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Abstract: Recently, using spatial–spectral information for hyperspectral anomaly detection (AD) has
received extensive attention. However, the test point and its neighborhood points are usually treated
equally without highlighting the test point, which is unreasonable. In this paper, improved central
attention network-based tensor RX (ICAN-TRX) is designed to extract hyperspectral anomaly targets.
The ICAN-TRX algorithm consists of two parts, ICAN and TRX. In ICAN, a test tensor block as a
value tensor is first reconstructed by DBN to make the anomaly points more prominent. Then, in the
reconstructed tensor block, the central tensor is used as a convolution kernel to perform convolution
operation with its tensor block. The result tensor as a key tensor is transformed into a weight matrix.
Finally, after the correlation operation between the value tensor and the weight matrix, the new test
point is obtained. In ICAN, the spectral information of a test point is emphasized, and the spatial
relationships between the test point and its neighborhood points reflect their similarities. TRX is
used in the new HSI after ICAN, which allows more abundant spatial information to be used for
AD. Five real hyperspectral datasets are selected to estimate the performance of the proposed ICAN-
TRX algorithm. The detection results demonstrate that ICAN-TRX achieves superior performance
compared with seven other AD algorithms.

Keywords: anomaly detection; central attention; tensor; hyperspectral image

1. Introduction

Hyperspectral images (HSIs) occupy hundreds of narrow bands in the visible and
short-wave infrared region, so they are rich in spectral information [1–4]. Using this
characteristic, HSIs have a strong ability to distinguish ground objects. Classification and
target detection are two main applications of HSIs [5]. Target detection belongs to a special
case of classification, which is a binary classification. According to whether the target
information is known or unknown, there are two types of target detection, and the anomaly
target is detected without any prior information [6]. In practical situations, it is challenging
to obtain the spectrum of the targets beforehand. Therefore, anomaly detection (AD) has a
broader application, such as mineral detection, environmental monitoring, food quality
inspection, and search and rescue [7].

Hyperspectral AD mainly depends on the spectral characteristics of HSIs. In recent
decades, many algorithms for AD have appeared. The Reed–Xiaoli (RX) algorithm [8]
is basic and classic, and the result is derived from the Mahalanobis distance from the
test point to the background. It relies on the assumption that the background obeys a
multivariate Gaussian distribution. The background of HSIs is usually very complex. Local
RX [9] is the local case of RX algorithm, and a sliding-dual window is used for detection.
However, for real HSIs, the assumption of Gaussian distribution is usually inaccurate.
Some improved algorithms provide new ideas for the estimation of background models,
such as a weighted-RXD and a linear filter-based RXD [10]. In addition, many algorithms
based on sparse theory do not require model estimation for the HSI data, and they have
satisfactory detection results [11–15].
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HSIs have both rich spectral information and redundant information. Dimension
reduction (DR) is the primary preprocessing method for HSIs. Principal component anal-
ysis (PCA) is a famous dimension reduction (DR) algorithm and has been extensively
applied [15,16]. It is a linear algorithm. However, HSIs inherent nonlinear features, and
PCA may not be able to extract the effective features accurately. To overcome this difficulty,
manifold learning is used for hyperspectral AD, and better results are achieved [17–19]. Re-
cently, the application of deep learning (DL) theory has received extensive attention [20–22].
Hyperspectral AD algorithms using DL for feature extraction have also achieved satis-
factory detection performance. Convolutional neural networks (CNN) [23], as typical
thoroughly supervised models, improve the results when applied to classification and
target detection. In a transferred CNN [24] for AD, reference-labeled samples are used as
training datasets because of the lack of training samples. In transferred CNN based on ten-
sor (TCNNT) [25], the test tensor block is treated as a convolutional kernel, so are the local
neighboring tensor blocks. TCNNT has been improved into a supervised model. Stacked
autoencoders (SAE) [26,27] and deep belief networks (DBNs) [28,29] are unsupervised,
and they are more advantageous to hyperspectral AD. In the stacked autoencoders-based
adaptive subspace model (SAEASM) [30], the deep features of differences are acquired
using SAE architectures. In the fractional Fourier transform and deep belief networks
(FDBN)-based AD algorithm [31], DBNs are used for DR and signal reconstruction.

Spectral characteristics play a major role in the above AD algorithms. However, with
the progressing of remote sensing technology, HSIs also have better spatial characteris-
tics, and the advantage of spectral characteristics combined with spatial characteristics is
emerging [32]. Recently, some AD algorithms using the joint spectral–spatial characteristics
have achieved better detection results than only considering the spectral characteristics,
such as the spectral–spatial method based on low-rank and sparse matrix decomposition
(LS-SS) [33], sparsity divergence index based on locally linear embedding (SDI-LLE) [19],
and local summation anomaly detection (LSAD) [34]. In addition, tensor theory has also
attracted attention in HSIs processing. To use tensor theory, HSIs are treated as a third-order
data cube, which facilitates the simultaneous use of the spatial–spectral characteristics [35].
The coskewness detector (COSD) [36], the low-rank tensor decomposition-based anomaly
detection (LTDD) [37], and the tensor decomposition-based algorithm (TenB) [38] mainly
rely on tensor decomposition to eliminate redundancy and perform well. The test point
and its neighboring pixels are regarded as a test tensor block. Some the methods based
on subspace projection [39,40] have been applied to HSI processing and have achieved
good results. For hyperspectral AD, the tensor-based adaptive subspace detection (TBASD)
algorithm [41] can fully mine the spatial–spectral characteristics while ensuring the rela-
tive integrity of the spatial–spectral structure. The tensor RX (TRX) algorithm based on
FrFT (FrFT-TRX) [42] uses TRX in the fractional Fourier domain (FrFD). TRX uses the test
point tensor, instead of the test point vector, and can better mine spatial characteristics for
hyperspectral AD. In the above algorithms involving tensor theory, all the neighboring
pixels of a test point in a tensor block are treated equally without highlighting the test
point, which is unreasonable. Though the neighboring pixels provide spatial information,
the test point should be more important, and its spectral information should be the most
important criterion.

Recently, HSIs processing has increasingly adopted self-attention mechanisms, such as
bidirectional encoder representations from transformers (BERTHSI) [43] and the multilevel
feature network with spectral–spatial attention model (MFNSAM) [44]. To emphasize the
importance of a query pixel and ensure the correctness of spatial information extraction
from the neighboring pixels of the query pixel at the same time, the central attention
network (CAN) has been put forward for hyperspectral imagery classification and obtained
superior classification performance [45].

In this paper, improved central attention network-based tensor RX (ICAN-TRX) is
presented for hyperspectral AD. The ICAN-TRX algorithm consists of ICAN and TRX. In
ICAN, the test tensor block as the value tensor is first reconstructed by DBN to make the
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anomaly points more prominent. Then, in the reconstructed tensor block, the central tensor
is used as a convolution kernel to perform convolution operation with its tensor block, and
the result tensor as the key tensor is transformed into the weight matrix. Finally, after the
correlation operation between the value tensor and the weight matrix, the new test point is
obtained. TRX is used in the new HSI after ICAN.

The highlights of this paper can be summarized in the following three aspects:

1. Hyperspectral AD mainly depends on the spectral feature of a test point in HSI.
Neighborhood points similar to the test point also contain discriminative information.
In ICAN, the spectral information of a test point is emphasized, and spatial informa-
tion reflects the similarity between the test point and its neighborhood points. The
extraction of spectral–spatial features is more reasonable;

2. In ICAN, the test point in the center of a test tensor block is used as a convolution
kernel to perform convolution operation with the test tensor block, which reflects the
similarity between the test point and its neighborhood points. The determination of
this convolution kernel avoids the selection of training samples in CNN;

3. Because the input of ICAN is the test tensor block, TRX is used after ICAN, which
allows more abundant spatial information to be used for AD.

2. The Proposed Methods
2.1. DBN

Deep belief networks (DBNs) consist of a multi-layer restricted Boltzmann machines
(RBMs) and a layer of back propagation (BP) neural network. Its essence is a specially
constructed neural network. In DBNs, the output of the lower level RBM is used as the
input of the upper-level RBM, and the output information of the last level RBM network is
used as the input data of the BP neural network, as shown in Figure 1.
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The training process of DBNs is roughly divided into two steps. The first step is to
read the data file, train each layer of the RBM, take the output of the first hidden layer as
the input of the visible layer, and then use the output of the visible layer as the input of
the next hidden layer for training layer by layer. The separate training of each layer can
enable feature vectors to retain more feature information in different feature spaces. The
second step is to set the BP neural network at the last layer, receive the output of the RBM
as the input of the BP network, and adjust the entire DBNs by updating the neural network
parameters from top to bottom to optimize the accuracy of the entire DBNs. Training times,
number of samples, and number of layers are three important parameters in DBNs.

Hyperspectral AD is unsupervised target detection. DBNs are an auto-encoder and
unsupervised DL model and are more suitable for AD. In this paper, we use the DBNs
for the reconstruction of HSIs. Anomaly targets are usually sparse small targets, which
have a small probability compared with the background, and their contributions to the
DBNs reconstruction model are far less than the background points. Through the DBNs
reconstruction, the anomaly points in HSIs are more prominent, which is more conducive
to AD.

2.2. Improved Central Attention Module

In the central attention module [45], the test tensor centered on the test point is mapped
along the spectral dimension into key and value tensors, respectively. The number of pixels
of the two new tensors is equal to that of the test tensor. Every pixel of the key tensor is the
key to the corresponding pixel of the test tensor, so is the value tensor. In the improved
central attention module, the test tensor is used as the value tensor. For the key tensor,
the test tensor is first reconstructed by DBN, and the central tensor in the reconstructed
tensor is then used as a convolution kernel to perform convolution operation with the
reconstructed tensor. This convolution takes place one time, and the key tensor is obtained.
The corresponding weight matrix is transformed from the key tensor. The new tensor is the
pointwise multiplication of the value tensor with the weight matrix. The output is a series
of transforms of the central tensor in the new tensor. Next, a more detailed description
is shown.

As shown in Figure 2, let 3Γx ∈ Rw×w×D (w× w is the window size of the test tensor,
and D is the number of spectral bands) centered at the test point be the test tensor. For DBN
reconstruction, the test tensor 3Γx is first transformed into a pixelwise two-dimensional
matrix Y ∈ RM×D (M = w× w) that is then reconstructed by DBN. The reconstruction
matrix Yd ∈ RM×D (M = w× w) is transformed into a tensor 3Γd ∈ Rw×w×D. The central
tensor 3Γcd ∈ R1×1×D in 3Γd is then used as a convolution kernel. It performs convolution
operation with 3Γd, and the convolution takes place one time.

3Γr = φ
(

bT + 3Γcd©3Γd

)
(1)

where φ () is the activation function, bT is the bias parameter, and © is the tensor convolution.
The result tensor 3Γr ∈ Rw×w×1 as the key tensor is transformed into the weight matrix
Z∈ Rw×w.
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Next, the test tensor 3Γx is regarded as the value tensor. The tensor 3Γz ∈ Rw×w×D is
the pointwise multiplication of 3Γx and Z that is repeated along spectral dimension D times
to adapt to the size of 3Γx. The tensor 3Γcy ∈ R1×1×D is the pointwise division of the central
tensor 3Γcz ∈ R1×1×D in 3Γz and the central point xz ∈ R1×1 in Z. Finally, 3Γcy is used as a
convolution kernel and it performs convolution operation with 3Γcx. The convolution takes
place twice.

3Γy = φ
(

bT + 3Γcx©
(

3Γcx©3Γcy

))
(2)

where φ () is the activation function, bT is the bias parameter, and © is the tensor convolution.
The tensor 3Γy ∈ R1×1×D is the final output of the ICAN.

In the improved central attention module, the central tensor in the reconstructed
tensor using DBNs corresponds to the test point and is used as a convolution kernel to
perform convolution operation with the reconstructed tensor. In this convolution process,
the spectral information of the test point is emphasized, and the similarity between the test
point and its neighborhood points is also reflected in the spatial information.

2.3. Tensor RX for HSI

N(µr, Rr) represents a real-valued Gaussian distribution with mean µr and covariance
matrix Rr. For AD of HSI, the binary hypothesis test can be written in a tensor form:

H0:
{3Γx∼ N(0, R)

3Γb∼ N(0, R)
Anomaly absent (3)

H1:
{ 3Γx∼ N

(
β3Γa, R

)
3Γb∼ N(0, R)

Anomaly present (4)

where 3Γx ∈ Rw×w×D (w× w is the window size of the test tensor and D is the number
of spectral bands) is the test tensor, 3Γb ∈ Rwb×wb×D (wb×wb is the window size of the
background tensor and wb ≥ w) is the homogeneous background tensor, 3Γa ∈ Rw×w×D is
the tensor of the anomaly target, β ∈ Rw×w is a matrix of the corresponding abundance
coefficients, and R is an unknown covariance matrix.

The noise vectors in the noise tensor are assumed to be independent identically
distributed (IID), and the joint probability density functions (pdfs) of 3Γx and 3Γb under
H0 and H1 can be expressed as follows:

f (3Γx, 3Γb; R, H0) =
exp[− 1

2 tr(R−1F0)]

(2π)D(L+K)/2|R|(L+K)/2
(5)
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f (3Γx, 3Γb; 3Γa, β, R, H1) =
exp[− 1

2 tr(R−1F1)]

(2π)D(L+K)/2|R|(L+K)/2
(6)

where K = w× w, L = wb×wb, F0 and F1 are:

F0 = 3Γb
3Γb

T + 3Γx
3Γx

T (7)

F1 = 3Γb
3Γb

T+(3Γx−β3Γa)(
3Γx−β3Γa

)T
(8)

The adaptive detector based on the generalized likelihood ratio test (GLRT) is used
because of the unknown parameters3Γa, β, and R. Each unknown parameter is replaced
by its maximum likelihood (ML) estimate [46]. The covariance matrix R is first assumed to
be known, and the GLRT detector based on tensor can be written as follows:

max{3Γa , β} f (3Γx|H 1

)
f (3Γx|H 0)

H1
≷
H0

ξ1 (9)

where ξ1 is the AD threshold. f (3Γx|H 1
)

and f (3Γx|H 0
)

represent the pdfs of 3Γx under
H1 and H0, respectively. Because of the independence of the vectors in 3Γx, f (3Γx|H 1

)
and f (3Γx|H 0

)
can be simplified, and the details can be found in [46]. According to the

Rayleigh–Ritz theorem [46,47], we can obtain the AD result:

D(3Γx) = λmax

{
3ΓxR−13Γx

T}H1
≷
H0

ξx (10)

where R = 3Γb
T3Γb, ξt is the AD threshold. Equation (10) is replaced by Equation (11),

which is the matrix form because of high computational complexity based on tensor.

D(X) = λmax

{
XM−1XT

}H1
≷
H0

ξx (11)

where X ∈ Rm×D (m = w× w) is the second-order matrix corresponding to 3Γx, M = BTB,
and B ∈ Rn×D (n = wb×wb) is the second-order matrix corresponding to 3Γb and ξx is the
AD threshold.

2.4. ICAN-TRX for HSI

The proposed ICAN-TRX consists of ICAN and TRX. First, each test tensor of the test
HSI is transformed by ICAN, and a new HSI is obtained. Then, TRX is used in the new
HSI. Finally, the AD result is obtained after TRX. The detailed procedure of the proposed
ICAN-TRX algorithm is listed in Algorithm 1.
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Algorithm 1: ICAN-TRX

Input: HSI X = {x i ∈ RD, i = 1, · · · , N} and test tensor 3Γx ∈ Rw×w×D.
(1) 3Γx is first transformed into a pixelwise two-dimensional matrix Y ∈ RM×D (M = w×w), and
DBN is employed for the reconstruction of Y. The reconstruction matrix Yd ∈ RM×D (M = w× w)
is transformed into a tensor 3Γd ∈ Rw×w×D.
(2) The central tensor 3Γcd ∈ R1×1×D in 3Γd is used as a convolution kernel to convolve with 3Γd
by Equation (1), and the result tensor 3Γr ∈ Rw×w×1 as the key tensor is transformed into the
weight matrix Z ∈ Rw×w.
(3) The tensor 3Γz ∈ Rw×w×D is the pointwise multiplication of 3Γx as the value tensor and Z, and
the tensor 3Γcy ∈ R1×1×D is the pointwise division of the central tensor 3Γcz ∈ R1×1×D in 3Γz and
the central point xz ∈ R1×1 in Z.
(4) 3Γcy is used as a convolution kernel to convolve with 3Γcx by Equation (2) for the result 3Γy,
and the HSI transformed by ICAN is obtained.
(5) TRX is used in the HSI transformed by ICAN by Equation (11), and the final AD result is
obtained.
Output: AD result.

3. Experimental Results
3.1. Datasets

In this paper, ICAN-TRX is utilized on five HSIs to validate the effectiveness. These
five HSIs are the same as the experimental HSIs in [42]. Table 1 lists the relevant data of the
HSIs. Data L, data C, data P, and data T can be downloaded from the ABU dataset (http:
//xudongkang.weebly.com/) (accessed on 25 September 2017) and the detailed description
can be seen in [48]. Data S are a classic airport data, and 126 bands after denoising are used
for the AD experiment. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
completed the collection of data L, data C, data T, and data S, and the Reflective Optics
System Imaging Spectrometer (ROSIS-03) completed the collection of data P.

Table 1. Relevant data of five experimental HSIs.

Data Captured
Place Resolution Sensor Experimental Size Fight Time

Data L Los Angeles 7.1 m AVIRIS 100 × 100 × 205 11/9/2011
Data C Cat Island 17.2 m AVIRIS 150 × 150 × 189 9/12/2010
Data P Pavia 1.3 m ROSIS-03 150 × 150 × 102 Unknown
Data T Texas Coast 17.2 m AVIRIS 100 × 100 × 204 8/29/2010
Data S San Diego 3.5 m AVIRIS 120 × 120 × 126 Unkown

3.2. Experiment

To prove the advantages of the ICAN-TRX algorithm, seven comparative algorithms
are used in this experimental part. Since the proposed ICAN-TRX algorithm relies on TRX,
the RX or TRX-based algorithms are selected for comparison. GRX and LRX are classical
spectral domain algorithms, and KRX is a classical transform domain algorithm. FrFE-RX
and FrFE-LRX can be regarded as GRX and LRX algorithms based on the fractional Fourier
domain, respectively. In the PCA-TRX algorithm, TRX is used on HSIs after PCA dimension
reduction. In the FrFT-TRX algorithm, TRX is used on HSI after FrFT. In AD algorithms,
the selection of parameters often determines the quality of detection results. In the eight
test algorithms, the optimal parameters in a certain range are used, as listed in Table 2. In
the GRX algorithm, no parameters need to be debugged. In the LRX algorithm, the setting
of the dual-window sizes (Win, Wout) has a significant influence on the AD results. The
parameter Win is the side length size of the inner window, and Wout is the side length size
of the outer window. In this paper, the windows are all rectangular, and the window size
is represented by the side length. In KRX, kernel parameter c and the dual-window sizes
(Win, Wout) need to be debugged. The setting of the fractional order p in FrFE-RX affects
the AD result. In FrFE-LRX, in addition to the fractional order p, the dual-window size

http://xudongkang.weebly.com/
http://xudongkang.weebly.com/
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(Win, Wout) also needs to be debugged. In PCA-TRX, dimension d after PCA and the spatial
sizes (Wt, Wb) of the target and background tensor need to be debugged. In FrFT-TRX, the
settings of the fractional order p and the spatial sizes (Wt, Wb) of the target and background
tensor all affect the AD result. In the proposed ICAN-TRX, the settings of three parameters
are essential for the AD result, and they are the spatial size Wa of the input tensor and the
spatial sizes (Wt, Wb) of the target and background tensor. In addition, ne, be, and le are the
parameters in the DBN reconstruction model, which are training times, number of samples,
and number of layers.

Table 2. Parameter settings of LRX, KRX, FrFE-RX, FrFE-LRX, PCA-TRX, FrFT-TRX, and ICAN-TRX
for the five experimental HSIs.

Data LRX
(Win, Wout)

KRX
(c,Win, Wout)

FrFE-RX
p

FrFE-LRX
(p, Win, Wout)

PCA-TRX
(d, Wt, Wb)

FrFT-TRX
(p, Wt, Wb)

ICAN-TRX
(Wa, Wt, Wb)

(ne, be, le)

Data L (7, 9) (10−5, 5, 9) 0.2 (0.2, 7, 9) (10, 7, 9) (1, 7, 9) (3, 3, 41)
(10, 40, 2)

Data C (25, 77) (10−2, 5, 7) 0.2 (0.2, 25, 77) (10, 3, 37) (0.2, 3, 37) (5, 5, 15)
(6, 25, 2)

Data P (25, 81) (10−1, 25, 29) 1 (1, 25, 77) (20, 3, 37) (1, 3, 37) (3, 3, 35)
(10, 20, 2)

Data T (7, 9) (10−2, 7, 9) 1 (1, 5, 7) (8, 7, 9) (0.2, 7, 9) (5, 5, 9)
(10, 40, 2)

Data S (7, 9) (10−2, 7, 9) 0.9 (0.9, 7, 9) (9, 3, 31) (0.9, 3, 31) (21, 11, 25)
(5, 5, 2)

For the performance evaluation of the algorithms, this paper uses the two-dimensional
diagrams of the AD results as the subjective evaluation, the receiver operating characteristic
(ROC) curve, the area under the ROC curve (AUC), and the separability graph as the
objective evaluation. For the separability graph in this paper, the highest and lowest 10%
of the data are removed from each category.

Figure 3 shows data L and two-dimensional diagrams of AD results for eight test
algorithms. The anomaly targets in Figure 3j are more obvious than those in other com-
parison algorithms. Figure 4 shows the ROC curves and AUC values for data L. Figure 4a
shows that the ROC curve of the proposed ICAN-TRX is superior to that of GRX, LRX,
KRX, FrFE-RX, FrFE-LRX, and PCA-TRX, but close to that of FrFT-TRX. Combined with
the AUC value in Figure 4b, it can be judged that the proposed ICAN-TRX algorithm has
the best ROC curve and the largest AUC value. Figure 5 shows the separability graphs
for data L. It can be seen that the distance between the target and the background of the
ICAN-TRX algorithm is the largest among all the test algorithms, and its ability to compress
the background is also acceptable.
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Figure 6 shows Data C and two-dimensional diagrams of AD results for eight test
algorithms. From Figure 6, we can see that the anomaly targets in Figure 6h–j are more
evident than those in the other five comparison algorithms. From Figure 7, it can be seen
that the ROC curves and AUC values of FrFE-RX, FrFE-LRX, and FrFT-TRX are the same.
Figure 8 shows the separability graphs for data C, and it can be judged that the distance
between the target and the background of the ICAN-TRX algorithm is larger than LRX,
KRX, and FrFE-LRX but less than GRX, FrFE-RX, PCA-TRX, and FrFT-TRX. However, the
ability of ICAN-TRX to compress the background is slightly better than GRX, FrFE-RX,
PCA-TRX, and FrFT-TRX.
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Figure 9 shows data P and two-dimensional diagrams of AD results for eight test
algorithms. From Figure 9, we can find that the anomaly targets in Figure 9h–j are more
striking than those in the other algorithms. The background in Figure 9j is more unitary
than that in Figure 9h,i. It can be judged from Figure 10 that the proposed ICAN-TRX has
the best ROC curve and the largest AUC value in the eight test algorithms. Figure 11 shows
the separability graphs for data P. It can be judged that the distance between the target
and the background of the ICAN-TRX algorithm is larger than GRX, KRX, FrFE-RX, and
FrFE-LRX, and ICAN-TRX has the best ability to compress the background among all the
test algorithms.
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Figure 12 shows Data T and two-dimensional diagrams of AD results for eight test
algorithms. As shown in Figure 12, the anomaly targets in Figure 12c,f,j are more evident
than those in the other algorithms. However, some background points in Figure 12c,f are
also evident. These background points are easily judged as anomaly targets, thus causing
an increase in the false alarm rate. It can be judged from Figure 13 that the proposed ICAN-
TRX has the best ROC curve and the largest AUC value in the eight test algorithms. As
shown in Figure 14, the distance between the target and the background of the ICAN-TRX
algorithm is larger than LRX, KRX, FrFE-LRX, PCA-TRX, and FrFT-TRX but smaller than
GRX and FrFE-RX. However, the ability of ICAN-TRX to compress the background is better
than GRX and FrFE-RX.
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Figure 15 shows Data S and two-dimensional diagrams of AD results for eight test
algorithms. As shown in Figure 15, the anomaly targets in Figure 15h–j are more evident
than those in the other algorithms. However, some background points in Figure 15h,i are
also evident and may be judged as anomaly targets, which causes an increase in the false
alarm rate. From Figure 16, we can conclude that the proposed ICAN-TRX has the best
ROC curve and the largest AUC value in the eight test algorithms. From Figure 17, we can
see that the distance between the target and the background of the ICAN-TRX algorithm is
larger than GRX, LRX, KRX, FrFE-RX, FrFE-LRX, and FrFT-TRX but smaller than PCA-TRX.
However, the ability of ICAN-TRX to compress the background is better than PCA-TRX.
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Figure 15. Data S and AD result diagrams: (a) The 100th band of data C. (b) The ground-truth map.
(c) GRX. (d) LRX. (e) KRX. (f) FrFE-RX. (g) FrFE-LRX. (h) PCA-TRX. (i) FrFT-TRX. (j) ICAN-TRX.
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From the previous discussion and analysis, we can conclude that the detection per-
formance of the proposed ICAN-TRX algorithm is generally better than that of the seven
comparison algorithms. Table 3 lists the time consumption of the eight test algorithms for
the five experimental HSIs. All experiments in this paper were completed by a computer
with an Intel Core i7 CPU (central processing unit) and 16 GB of RAM (random-access
memory). Matlab R2018b was used to implement the algorithm. The time consumption is
not only related to the algorithm itself, but also the selection of parameters. From Table 3,
we can see that the time consumption of ICAN-TRX is acceptable.
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Table 3. Time consumption (in seconds) of eight test algorithms for the five HSIs.

Data GRX LRX KRX FrFE-RX FrFE-LRX PCA-TRX FrFT-TRX ICAN-TRX

Data L 1.43 27.79 56.67 11.35 39.08 4.97 32.54 88.46
Data C 0.71 421.21 25.87 22.35 430.72 2.92 140.65 70.36
Data P 0.63 236.19 1418.01 11.86 218.95 5.56 44.78 39.36
Data T 0.58 26.95 20.92 10.96 38.06 5.64 33.13 33.80
Data S 0.59 15.05 26.21 9.37 24.89 1.80 33.61 75.66

3.3. Parameter Analysis

In the proposed ICAN-TRX algorithm, the changes in these three parameters, which
are the spatial size Wa of the input tensor and the spatial sizes (Wt, Wb) of the target and
background tensor, have a significant impact on the AD results. Compared with other
parameters, the three parameters, ne, be, and le in DBNs, have very little impact on the AD
results, so they are set to fixed values here, and will not be discussed. For data L, (ne, be, le)
in the DBN reconstruction model are set to (10, 40, 2). First, Wa is set to 5, and AUC values
changing with (Wt, Wb) are listed in Table 4. The optimal value is 0.9538 when (Wt, Wb) are
set to (3, 41). Then, (Wt, Wb) is set to (3, 41), and AUC values changing with Wa are shown
in Figure 18. When Wa is set to 3, the optimal AUC value 0.9542 is obtained.

Table 4. AUC values changing with (Wt, Wb) for data L.

Wt
Wb

33 35 37 39 41 43 45 47

3 0.9527 0.9530 0.9507 0.9529 0.9538 0.9531 0.9487 0.9436
5 0.9274 0.9298 0.9263 0.9304 0.9307 0.928 0.9207 0.9129
7 0.8746 0.8782 0.8814 0.8787 0.8815 0.8752 0.8629 0.8488
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For data C, (ne, be, le) in the DBN reconstruction model are set to (6, 25, 2). The
parameter Wa is first set to 5, and AUC values changing with (Wt, Wb) are shown in Table 5.
The optimal value is 0.9997 when (Wt, Wb) are set to the dual-window sizes corresponding
to bold values. Then, (Wt, Wb) is set to (5, 15), and Figure 19 reveals AUC values changing
with Wa. When Wa is set to 5, 7, 9, 11, or 13, the optimal AUC value 0.9997 is obtained.
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Table 5. AUC values changing with (Wt, Wb) for data C.

Wt
Wb

11 13 15 17 19 21 23 25

3 0.9994 0.9996 0.9997 0.9997 0.9997 0.9997 0.9996 0.9996
5 0.9995 0.9996 0.9997 0.9997 0.9997 0.9997 0.9996 0.9996
7 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9995
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For data P, (ne, be, le) in the DBN reconstruction model are set to (10, 20, 2). The
parameter Wa is first set to 5, and Table 6 reveals AUC values changing with (Wt, Wb). The
optimal value is 0.9979 when (Wt, Wb) are set to (3, 35) or (3, 37). Then, (Wt, Wb) is set to
(3, 35), and AUC values changing with Wa are shown in Figure 20. When Wa is set to 3, the
optimal AUC value 0.9987 is obtained.

Table 6. AUC values changing with (Wt, Wb) for data P.

Wt
Wb

33 35 37 39 41 43 45 47

3 0.9977 0.9979 0.9979 0.9968 0.9959 0.9955 0.9956 0.9953
5 0.9959 0.9958 0.9954 0.9945 0.9934 0.9933 0.9932 0.9928
7 0.9915 0.9915 0.9912 0.9897 0.9885 0.9871 0.9872 0.9965
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For data T, (ne, be, le) in the DBN reconstruction model are set to (10, 40, 2). The
parameter Wa is first set to 5, and Table 7 reveals AUC values changing with (Wt, Wb). The
optimal value is 0.9958 when (Wt, Wb) are set to (5, 9). Then, (Wt, Wb) is set to (5, 9), and
AUC values changing with Wa are shown in Figure 21. When Wa is set to 3, the optimal
AUC value 0.9963 is obtained.

Table 7. AUC values changing with (Wt, Wb) for data T.

Wt
Wb

9 11 13 15 17

3 0.9812 0.9839 0.9856 0.9798 0.9774
5 0.9958 0.9930 0.9882 0.9750 0.9648
7 0.9926 0.9911 0.9785 0.9650 0.9351

For data S, (ne, be, le) in the DBN reconstruction model are set to (5, 5, 2), respectively.
The parameter Wa is first set to 21, and AUC values changing with (Wt, Wb) are listed in
Table 8. The optimal value is 0.9937 when (Wt, Wb) are set to (11, 25). Then, (Wt, Wb) is set
to (11, 25), and AUC values changing with Wa are shown in Figure 22. When Wa is set to
25, 27, 29, or 31, the optimal AUC value 0.9938 is obtained.
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Wt
Wb

19 21 23 25 27 29

9 0.9679 0.9777 0.9841 0.9875 0.9894 0.9888
11 0.9868 0.9907 0.9926 0.9937 0.9933 0.9910
13 0.9888 0.9915 0.9933 0.9934 0.9923 0.9869
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It can be seen from the above analysis that the values of the three parameters Wa, Wt,
and Wb are directly related to the anomaly target sizes. In data L, data C, data P, and data T,
the anomaly targets are all small, and the optimal values of Wa are 3 or 5. In data S, the
anomaly targets are three aircraft whose sizes are relatively large, and the optimal value of
Wa is 25, 27, 29, or 31. The optimal values of Wt and Wb in TRX are related to Wa and the
characteristics of the experimental datasets, and they all need to be determined through
repeated experiments.

4. Discussion

Hyperspectral AD mainly uses the spectral characteristics of HSIs, and spatial charac-
teristics also play a crucial role in improving the detection results. In some AD algorithms
using joint spectral–spatial characteristics, including tensor-based algorithms, all the neigh-
boring pixels of a test point are treated equally without highlighting the test point. In the
ICAN section of the proposed ICAN-TRX, the anomaly points in HSIs are more prominent
through DBNs reconstruction, and the test point in the center of a test tensor block is used
as a convolution kernel to perform convolution operation with the test tensor block. The
spectral information of a test point is emphasized, and the similarity between the test point
and its neighborhood points is also reflected. In TRX, more abundant spatial information is
used, and the spatial sizes (Wt, Wb) of the target and background tensor are two important
parameters affecting detection performance. In this paper, TRX is used after the ICAN, and
the settings of Wt and Wb are also affected by the parameters of ICAN. In ICAN, the setting
of the spatial size Wa of the input tensor is a crucial factor affecting the detection result
and is mainly determined by the size of the anomaly target. However, there is no prior
information for AD, so the setting of Wa is based on estimation and repeated experiments.

For data L, the optimal Wa and (Wt, Wb) are 3 and (3, 41), respectively. For data C, the
optimal Wa is 5, 7, 9, 11, or 13, and the optimal (Wt, Wb) is (5, 15). For data P, the optimal
Wa and (Wt, Wb) are 3 and (3, 35), respectively. For data T, the optimal Wa and (Wt, Wb) are
3 and (5, 9) respectively. For data S, the optimal Wa is 25, 27, 29, or 31 and the optimal (Wt,
Wb) is (11, 25), respectively. For data L, C, P, and T, the values of Wa and Wt are equal or
similar, and both are small sizes. This is mainly because the anomaly targets with small
sizes contribute far less to the reconstruction of the DBN model than the background points.
Through the DBNs reconstruction, the anomaly points in HSIs are more prominent, which
is more conducive to AD. In data S, the sizes of anomaly targets are relatively large and not
very sparse, so the contribution to DBNs reconstruction cannot be ignored. Some anomaly
points may be considered as background points, which leads to a significant difference
between the optimal Wa and Wt.

From the above discussion, we can see that the proposed algorithm requires more
parameter adjustment for the detection of anomaly targets with large size and insufficient
sparsity. To solve this problem, the DBNs reconstruction model should consider the spatial
characteristics of anomaly targets, which may avoid reconstruction distortion. In addition,
the adaptive selection of optimal parameters is the direction of improving the algorithm.

5. Conclusions

In some AD algorithms based on tensor, all the neighboring pixels of a test point
in a tensor block are treated equally. Though the neighboring pixels provide spatial
information, the spectral information of the test point should be the most important
criterion. In this paper, an improved central attention network and tensor RX are combined
for hyperspectral AD. In the section of ICAN, the anomaly points in HSIs are first more
prominent through the DBNs reconstruction. Then, the spectral information of a test point
in the center of the input tensor is emphasized. The similarity between the test point
and its neighborhood points is also reflected through the convolution process. In the
section of TRX, the spatial characteristics of the test point are used more comprehensively.
The experimental verification on five real hyperspectral datasets shows that the overall
detection performance of the proposed ICAN-TRX algorithm is better than that of the seven
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comparison algorithms. How to reasonably reserve the spatial characteristics of anomaly
targets in the DBNs reconstruction model in the section of ICAN and adaptive selection of
critical parameters are the subsequent work to improve the algorithm.
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