. Thus,
model BEST does not always perform better than model STEP regarding the hindcast
analysis under LOOCV.

For the model averaging approach, from Table 3 and 4, we see that the model GMA
always has the minimal nRMSE and MAE, except in AR-NW where model STEP has the
minimal MAE. From Table 5, model GMA improves much over the climatology model,
especially in AR and AR-W, with SS values 58.8% and 51.6%, respectively. For the other
regions, its SS values are over 30% except in AR-NW. Moreover, for AR-NW, all models do not
perform well with small SS values not more than 20.4%.

In summary, the model GMA has the best performance of hindcast analysis on forecast-
ing seasonal TC activities in AR and SPO regions. Figure 5, a visualization of the results in
Table 5, displays the seasonal TC count observations and the hindcast values from models
X5VAR and GMA under LOOCV. Among the four methods X5VAR, STEP, BEST and GMA, both
Table 5 and Figure 5 show that X5VAR performs worst and GMA performs best across
all regions.
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(a) Hindcast analysis for Australian regions
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Figure 5. The hindcast analysis results for AR and SPO regions.

5. Summary

In this paper, we have developed a Metropolis–Gibbs random scan algorithm MGRS for
modelling and forecasting seasonal TC activities in AR and SPO regions and sub-regions.
We have the following results:

i. We have identified the most important climate indices impacting seasonal TC fre-
quency in each region and find DMI and EMI are among the most important ones in
most regions.

ii. Finding the best model with minimal AICc values is computationally feasible where
the MGRS algorithm is superior to the step-wise method.

iii. The MGRS algorithm is used to find a small set of top models with relatively small
AICc values which, by a Gibbs sampling induced approach of model averaging, forms
a GMA model. The GMA model is shown to have improved the performance of
hindcast analysis of seasonal TC frequency in all regions.

In general, our new method has significantly better performance than the traditional
one. There are three possible reasons for this: (i) all potentially important covariates can
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be included for selection; (ii) MGRS is computationally feasible for finding the globally
optimum solution; (iii) model averaging improves the forecast performance. The most
important reason is believed to be (ii).

We also find that forecasting seasonal TC activities in the SPO regions is more chal-
lenging than in the AR regions, because in the former case there exist no clear-cut best
models and it is difficult to identify the most important climate indices. Regarding the
hindcast analysis performance, the model averaging approach is found superior to the
model selection and variable selection approaches. However, it becomes more involved to
interpret the influence of a climate index on seasonal TC activity for the model averaging
approach. Finally, further research should be undertaken when more potential climate
indices are discovered, especially in the SPO regions.
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