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Abstract: Radar cross section (RCS) sequences, an easy-to-obtain target feature with small data
volume, play a significant role in radar target classification. However, radar target classification based
on RCS sequences has the shortcomings of limited information and low recognition accuracy. In order
to overcome the shortcomings of RCS-based methods, this paper proposes a spatial micro-motion
target classification method based on RCS sequences encoding and convolutional neural network
(CNN). First, we establish the micro-motion models of spatial targets, including precession, swing
and rolling. Second, we introduce three approaches for encoding RCS sequences as images. These
three types of images are Gramian angular field (GAF), Markov transition field (MTF) and recurrence
plot (RP). Third, a multi-scale CNN is developed to classify those RCS feature maps. Finally, the
experimental results demonstrate that RP is best at reflecting the characteristics of the target among
those three encoding methods. Moreover, the proposed network outperforms other existing networks
with the highest classification accuracy.

Keywords: micro-motion; RCS sequences encoding; target classification; multi-scale CNN

1. Introduction

Micro-motion is an important feature of space targets, which is of great significance
for target parameters estimation [1,2]. Over the past decade, scholars have carried out
extensive research on the micro-motion of space radar targets, and relevant results have
been successfully applied to the characteristic analysis of satellites, ballistic targets (BTs),
space debris and other targets [3–5].

BT classification is a typical application of micro-motion [6–9]. The micro-motion
of the warhead is precession due to the release of the decoy. Lacking an attitude control
system, the micro-motion of the heavy decoy is swing, and the micro-motion of the light
decoy is rolling. Furthermore, the micro-motions of boosters and the debris are usually
rolling. The micro-motions of BTs are different and unique [7,10,11], providing an effective
tool for BT classification.

Scholars have conducted various research works on the radar echoes received from BTs.
The micro-Doppler (MD) time–frequency graphs (TFGs), the high-resolution range profile
(HRRP) and the high-resolution range profile sequences (HRRPs) and the RCS sequences
are three important features of echoes and have been widely used for discriminating
BTs [12]. Correspondingly, BT classification methods based on micro-motion features are
generally classified into the following three categories. The first class mainly uses the
MD features on the TFGs of the target. Choi extracted the fundamental frequency, the
bandwidth and the sinusoidal moment of TFGs to distinguish the precession/nutation
warheads from the wobble decoys [13]. Jung designed a CNN to classify warheads and
decoys based on TFGs and a cadence velocity diagram [14]. Zhang presented a complex-
valued coordinate attention network to classify the cone–cylinder precession targets with
different MD parameters [15]. The second category mainly depends on HRRP/HRRPs
to discriminate BTs. Zhou employed HRRPs to estimate the parameters of BTs and thus
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realized the classification of the warhead, the heavy decoy and the light decoy according to
the differences of their parameters [16]. Persico conducted an Iradon transform on HRRP
to generate a new feature and input the feature into the K-nearest neighbor classifier (KNN)
to classify warheads and false targets [17]. Wang created a novel processing flow based on
HRRPs and used CNN to classify five types of micro-motions with similar shapes [18]. The
third category mainly relies on RCS sequences. Cai discriminated warheads from debris
based on several statistics of RCS sequences, such as the expectation, the variance and the
period [19]. Ye developed a gated recurrent unit (GRU) network for radar target recognition
based on several statistics of RCS sequences [20]. Choi proposed a multi-feature fusion
framework based on RCS sequence for BTs recognition [12]. Chen input RCS sequences into
a one-dimensional CNN to realize the intelligent identification of warheads and decoys [21].
In addition to the above three types, methods based on feature fusion have also been a
promising technique [22]. Chen fused TFGs and HRRPs of the flying bird and drone to
generate a new feature map and then input them to a modified multi-scale CNN to classify
the targets [4]. Features based on a combination of RCS, TF, HRRP and RID were adopted
to achieve a decision-level fusion, and thereby, a high-accuracy recognition was achieved
for space targets with micro-motion [23].

Although the above methods can detect warheads from BTs, there are some significant
drawbacks that limit their widespread application. (1) HRRP/HRRPS can only be acquired
by wideband radars, and narrowband radars do not have this capability. (2) Only when the
repetition frequency of the radar is greater than twice that of the MD can the valid TFGs be
generated. Otherwise, Doppler ambiguity will occur in TFGs. (3) The information reflected
by RCS sequences is relatively abstract, resulting in a low accuracy for the classification
task. Therefore, research works on simple and high-precision methods for BTs recognition
have drawn ever-increasing attention.

RCS sequences are easily processed due to the small data volume. Moreover, both
wideband radars and narrowband radars can acquire RCS sequences. Therefore, how to
mine advanced features from RCS sequences has become the key point to promote the
application of RCS-based methods. This paper proposes a BTs classification structure based
on RCS sequence encoding and multi-scale convolutional neural network. We introduce
MTF, GAF and RP to convert RCS sequences to images, so as to improve the richness of
RCS sequences. We develop a multi-scale CNN to extract the features of these images and
discriminate four different BTs. Moreover, several experiments are conducted to evaluate
the performance of the encoding methods and the proposed network.

The rest of this paper is organized as follows. Section 2 presents the micro-motion of
different BTs. Section 3 describes three encoding methods for RCS sequences. A multi-scale
CNN is proposed in Section 4. Section 5 comprises the simulation results and performance
analysis. Section 6 is the conclusion.

2. The Micro-Motion Model of BTs

Before establishing the micro-motion model, we first introduce the concept of RCS.
RCS is a measure of an object’s ability to reflect the electromagnetic wave, defined as
4π times that of the ratio of the reflected power of the target to the incident power. Set RCS
as σ, and the definition is written as

σ = lim
R→∞

4πR2
∣∣∣∣Es

Ei

∣∣∣∣2 = 4π

∣∣∣E f ar, H

∣∣∣2 + ∣∣∣E f ar, V

∣∣∣2
|Ei|2

= σH + σV (1)

where Ei represents the intensity of the incident electric field from the radar, Es represents
the intensity of the scattering electric field from the target, R is the range from the radar
to the target, R→ ∞ indicates that the observation scene is a far-field condition, and the
incident wave is regarded as the uniform plane wave. E f ar, H and E f ar, V represent the
electric field horizontal component and vertical component, respectively.
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Micro-motion will change the attitude of the target, causing fluctuations in RCS.
According to the change of RCS sequences, we can derive the micro-motion type and the
shape of the target [20]. The above description is the basis of the recognition methods based
on RCS sequences.

Rotationally symmetric structures are commonly adopted for BTs, including cone,
cone–cylinder, ellipse and so on. For these shapes, the angle between the symmetry axis
of the target and the radar line of sight (LOS) (defined as the aspect angle) determines the
value of RCS.

In the remainder of this section, we first establish the models of different micro-motions
in Figure 1 and then derive the expression of the aspect angle for every motion.
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Figure 1. (a) Swing; (b) Rolling; (c) Precession; (d) Observation models of different micro-motions. 

Swing: As shown in Figure 1a, the target swings at a small angle along oz  in yoz . 

Set the amplitude of swing as 
b , the initial phase as 

_ 0b  and the swing frequency as 

bf . Setting the angle between the symmetry axis and oz  as ( )swang t , we denote ( )swang t  

as 

_ 0( ) sin(2 )sw b b bang t f t  = +  (2) 

Based on ( )swang t , the unit vector of the symmetry axis is given as 

( ) [0, sin( ( )), cos( ( ))]sw sw swn t ang t ang t=  (3) 

Rolling：As shown in Figure 1b, the target rolls in yoz . Set the initial phase as 
_ 0r  

and the rolling frequency as 
rf . Set the angle between the symmetry axis and oz  as 

( )rolang t , and it is written as 

_ 0( ) 2rol r rang t f t = +  (4) 

According to Equation (3), the unit vector of the symmetry axis is written as 

( ) [0, sin( ( )), cos( ( ))]rol rol roln t ang t ang t=  (5) 

Precession: As shown in Figure 1c, precession is a combination of spinning and con-

ning. For rotationally symmetric targets, spinning does not modulate the echo. Therefore, 

only the modulation of the conning is considered. Set the precession frequency as 
pf  and 

the initial phase as 
_ 0p . The azimuth angle of the symmetry axis in yoz  is written as 

_ 0( ) 2pre p pang t f t = +  (6) 

Figure 1. (a) Swing; (b) Rolling; (c) Precession; (d) Observation models of different micro-motions.

Swing: As shown in Figure 1a, the target swings at a small angle along oz in yoz. Set
the amplitude of swing as θb, the initial phase as θb_0 and the swing frequency as fb. Setting
the angle between the symmetry axis and oz as angsw(t), we denote angsw(t) as

angsw(t) = θb sin(2π fbt + θb_0) (2)

Based on angsw(t), the unit vector of the symmetry axis is given as

nsw(t) = [0, sin(angsw(t)), cos(angsw(t))] (3)

Rolling: As shown in Figure 1b, the target rolls in yoz. Set the initial phase as θr_0 and
the rolling frequency as fr. Set the angle between the symmetry axis and oz as angrol(t),
and it is written as

angrol(t) = θr_0 + 2π frt (4)

According to Equation (3), the unit vector of the symmetry axis is written as

nrol(t) = [0, sin(angrol(t)), cos(angrol(t))] (5)

Precession: As shown in Figure 1c, precession is a combination of spinning and con-
ning. For rotationally symmetric targets, spinning does not modulate the echo. Therefore,
only the modulation of the conning is considered. Set the precession frequency as fp and
the initial phase as θp_0. The azimuth angle of the symmetry axis in yoz is written as

angpre(t) = 2π fpt + θp_0 (6)

Set the precession angle as θp, and the unit vector of the symmetry axis is expressed as

npre(t) = [cos(angpre(t)) sin(θp), sin(angpre(t)) sin(θp), cos(θp)] (7)
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Moreover, we also establish the observation model in Figure 1d. Set α as the azimuth
angle of the LOS and the angle between LOS and oz as β. The unit vector of the LOS is
expressed as

nLOS = [cos α sin β, sin α sin β, cosβ] (8)

Set ψ(t) as the average aspect angle, and it is solved as

ψ(t) = cos−1(nLOS × ns(t)) (9)

where
ns(t) ∈ [nsw(t), nrol(t), npre(t)]

3. Methods for RCS Sequences Encoding

The raw RCS sequence is a 1D signal, which has a relatively poor ability to present
the targets’ characteristics and is not conducive to target classification. We believe that
converting RCS sequences to 2D images can show the features more abundantly and
intuitively, which is an effective and efficient approach to visualize the details and features.
In the radar signal processing field, the time–frequency analysis is the most popular
encoding method. However, time–frequency analysis has high requirements for sequence
length and repetition frequency, so its application scope is very limited.

Based on the above analysis, we introduce three time series encoding methods to map
RCS into two-dimensional space, so as to enhance the feature representation of RCS and
lay the foundation for high-precision target recognition. These three methods are MTF,
GAF and RP. As far as we know, the research on RCS analysis using these three time series
coding methods is very limited, and this is exactly one of the important contributions of
this paper.

3.1. MTF

The MTF can effectively capture the state transition information of the time series,
thereby improving the feature expression [24,25].

Denoting Y = (y1, y2, · · · , yn, · · · , yN), n ∈ [1, N] as a RCS sequence with the length
being N, identify Q quantile bins of Y, and every yn is assigned into the related bins
qi(i ∈ [1, Q]). Counting the first-order transitions among the different bins along the time
axis, we will obtain a Q×Q weighted adjacency matrix W, where wi,j is the normalized
transition probability of qi → qj . Nevertheless, W is insensitive to the step size of the time
series. To enhance the expressiveness of temporal information, MTF is designed based on
W, and the expression is shown as

M =


wi,j
∣∣
y1∈qi ,y1∈qj

· · · wi,j
∣∣
y1∈qi ,yN∈qj

...
. . .

...
wi,j
∣∣
yN∈qi ,y1∈qj

· · · wi,j
∣∣
yN∈qi ,yN∈qj

 (10)

Compared to W, M contains not only the step size information of the time series but also
the state transition information. As a result, MTF is widely used for time series analysis.

3.2. GAF

GAF displays the temporal correlation of the sequence in a 2D image, where the
motion information of the sequence is represented as the change from the upper left corner
to the lower right corner [26,27]. GAF is based on a transformation from the Cartesian
coordinate system to the polar coordinate system. The generation process mainly includes
three steps.

Step 1. Rescale Y to Ỹ via (11), so that yn falls between −1 and 1.

ỹn =
(yn −max(Y)) + (yn −max(Y))

max(Y)−min(Y)
(11)
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Step 2. Transform the scaled sequence from the Cartesian coordinate system (t, yn) to
the polar coordinate system (rn, φn) via Equation (12).{

φn = arcos(ỹn)
rn = tn

N0

(12)

where tn denotes the time stamp, and N0 is a constant factor to regularize the span of the
polar coordinate system.

Step 3. Extract the angle information in polar coordinates and generate GAF via
Equations (13) and (14).

GASF =

 cos(φ1 + φ1) · · · cos(φ1 + φN)
...

. . .
...

cos(φN + φ1) · · · cos(φN + φN)


= ỸTỸ− (

√
I − Ỹ2)

T√
I − Ỹ2

(13)

GADF =

 sin(φ1 − φ1) · · · sin(φ1 − φN)
...

. . .
...

sin(φN − φ1) · · · sin(φN − φN)


=
(√

I − Ỹ2
)

Ỹ− Ỹ
(√

I − Ỹ2
) (14)

where GASF denotes the Gramian angular summation fields, GADF denotes the Gramian
angular difference fields, I represents the identity matrix, (·)T represents the transpose of
the elements.

GASF presents the correlation between two moments based on the sum of cosine func-
tions, while GADF presents the correlation by the difference of sine functions. After conducting
GAF on the time series, the correlations of the time series are significantly enhanced.

3.3. RP

As a nonlinear system analysis tool, RP could detect nonlinear features and visualize
the recurrent behavior in the time series [28,29].

Set the delay time as τ, the embedding dimension as m, and the phase space matrix of
the time series is calculated as

Z = [z1, z2, · · · , zM] =


y1 y2 · · · yM

y1+τ y2+τ · · · yM+τ
...

...
...

y1+(m−1)τ y2+(m−1)τ · · · yM+(m−1)τ

 (15)

where
M = N − (m− 1)τ

Denoting R as the RP, R can be solved as

R(p, q) = Θ(ε−
∥∥zp − zq

∥∥) ={ 1; ε ≥
∥∥zp − zq

∥∥
0; ε <

∥∥zp − zq
∥∥ (16)

where ‖·‖ denotes a norm, and the L2 norm is selected in this paper; ε is a threshold to
determine the state of RP, and p, q ∈ [1, M].

The generation of RP involves three parameters: τ, m and ε. As for the selection of
these three parameters, this paper follows the following rules.

(1) ε. There is a disagreement over the selection of ε. According to some scholars, ε is
related to the signal-to-noise ratio (SNR), and according to others, some ε is related to the
phase space radius. An unsuitable ε can easily lose the details of the sequence. To preserve
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the details of the RP, this paper improves the RP in Equation (16) into a non-threshold RP
without taking ε into consideration. The non-threshold RP is expressed as

R(p, q) =
∥∥yp − yq

∥∥2
2 (17)

(2) τ and m. Many methods have been utilized to select these two parameters, but
different methods may yield different results [30]. After consulting many literature works,
we have still not found an acceptable method. Therefore, different values of τ and m are
empirically selected to test the performance based on Refs. [28,31–33].

These three encoding methods have their own characteristics, and each method con-
tains different information of the RCS sequence. The MTF emphasizes the state transition of
the sequences; GAF is good at representing the temporal relation; and RP is able to display
the chaos characteristics. By evaluating the classification performance of these methods,
the most suitable encoding method can be determined.

4. Proposed Network

With the development of the deep-learning theory, CNNs have been widely used
in image classification, pattern recognition and parameter regression [34]. Instead of
manually extracting the features, CNNs learn the advanced features by themselves and
show advanced performance in those tasks. Typical CNNs include Alexnet, Googlenet and
Resnet [4,35]. To achieve an efficient classification, this paper designs a multi CNN. The
details of the network are as follows.

4.1. Res2Net

ResNet is a commonly used module in CNN to solve the gradient problem (shown in
Figure 2a). On the basis of ResNet, Gao developed a multi-scale module called Res2Net
by building hierarchical residual-like connections within one single residual block [36].
Res2net is an effective multi-scale technique, which further explores the multi-scale features
and extends the range of receptive fields [37].

The structure of Res2Net is shown in Figure 2b. For the output feature map of the
previous layer, the 1× 1 convolution is adopted to adjust the number of channels; then,
the feature map is split into s feature map subsets xi, i ∈ [1 s], and s is the scale factor of
Res2Net. The process of channel splitting and convolution can be formulated as

yi =


xi i = 1
Ki(xi) i = 2
Ki(xi + yi−1) 2 <i ≤ s

(18)

where Ki(·) represents the 3× 3 convolution for xi. In addition to x1, each xi is summed
with the output of the previous layer, and the obtained feature map is input into a 3× 3
convolution to obtain yi. Ki(·) could receive the feature from other scales before ith, making
Res2Net possess a greater receptive field. Such structure can effectively capture the global
and local features of the feature maps, so that the feature extraction ability is improved.

Finally, we stack yi along the channel dimension and input the stacked feature map
into a 1× 1 convolution to match the size of the input.



Remote Sens. 2022, 14, 5863 7 of 19

Remote Sens. 2022, 14, 5863 7 of 19 
 

 

a 3 3×  convolution to obtain iy . ( )iK   could receive the feature from other scales before 
thi , making Res2Net possess a greater receptive field. Such structure can effectively cap-

ture the global and local features of the feature maps, so that the feature extraction ability 
is improved. 

Finally, we stack iy  along the channel dimension and input the stacked feature map 
into a 1 1×  convolution to match the size of the input. 

1×1 

3×3

3×3

3×3

1×1

Feature map

x1 x2 x3 x4

y1 y2 y4y3

CAM

k2
k3

k4

1×1 

3×3

1×1

Feature map
Feature map

GAP/GMP

FC 

ReLU

FC

Sigmoid

⊗ 

Shared MLP

1×1×c

h×w×c

1×1×c/s0

⊕ 

1×1×c

 

(a)                            (b)                           (c) 

Figure 2. The Res2net module and CAM module. (a) Resnet module; (b) Res2net/CAM–Res2net 
module; (c) CAM module. 

4.2. Channel Attention 
To take advantage of these features from different channels, Woo developed a mod-

ule called the channel attention module (CAM) [38]. CAM assigns attention weights to 
every channel of the input to obtain a more effective feature map. The structure of CAM 
is shown in Figure 2c. 

For the input ( )W H C× × , a global average/maximum pooling layer is first con-
ducted along the channel dimension to obtain a vector (1 1 )C× × . Then, the vector is 
transformed into the attention weights by a shared MLP (containing two fully connected 
(FC) layers and a ReLU activation function) and a Sigmoid function. The first FC is utilized 
to compress the vector (1 1 / )C s× × , and the second FC is used to restore the vector 
(1 1 )C× × . s  is the squeeze ratio and is set to 16 in this paper. 

CAM can be plugged into the Res2net to fuse the channel-wise information, and 
thereby, the CAM–Res2net module is generated. 

4.3. The Activation Function (AF) and the Loss Function 
The most regular AF in CNNs is the ReLU AF, which is very simple to solve. For 

input fx , the output through the ReLU AF is given as 

ReLU ( ) max(0,  )f fx x=  (19)

Figure 2. The Res2net module and CAM module. (a) Resnet module; (b) Res2net/CAM–Res2net
module; (c) CAM module.

4.2. Channel Attention

To take advantage of these features from different channels, Woo developed a module
called the channel attention module (CAM) [38]. CAM assigns attention weights to every
channel of the input to obtain a more effective feature map. The structure of CAM is shown
in Figure 2c.

For the input (W×H×C), a global average/maximum pooling layer is first conducted
along the channel dimension to obtain a vector (1× 1× C). Then, the vector is transformed
into the attention weights by a shared MLP (containing two fully connected (FC) layers and
a ReLU activation function) and a Sigmoid function. The first FC is utilized to compress
the vector (1× 1× C/s), and the second FC is used to restore the vector (1× 1× C). s is
the squeeze ratio and is set to 16 in this paper.

CAM can be plugged into the Res2net to fuse the channel-wise information, and
thereby, the CAM–Res2net module is generated.

4.3. The Activation Function (AF) and the Loss Function

The most regular AF in CNNs is the ReLU AF, which is very simple to solve. For input
x f , the output through the ReLU AF is given as

ReLU(x f ) = max(0, x f ) (19)

The ReLU AF will output the negative samples of x f as 0, thereby destroying the
transmission of information. The Mish AF is a novel AF used in YOLOv4 for object
detection [39]. Based on a combination of the Tanh AF and the Softplus AF, the Mish AF is
expressed as

Mish(x f ) = x f × tanh(ln(1 + ex f )) (20)

The Mish AF is a continuous function, which has a nonlinear representation effect on
positive values and does not induce gradient disappearance on negative values. The Mish
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AF has a strong regularization limitation and can effectively improve the feature expression
ability of the model. However, the complexity of the Mish AF will consume the computing
power of the computer. Therefore, both the Mish AF and the ReLU AF are contained in the
proposed network, where the Mish AF is used for the deep features, and the ReLU AF is
used for the shallow features.

Moreover, we choose the cross entropy loss as the cost function of the proposed
network. The cross entropy loss is given as

L = −∑
n

pn log(cn)+(1− pn) log(1− cn) (21)

where pn and cn represent the predicted label and the real label, respectively.
In summary, the structure of the proposed network is shown in Table 1.

Table 1. The configuration of the proposed multi-scale CNN for BTs classification.

Order Shortcut Cycle Operation Output Size

1 — — Input 64 × 64 × 1
2 — — Conv 32.3 × 3, stride = 1 62 × 62 × 32
3 — — Conv 128.3 × 3, stride = 1 62 × 62 × 128
4 — — Maxpooling, 3 × 3, stride = 2 30 × 30 × 128
5 — — Res2net 128-256-128 30 × 30 × 128

6 Conv 1 × 1,
stride = 2 —

DS-Conv 768.3 × 3, stride = 1
DS-Conv 768.3 × 3, stride = 1
Maxpooling, 3 × 3, stride = 2

15 × 15 × 768

7 — 2 Res2net 15 × 15 × 768
8 — CAM-Res2net 15 × 15 × 768

9 Conv 1 × 1,
stride = 2 —

DS-Conv 1024.3 × 3, stride = 1
DS-Conv 1024.3 × 3, stride = 1
Maxpooling, 3 × 3, stride = 2

8 × 8 × 1024

10 — — CAM-Res2net 8 × 8 × 1024
11 — — DS-Conv 256.3 × 3, stride = 1 8 × 8 × 256
12 — — Global Avgpooling 1 × 1 × 256
13 — — Dropout 0.2 1 × 1 × 256
14 — — Fc 4 1 × 1 × 4
15 — — Output Predicted label

It needs to be noted that regular convolution is replaced with depthwise separable
convolution (DS-Conv) due to fewer parameters. Because DS-Conv is an existing technique,
the details are presented in the Appendix A instead of the main text.

As for the motivation of the configuration in Table 1, we will explain as follows.
Several research works have proven that the multi-scale CNN performs well in the

classification task. As a result, we propose a multi-scale CNN to achieve high-accuracy
classification in this manuscript. Res2net, channel attention, DS-Conv and other details
form the proposed network. Actually, the configurations of the existing classical CNNs
provide us with a meaningful reference, and those configurations are selected based on the
existing CNNs and our own understanding of the CNN’s configuration. Some details are
explained as follows.

Due to fewer parameters and more nonlinearity, the kernel size of the convolution is
set to 3 × 3 instead of 5 × 5, 7 × 7 and other sizes. There are more convolution kernels
in the deeper position of the network (changing from 32, 64, 768, 1024), which shows
the emphasis on deeper features. Due to the better validity and reliability of the deeper
features, several Res2net/CAM–Res2net modules are adopted to learn the deeper features
instead of the shallow features. Ds-Conv is adopted to reduce the number of parameters.
Maxpooling and avgpooling are adopted to reduce the dimension of the feature map and
strengthen the nonlinearity of the network.
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In fact, the convolution layer is always followed by a batch normalization layer and a
nonlinear activation layer in this paper. It should be noted that the batch normalization
layer and nonlinear activation layer are not exhibited in Table 1. Moreover, the ReLU
function exists in parts 1–7, and the Mish function exists in the rest of the network.

5. Experiments

According to Refs [20,21,40], we establish the following four geometric models to
represent the warhead, the heavy decoy, the light decoy and the booster (Figure 3).
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In the classification task for micro-motion targets, it is difficult to classify objects with
similar motions and similar structures. In this paper, the warhead’s structure is similar
to that of the weight decoy’s, and the light decoy’s motion type is similar to that of the
booster’s. This configuration is used to verify that the proposed network can effectively
address this classification difficulty.

The micro-motion parameters of the above targets are shown in Table 2.

Table 2. The parameter settings of the datasets.

Warhead Heavy Decoy Light Decoy Booster
Precession Swing Rolling Rolling

α(◦) 20 : 20 : 60 20 : 20 : 60 15 : 10 : 65 15 : 10 : 65
β(◦) 30 : 10 : 60 20 : 15 : 155 20 : 15 : 155 15 : 10 : 65

fc(Hz) 0.5 : 1 : 3.5 − − −
fb(Hz) − 0.5 : 1 : 3.5 − −
fr(Hz) − − 0.5 : 0.4 : 3.3 0.5 : 0.4 : 3.3
θp(◦) 6 : 1 : 15 − − −
θb(◦) − 6 : 3 : 15 − −

For each type of target in Table 2, there are 480 groups of different parameters to
generate the RCS of the target.

For BTs classification, datasets based on the measured data are difficult to obtain. As a
result, datasets based on electromagnetic calculation are always adopted in these research
works [15]. This paper also uses electromagnetic calculation to simulate RCS sequences.
The generation process of the training dataset is shown as follows.

Step 1. Based on the real structure of BTs, we establish the simplified geometric model
by using AutoCAD (Autodesk Computer Aided Design, a drawing tool software for 2D
drawing, detailed drawing and basic 3D design).

Step 2. We import the geometric model into FEKO [20,41] (a software widely used
for electromagnetic calculation) to solve the RCS. Set the source as plane wave source, the
observation condition as far field, the frequency as 8GHz (this setting can be thought of
as the signal type of the radar being a single frequency signal) and the polarization as the
vertical linear polarization. Moreover, the physical optics (PO) algorithm is selected as the
electromagnetic calculation method in FEKO.
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Step 3. Based on the configuration above, we change the value of the pitching angle of
the incident wave from 0◦ to 180◦ with a step size of 0.001◦ and solve the static RCS σ0−180
of the object.

It needs to be noted that because the polarization of the incident wave is vertical linear
polarization, we can thus rewrite Equation (1) as the following equation to solve σ0−180.

σTotal ≈ σVertical = 4π

∣∣∣E f ar, V

∣∣∣2
|E0|2

(22)

Step 4. According to the micro-motion parameters in Table 2, we solve the ψ(t)t=0−3s
via Equations (2)–(9) for each group parameter of the target.

Moreover, during the calculation of ψ(t)t=0−3s, the repetition frequency of the radar is
set to 256 Hz, and the duration time is 3 s.

Step 5. Based on the value of ψ(t)t=0−3s and σ0−180, the method of interpolation is
employed to solve the RCS sequence σψ(t).

Step 6. For every σψ(t), two sequences will be extracted with stage 0–2 s and stage
0.25–2.25 s. The length of one RCS sequence is 512.

Step 7. Perform different encoding methods on the RCS sequence, and hence, the
encoded images are generated. Adjust the size of the encoded image to 64 × 64 × 1 to
match the input size of the proposed network, and thereby, the dataset for BT classification
is generated.

As a result, there are four types of micro-motion targets in the dataset, and the number
of samples for each type is 960. If we want to add noise to the RCS, the noise should be
added to the E f ar, V and then solve the value of σψ(t) via Equation (22). For each fixed SNR,
there are 3840 samples in the dataset.

To visualize the modulation of micro-motion on RCS sequences and on encoded
images, we randomly selected one sample for every target. The RCS sequences and the
corresponding encoded images of the four targets are shown in Figures 4–7.
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Figure 6. (a) RCS; (b) RP; (c) MTF; (d) GASF; (e) GADF. RCS sequences encoding of the light decoy.
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It needs to be noted that the RP is generated with τ = 4, m = 5, and the MTF is
generated with Q = 8. According to Figures 4–7, we find that different targets will induce
different RCS sequences. The RCS of the precession warhead is relatively complex, which
means that precession is a complex motion. The RCS of the rolling light decoy is simple,
and the period is obvious. The structure of the rolling booster is the most complex among
the four targets, and the RCS sequence of the swing weight decoy is relatively complex. As
for the encoding methods, the textures on the RP are the sharpest, which means that the
chaotic characteristic of the RCS sequence is strong. Textures on the other three images are
very irregular, which may induce low classification accuracy.

As for the splitting of the dataset, the random selection method is used to split the
dataset to guarantee the generalization ability of the network. We divide the dataset into
a training subset (60%), a validation subset (20%) and a test subset (20%). The training
subset is adopted to train the network; the validation subset is used to evaluate the training
process and select suitable hyperparameters; and the testing subset is adopted to evaluate
the performance of the network. After conducting the performance analysis of several
training processes with different hyperparameters, the following parameters are selected as
the hyperparameters to achieve a relatively high accuracy classification. We use the SGDM
method to train the proposed network; the initial learning rate is set to 0.02 and will drop
by a factor of 0.5 every 4 epochs; the total epoch is set to 20, and the batch size is set to 32.
Moreover, the computer graphics card is NVIDIA GeForce RTX 3070. The hyperparameters
of the second and third experiments are the same as those of the first experiment.

Accuracy, Precision, Recall and F1 are the four indicators widely used for evaluating
the classification task. The performance analysis of the proposed method is based on these
indicators. TP represents how many positive samples predict positively; FP denotes how
many negative samples predict positively;TN stands for the number of positive samples,
which are predicted to be negative; and FN stands for the number of positive samples
whose predictions are negative. These four indicators are solved via Equation (23).

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2×Precision×Recall
Precision+Recall

(23)
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To evaluate the performance of the encoding methods and the proposed network,
three group experiments are conducted in this paper. The first experiment is conducted to
show the accuracy of the different encoding methods. The result is shown in Tables 3–5.

Table 3. The classification evaluation based on MTFs.

Q
Warhead Weight Decoy Light Decoy Booster

Recall Accuracy

4 0.8854 0.7474 0.8964 0.9125 0.8604
8 0.9219 0.7604 0.9115 0.9427 0.8841
16 0.9083 0.7724 0.8828 0.9323 0.8740
32 0.8906 0.7380 0.8573 0.8875 0.8434
64 0.7953 0.6510 0.8224 0.7917 0.7651

Table 4. The classification evaluation based on GAFs.

Warhead Weight Decoy Light Decoy Booster

Recall Accuracy

GASF 0.9323 0.7917 0.9115 0.9740 0.9023
GADF 0.9167 0.7708 0.9479 0.9167 0.8880

Table 5. The classification evaluation based on RPs.

(τ,m)
Warhead Weight Decoy Light Decoy Booster

Recall Accuracy

(1, 1) 0.9573 0.8891 0.9599 0.9938 0.9500
(1, 3) 0.9526 0.8844 0.9620 0.9923 0.9478
(1, 5) 0.9635 0.8734 0.9609 0.9932 0.9478
(4, 3) 0.9547 0.8734 0.9740 0.9953 0.9493
(7, 3) 0.9620 0.8990 0.9484 0.9953 0.9512
(4, 5) 0.9635 0.9010 0.9531 0.9792 0.9492
(4, 7) 0.9672 0.8776 0.9599 0.9958 0.9501

Table 3 presents the performance of the proposed network based on MTF. Different
values of Q mean different numbers of the quantile bins. With the increase in Q, the
accuracy goes up first but then goes down. This tendency indicates that either too large
or too small Q is unfavorable for feature expression, and thus, the poor accuracy occurs.
When Q is set to 8, the accuracy is the best, and the recall for the three targets is also the
best. Setting Q to 8 is the most reasonable choice for MTF-based classification methods.

According to Table 4, although there are differences in the discrimination ability for
different targets, the overall classification ability of GASF and GADF is similar. We think that
the reason for this phenomenon is that the generation ways of GASF and GADF are similar.

Seven groups with different τ and m are conducted to generate different RPs. Overall,
the difference will induce a different accuracy for the proposed network, but the difference
is not obvious. The difference between the best accuracy and the worst accuracy is only
0.0034. However, compared with MTF and GAF, the RP-based network performs much
better than the other two encoding methods. The difference between the RP-based network
and the other two networks is approximately 0.06, and such difference is significant. Such
a result is consistent with our previous statement, as RP intuitively displays more details of
RCS sequences than other methods.

To make the classification results more accurate and clear, the confusion matrices
of different encoding methods are presented in Figure 8. It needs to be noted that the
confusion matrices give a synthesis of the classification results obtained from 10 trials.
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In Figure 8, T1, T2, T2 and T4 represent the warhead, the heavy decoy, the light
decoy and the booster, respectively. According to the accuracy of these three encoding
methods, we draw the conclusion that RP is the optimal encoding method, GAF is the
second, and MTF is the worst. For these four targets, the booster is the easiest to identify;
the classification difficulties of the light decoy and the warhead are close; and the weight
decoy is the most difficult to identify.

The second experiment is conducted to evaluate how the proportion of the training
set affects the classification accuracy. In general, we believe that the number of training
sets will have an impact on the performance of the network. As a result, we conduct the
experiment to analyze how strong the impact is. Taking the RP as the input, different
proportions of the training set to the total samples are employed to train the network, and
the accuracy of the test set is shown in Figure 9.

Since this experiment aims to analyze the effects of the number of training sets, all
the experiments should be performed with the same hyperparameters. As a result, the
parameters are kept the same as those in the first experiment. Moreover, we only split the
datasets into the training subset and the testing subset, without taking the validation subset
into consideration. With the proportion value changing from 0.1 to 0.8, the accuracy of the
proposed network is constantly increasing. This is a normal trend because the larger the
number of training sets, the richer the features the network can learn. However, when the
proportion changes from 0.8 to 0.9, there is a small drop emerging in the accuracy. This
phenomenon is very strange and incredible. After consulting several literature works, we
found a reasonable explanation for this phenomenon. More training sets mean fewer test
sets are available, which makes it difficult for the network to match the test set with the
prediction labels. Within certain limits, the impact of a small test set is stronger than the
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impact of a large training set. This conclusion is very important, and it will provide an
important reference for our future work.
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To evaluate the robustness of the proposed method, experiments are conducted with
different SNRs. Furthermore, three CNNs are employed as comparisons to verify the
superiority of the proposed method. It should be noted that the proposed method, Resnet50
and Alexnet are based on the RP (τ = 4, m = 5), while the 1D CNN is based on the RCS
sequences. Based on the optimal result of the second experiment, the proportion of the
training set is set to 0.8, and the proportion of the testing set is set to 0.2. By using the
random selection method, the dataset for the third experiment is generated. Taking the
accuracy and F1 score as the criteria, the results are shown in Figure 10 and Table 6.
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Table 6. The performance evaluation based on F1 score.

20 dB 15 dB 10 dB 5 dB 0 dB

Resnet50 0.9802 0.9752 0.9493 0.8697 0.6822
Googlenet 0.9470 0.9387 0.8847 0.7838 0.6306

Alexnet 0.9373 0.9226 0.8672 0.7845 0.6387
1D CNN 0.9390 0.9370 0.9153 0.8815 0.6938
Proposed 0.9868 0.9758 0.9507 0.8639 0.7013

According to the accuracy and F1 score, the algorithm in this paper has the best per-
formance among the four algorithms in most cases. The advantages of the algorithm in
this paper are mainly reflected in two aspects. (1) Compared with AlexNet, Resnet50 and
Googlenet, the datasets of the proposed algorithm are the same as those in the three net-
works, but the network structure is different. A comparison of these three algorithms shows
the effectiveness of the proposed network. (2) Compared with 1D CNN, the superiority
of the proposed method in this paper is obvious, which indicates that compared with the
original RCS sequence, the encoding of the RCS sequence can also improve the recognition
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rate of the image. However, there is one factor, which is common to all algorithms. When
the SNR is low, the performance of the RCS-based method is relatively poor, which proves
that RCS is sensitive to the noise.

In addition to the accuracy, time consumption is also an important indicator for
performance analysis. We calculate the prediction time for one sample of the five methods,
and the result is presented in Table 7.

Table 7. The performance evaluation based on prediction time for one sample.

Resnet50 Googlenet Alexnet 1D CNN Proposed

Time(us) 17.38 12.66 5.3701 4.3546 33.79

As shown in Table 7, the prediction time of the proposed method is the highest among
the five methods. Obviously, the high accuracy comes at the cost of the network’s prediction
time for the proposed method. As a result, one valuable aim is to reduce the prediction
time of the proposed method.

6. Conclusions

In this paper, we develop a framework for BTs classification. The framework first
converts the RCS sequences into images with three methods and then inputs those im-
ages to the proposed multi-scale CNN. The experimental results show that the RP-based
method has the best accuracy among these three encoding methods. Moreover, the pro-
posed network outperforms other existing networks with better accuracy and robustness.
However, several parameters are empirically selected, including the parameters involved
in the encoding methods and hyperparameters of the network. If those parameters are
selected more precisely and scientifically, the performance of the proposed method may
benefit from a significant improvement. In our future work, we will study the method to
adaptively select those parameters to make the proposed method more effective. However,
the performance of the presented network is based on a large number of labeled samples,
which is rarely applicable in the real-world radar target classification tasks [42]. As such,
developing a few-shot learning method for radar target classification will be a meaningful
and promising technique [43,44]. In the future, we will pay more attention to the few-shot
learning methods to make the proposed methods more available.
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Appendix A. Depthwise Separable Convolution (DS-Conv)

In 2017, F. Chollet of Google Labs proposed a new CNN named Xception [45]. The
most important highlight of Xception is DS-Conv, which reduces the complexity of the
network without a loss of accuracy.

DS-Conv replaces regular convolution with depthwise convolution followed by point-
wise convolution (standard convolution with 1× 1 kernel) [46]. First, every channel of
the input is convoluted through depthwise convolution, so that spatial correlations are
achieved. Then, the features of each channel are combined through a pointwise convolu-
tion, and channel correlations are achieved. Set the kernel size K× K for DS-Conv, and the
diagram is shown in Figure A1.
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Mathematically, depthwise convolution is formulated as

G(xd, yd, jd) =
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K(u, v, jd)× Fin(xd + u− k + 1
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where K represents the convolution operation, k denotes the kernel size, Fin represents the
input (h× w× cin). xd and yd is the position of every pixel, u and v is the step order of the
convolution kernel, jd is the order of the channel, and G is the output feature map. The
parameter quantity involved in depthwise convolution is K× K× cin.

Then, pointwise convolution is calculated as

Fout(xd, yd, l) =
cin

∑
j=1

G(xd, yd, jd)× P(jd, l) (A2)

where P(jd, l) is the 1× 1 convolution, l ∈ [1, cout]. The number of parameters involved
in this process is 1× 1× cin × cout. For regular convolution, the parameter quantity is
K× K× cin × cout [46], which is bigger than that of DS-Conv’ (cin × cout + K× K× cin).

To reduce the parameter quantity, this paper uses separable convolution many times
in the proposed network.
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