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Abstract: Estimation of terrestrial carbon balance is one of the key tasks in the understanding
and prognosis of climate change impacts and the development of tools and policies according to
carbon mitigation and adaptation strategies. Forest ecosystems are one of the major pools of carbon
stocks affected by controversial processes influencing carbon stability. Therefore, monitoring forest
ecosystems is a key to proper inventory management of resources and planning their sustainable use.
In this survey, we discuss which computer vision techniques are applicable to the most important
aspects of forest management actions, considering the wide availability of remote sensing (RS) data
of different resolutions based both on satellite and unmanned aerial vehicle (UAV) observations.
Our analysis applies to the most occurring tasks such as estimation of forest areas, tree species
classification, and estimation of forest resources. Through the survey, we also provide a necessary
technical background with a description of suitable data sources, algorithms’ descriptions, and
corresponding metrics for their evaluation. The implementation of the provided techniques into
routine workflows is a significant step toward the development of systems of continuous actualization
of forest data, including real-time monitoring. It is crucial for diverse purposes on both local and
global scales. Among the most important are the implementation of improved forest management
strategies and actions, carbon offset projects, and enhancement of the prediction accuracy of system
changes under different land-use and climate scenarios.

Keywords: computer vision; forestry; remote sensing data; carbon balance; sustainable forestry;
climate change

1. Introduction

Climate change adaptation and mitigation policy make the development tools for
estimation and monitoring flows of greenhouse gases (GHG) relevant. Such accounting of
ecosystem balances helps to understand and alter trends of GHG emissions. As for now,
a more accurate inventory of carbon stocks and sources is a subject of ongoing discussions.
It aims at reducing the uncertainty of carbon balance estimations and their prognosis in
different economic and climate change scenarios. It includes clarifying user and social
choices in the decision-making process. Improvements of on-site measurement techniques
along with scaling of the accounting systems (models) have lead to a more detailed level
for a better understanding of the carbon cycle [1–5].

Among a variety of natural and artificial ecosystems, forests show mostly predominant
sequestration of carbon from the atmosphere. Mostly negative net GHG fluxes characterize
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territories under forests; as a result, gross carbon removals exceeded gross emissions
around the world [6]. At the same time, in the presence of disturbances, CO2 emission
increases due to a release of the carbon retained in the ecosystem [7]. The list of main
disturbing events includes, in general, the change of forests to other land use types, the use
of forest resources for materials and energy due to harvesting, the occurrence of fires, fall-
outs, change of water regimes, change of the community structure due to pathogens and
invasion outbreaks, and development of deadwood. Those are considered to be managed
to maintain sustainable long-term use of natural resources and receive climate benefits [8,9].

As for now, most of the forest monitoring, management, and planning needs at differ-
ent spatio-temporal scales can be covered by the use of remote sensing data (RS) [10–13].
Among these tasks are estimation of forest structural and functional diversity, productivity
assessment, catching the degradation processes and their patterns, deforestation detection
and analysis, and others. RS data include both orbital and unmanned aerial vehicle (UAV)
observations. For instance, the Sentinel-2 mission can provide multispectral information,
while the Global Ecosystem Dynamics Investigation (GEDI) mission [14] provides laser
measurements. Both of them can be used for carbon cycle studies. The detailed infor-
mation about orbital missions is presented in Section 3. To date, many countries have
already included remotely sensed earth observations in their forest inventories within
national procedures. However, only 10 to 30% of this information, depending on the data
type (satellite images and airborne photography, respectively), is considered for inventory
completion [15]. Such data are, in fact, the primary source of information for observing
large territories or locations that are hard to access. Currently, there is a strong demand
for detailed information about the sources, sinks, and transport of CO2, as well as about
their change under different influencing factors [16,17]. It can be expected that the broad
involvement of the RS data into routine protocols of monitoring of natural and managed
ecosystems is merely the matter of time [18]. Thus, techniques for analyzing RS data are
also under development, while their operational integration is an essential part of system
knowledge progress [12].

We can notice the steady development of machine and deep learning, improvement
of computational resources, along with public availability of the Earth nearly “big data”
(diverse remotely sensed records obtained by a plethora of sensors at various spatial and
temporal resolutions). It can be used for the tasks related to the tackling of land-atmosphere
interactions, in particular, applicable to the forest areas [19]. In this regard, machine
learning algorithms and computer vision (CV) are of great practical and scientific interest.
In what follows, by a CV we mean all methods for image processing, and, specifically,
classical machine learning methods and deep learning methods based on neural networks.
CV techniques are recognized as a powerful tool capable of capturing information from
the data of different domains, both photo, and video, and of handling target tasks at
different scales. CV algorithms combine the usability and potential for automatization,
determined by transparent algorithms’ pipelines. By using the standardized list of metrics,
we can tune the performance and evaluate the model quality. At the same time, it is worth
noticing the capability of CV algorithms to integrate expert knowledge during the training
procedure [20,21]. The sufficient advantage of this group of modeling and analysis methods
is its potential to overcome the main limitations related to the lack or incompleteness of
the data [22,23].

There are a number of surveys covering different aspects of forestry studies published
in recent years. The number of publications about RS and forestry tasks has increased twice
during the last decade, while the number of references to machine learning applications
has increased almost tenfold (see Section 2). Particular forest properties estimation, such
as aboveground forest biomass, has been surveyed in [24]. It was summarized that RS
in forest aboveground biomass estimation is a perspective alternative to conventional
ground-based approaches. Since the publication of this survey publishing in 2016, new RS
data sources have become available and widely used, and there has also been a drastic rise
in machine learning and deep learning, and their implementation in environmental studies.
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The following surveys were focused on carbon stocks and carbon cycle, highlighting
the most commonly used RS data sources [25,26]. In [12], another forestry problem was
observed, namely, forest degradation focused on the used data and its important properties.
In turn, in the current survey, we aggregated information from recent studies related
mostly to the CV algorithms application for the exact forestry problems: forest mask, tree
species, and forest resources estimation. We chose exactly these forest properties, as they
are one of the core components for forestry analysis and have a significant impact on
carbon monitoring and various environmental tasks [25]. Currently, there are a lot of data
and algorithms that allow one to solve numerous problems, including those related to
obtaining forest characteristics based on satellite data. Due to the wide variety of data
sources, their specifics, and algorithms, it is difficult for a novice researcher to find a suitable
approach that combines the use of certain data and algorithms that would give a good
result shortly. In order to have an understanding of the available data and algorithms
that best solve the particular problem, taking into account the specifics of the problem
being solved, we provide this survey. It covers the most popular data sources and widely
used methods, as they are both of high value for accurate RS solutions. It will allow
researchers to effectively select a set of suitable algorithms and data sources that will solve
a specific problem.

2. Review Methodology

Interest in remote sensing of the environment, namely, forest characteristics estimation,
has been constantly growing during the last decade, as shown in Figure 1. To collect
year wise statistics, we used two sets of words as keywords in the “article title, abstract,
and keywords” in the Scopus database search system. The first set of words specifies
remote sensing research domain, including words “remote sensing”, “UAV”, and certain
widely used satellites names. The second set of words concretizes a specific forestry prop-
erties and tasks such as “tree mapping”, “growing stock volume”, “age”, “forest species”,
etc. The “AND” Boolean operator united these two sets of words, while within each set,
the “OR” operator was applied. The search resulted in over 18,000 publications from
2011 to 2021 year. The search excluded subject areas such as medicine, social science, etc.
In Figure 1, “ML + Remote sensing” refers to the intersection of the previous search results
with a set of words specifying artificial intelligence algorithms such as “machine learning”,
“deep learning”, “neural networks”, and names of widely used algorithms. The search
resulted in over 2200 documents from 2011 to 2021. There is a solid growth in the number
of publications considering artificial intelligence since 2015 year. Comparing the search
results for machine learning applications for different RS forest tasks, we can notice that
the most frequently encountered task is forest resources estimation such as aboveground
biomass, growing stock, and standing volume (over 900 documents from 2011 to 2021 years).
Forest species classification using artificial intelligence ranks second in the search results
(over 800 documents). Classical machine learning algorithms (such as Random forest, Gra-
dient boosting, etc.) occur three times as often as deep learning algorithms. Among RS data,
Landsat is referred with machine learning algorithms in over 400 publications. Sentinel
data was mentioned in over 340 papers for forest tasks using machine learning techniques,
while WorldView data were mentioned in over 100 publications. The detailed information
about data sources and tasks is presented below.

The literature analysis is performed using recently published studies from peer-
reviewed journals included in the Scopus scientific database. The Google Scholar database
additionally supported the search. Due to the rapid development of the data science disci-
pline, the survey timeline was limited, starting from the year 2017 to 2022. An exception is
applied to the research that is fundamental or was a pioneer to the topic, according to the
citation level and earlier years of publishing. For each discussed topic, we used relevant
keywords, for example, “aboveground biomass” and “forestry” and “remote sensing”.
The results of such requests were compared with search query after adding the words
“computer vision”, which was not obligatory used firstly because of the frequent association
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of the phrase with neural networks only. Then, the search results were manually examined
with and without sorting by the citation level, and relevant works were chosen for detailed
analysis. Zero citations were acceptable in the case of specific (influential) journals relevant
to research topics of earth science, environmental science, and environmental monitoring
and 2022 as the year of publishing. However, to catch the general context, for the most
part, publications with more than 20 citations were considered. Our search was limited
by the keywords’ combinations in the title and abstract, the final publishing stage, and
English language. We mainly considered research articles to make conclusions about the
applicability and efficiency of the algorithms. However, our analysis also includes relevant
comprehensive reviews’ references providing general trend analysis within the topic of
climate change mitigation actions and data sources.

(a) (b)

Figure 1. Year wise publication of remote sensing papers for forest characteristics extraction: number
of publications per year; the most popular journals according to the number of publications. The data
was retrieved from the Scopus database [27]. (a) General search that include remote sensing for forest
tasks keywords; and (b) intersection of general remote sensing search for forest tasks results with
ML-specific keywords.

3. Remote Sensing Data and Spectral Indices for Forest Analysis
3.1. Sources of Remote Sensing Data

An essential part of developing a vegetation analysis methodology is the informed
choice of one or another data source. We refer the reader to the latest extensive surveys
dedicated to the descriptions of the common RS platforms and sensor combinations applied
to the problem of vegetation analysis [12,13,28,29], while noting that this is a rapidly
evolving field. In the present study, we provide the list of main characteristics of the
currently most commonly used instruments of particular importance for forest-related
tasks at different scales (Table 1).

When choosing a data source for research, various details are taken into account: data
availability, survey repeatability, spatial resolution, sensor type, sensor specifications, range
of spectral channels, etc. Describing RS data, one can distinguish different spatial, temporal
and spectral resolution, while the “spatial” meaning is the most frequent case. In the case
of spatial resolution, we refer to the precision classification as coarse (low), medium and
fine (high) [25,30]. Thus, low resolution corresponds to the data of pixel size of more than
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30 m per pixel, medium resolution corresponds to the data of pixel size from 10 to 30 m,
and high resolution, to the size of less than 5 m.

Table 1. Commonly used instruments of remote sensing data acquisition and distribution, and their
characteristics aggregated from [19,31–37] and missions’ technical websites [38–44].

Mission Sensor Spatial Resolution Temporal Resolution Distribution of Data

Terra MODIS Multispectral, 36 bands 250 m, 500 m, 1 km 1–2 days Open and free basis

ALOS PALSAR/
ALOS-2 PALSAR-2

Synthetic Aperture
Radar, L-band

From detailed (1–3 m)
to low (60–100 m)
depending on the

acquisition mode and
processing level

14 days
On

request/commercial
use/ALOS Palsar 1-free

Landsat-8/9

Multispectral—8 bands,
panchromatic band,

and thermal
infrared—2 bands

Multispectral: 30 m,
Panchromatic: 15 m,

Thermal Infrared
Sensor: 100 m

16 days (the combined
Landsat 8 and 9 revisit

time is 8 days)
Open and free basis

Sentinel-1 Synthetic aperture
radar, C-band

From detailed
(1.5 × 3.6 m) to

medium (20–40 m)
depending on the

acquisition mode and
the processing level

Mission closed (during
operating time—3 days
on the Equator, <1 day
at the Arctic, 1–3 days

in Europe and Canada)

Historical data is open
and free basis

Sentinel-2 Multispectral, 13 bands 10, 20, 60 m depending
on the band range

5 and 10 days for single
and combined

constellation revisit
Open and free basis

WorldView-1 panchromatic band panchromatic: 0.5 m 1.7 days Commercial use

WorldView-2,3 Multispectral—8 bands,
panchromatic band

Multispectral: 1.84 m,
panchromatic: 0.46 m Up to 1.1 days Commercial use

WorldView-4 Multispectral—4 bands,
panchromatic band

Multispectral: 1.24 m,
panchromatic: 0.31 m

mission closed (during
operating time < 1 day)

Commercial use
(archive)

GeoEye-1 Multispectral—4 bands,
panchromatic band

Multispectral: 1.64 m,
panchromatic: 0.41 m 1.7 days Commercial use

PlanetScope
Multispectral—4 bands,

from 2019 additional
4 bands

3.7–4.1 m resampled
to 3 m 1 day On request/

commercial use

SPOT-6,-7 Multispectral—4 bands,
panchromatic band

Multispectral: 6 m,
panchromatic: 1.5 m 1 to 5 days On request/

commercial use

Pleiades Multispectral—4 bands,
panchromatic band

Multispectral: 2 m,
panchromatic: 0.5 m 1 day Commercial use

RapidEye Multispectral—5 bands 6.5 m, resampled to 5 m 1 day Commercial use

Many RS missions are capable of providing up-to-date and diverse information about the
object or phenomenon under consideration. Each approach has advantages and limitations,
determined by the detection conditions and the ratio between spatial resolution, revisiting
time, or cost. Active sensors such as radar are independent of the weather conditions and
do not rely on the sun as a source of illumination, and so can provide the data regardless
of the day or night conditions. On the contrary, passive multispectral and hyperspectral
sensors require solar radiation. Additionally, the coarser the image obtained from the satellite,
the more often it is taken. To combine the frequency of low-resolution imaging with more
details of the other available data or to restore the information that was lost due to unsuitable
conditions, different machine learning fusion techniques were implemented [19].
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One can choose the most appropriate satellite data for required time and territory.
The number of available bands in different satellites may vary. It is possible to use all bands
available in the chosen satellite, select, or combine (to obtain spectral indices) some of them.
A special case of the auxiliary use is the panchromatic channel. Due to its wide band, it
gains more light; therefore, it has higher spatial resolution. It makes it possible to adjust
the resolution of satellite imagery through pan-sharpening techniques [45].

One of the advantages of platform-distributed RS data is their availability and easy-to-use
web and scripting interfaces for collecting the data by end-users. They can be downloaded, free
of charge or for payment, from data-aggregating platforms, provided raw data, as well as pre-
processed or converted into various valuable derivatives such as spectral indices or reflectance
bottom of the atmosphere (BOA). This allows the user to generate sets of images for efficient
training of machine learning algorithms for different regions and relevant dates for the study.
For exploring resources and performance capabilities, we refer the reader to, e.g., Level-1 and
Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS DAAC)
Tools and Services collection (https://ladsweb.modaps.eosdis.nasa.gov/tools-and-services/
(accessed on 20 October 2022)), Copernicus Open Access Hub (https://scihub.copernicus.eu
(accessed on 20 October 2022)), the Planet Platform (https://www.planet.com/products/
platform/ (accessed on 20 October 2022)).

3.2. Popular Spectral Indices Applied for Forest Monitoring Research

Remote sensing data are rich in information, and in the case of multispectral sources,
separate bands can be mathematically transformed and combined. Such composites,
namely spectral indices, can be used to catch specific patterns necessary for the most
common tasks of forest carbon monitoring. Among these tasks are forest area estimation,
tree stand composition classification, change or anomaly detection, and others that will be
covered further in the following sections.

There are dozens of different spectral indices, and many of them have different modi-
fications [29,46]. Here, we discuss some of the most frequently utilized. One of the most
popular spectral indices is the group of vegetation indices, led by the Normalized Dif-
ference Vegetation Index (NDVI), based on the near-infrared (NIR) and red reflectance
bands. NDVI has derivatives, one of which is the Vegetation Condition Index (VCI), based
on the minimum and maximum values of the NDVI for a given period. For the study of
atmospheric effects, the Atmospherically Resistant Vegetation Index (ARVI) can be used.
Although NDVI is a commonly used choice to analyze vegetation cover, it is affected by
a saturation problem for densely forested areas [47]. The main reason is that if there is a
total leaves cover in the high vegetation period (peak of the vegetation period), the leaves
are unable to absorb red light, so the reflectance of red light will increase. Moreover, the
intensity of NIR will also increase. According to Equation (1), the calculated NDVI will
be underestimated. To address the saturation problem, the Enhanced Vegetation Index
(EVI) can be used. It is more accurate in areas with high vegetation and considers both
soil and atmospheric effects. Another possible choice for densely forested areas is indices
based on a Red-edge spectral band: Normalized Difference Red-edge (NDRE), the Modified
Simple Ratio (MSR) Red-edge index, and Chlorophyll Index (CI) Red-edge. However, only
some satellites have sensors for Red-edge measurements. The Red-edge band is available,
for instance, in the satellite systems such as Sentinel-2, WorldView-2 and 3, and RapidEye.

NDVI =
NIR − Red
NIR + Red

(1)

NDRE =
NIR − RedEdge
NIR + RedEdge

(2)

https://ladsweb.modaps.eosdis.nasa.gov/tools-and-services/
https://scihub.copernicus.eu
https://www.planet.com/products/platform/
https://www.planet.com/products/platform/
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where NIR is the near-infrared spectral band, Red is the red spectral band, and RedEdge is
the red-edge spectral band.

VCI =
NDVIi,p,j − NDVImini,p,j

NDVImaxi,p,j + NDVImini,p,j

(3)

where i is the pixel, p is the period, j is the year.

ARVI =
NIR − 1 × (Red − Blue)
NIR + 1 × (Red − Blue)

(4)

where Blue is the blue spectral band.

EVI =
2.5 × (NIR − Red)

6 × Red − 7.5 × Blue + 1
(5)

CIRedEdge =
NIR

RedEdge
− 1 (6)

MSRRedEdge =
NIR/RedEdge − 1√

NIR/RedEdge + 1
(7)

The aforementioned indices are widely used as input data (separately and along with
initial bands) to detect the vegetation cover among other different land cover types [48],
to distinguish between different plant species [49], to evaluate plant target characteristics
such as productivity and mortality [50,51], or to detect insect defoliation [52].

In the field of forest monitoring, one of the most relevant topics is the fire occurrence
and spread detection and mitigation [53]. Thus, in addition to described indices, other
spectral combinations, mostly based on short-wave infrared reflectance (SWIR), are of
common use. For example, one can distinguish the Normalized Burn Ratio (NBR) and
derivative Normalized Burn Ratio Thermal (NBRT), Burned Area Index (BAI) for the
purposes of the assessment of fire severity and burn area detection [54].

NBR =
NIR − SWIR
NIR + SWIR

(8)

where SWIR is the shortwave infrared band.

NBRT =
NIR − SWIR × TIR
NIR + SWIR × TIR

(9)

where TIR is the thermal band.

BAI =
1

(0.1 + Red)2 + (0.06 + NIR)2 (10)

To consider environmental characteristics and to use it as background for terrestrial
and aquatic or coastal forest ecosystems, the following indices are used in addition: Soil
Adjusted Vegetation Index (SAVI) allowing us to correct soil brightness [55], the Normalized
Difference Water Index (NDWI), also known as the Land Surface Water Index (LSWI), and
the Normalized Difference Moisture Index (NDMI) [55,56]. Such indices are also employed
to track damages other than fire such as, e.g., pathogen outbreaks [57].

SAVI =
((NIR − Red)× (1 + L)

NIR + Red + L
(11)
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where L is the soil factor, ranging from 0 to 1, which corresponds to dense vegetation and
no vegetation, respectively, while 0.5 is considered default for the most land cover types.

NDWI/LSWI/NDMI =
NIR − SWIR
NIR + SWIR

(12)

The use of spectral indices has certain limitations that should be taken into account.
Such indices are applicable for the work with RS data in general and include atmospheric
effect, the possibility of significant difference between index values in case of different data
sources [58], season dependence, in complete accordance with the objects’ features [59].
However, spectral indices provide a valuable source of information with careful pre-
processing including appropriate atmospheric correction according to the data source,
topographic correction, and understanding the uncertainties along with the availability of
the actual measurements (label data). Depending on the goals and study object character-
istics, new indices can be proposed based on the previously not used band combination
sequences [60]. For the time series, index pattern derivatives can be used such as standard
deviation, kurtosis, and skewness [50]. For the recognition and modeling tasks, indices are
usually used in combination with each other. Hyperspectral data can also be aggregated
into the indices [61].

4. Computer Vision Algorithms

In this section, we describe widely useful supervised algorithms for RS data, in par-
ticular, for forest tasks. We discuss both classical machine learning and deep learning
algorithms with their specifics, learning process details, and intuition behind them.

Semantic segmentation is a machine-learning problem for which the algorithm learns
to determine the class of each pixel using training samples. A feature description char-
acterizes each target object. There is a matching between the input image pixels and
ground truth image pixels, which is supposed to be a mask of a perfectly segmented im-
age. The model is aimed at reducing the difference between the prediction and reference
markup according to a given quality metric. For instance, in the case of forest mapping, two
classes are considered: the forest cover and the areas without forest. Below, we describe
the specifics and differences between the classical machine learning algorithms and the DL
methods, schematically shown in Figure 2. Although for CNN algorithms, task definition
as a semantic segmentation is more conventional; for classical ML approaches, the task is
usually defined as a pixel-oriented classification or regression. It means that CNNs work
with pixels and their surrounding area (neighbor pixels). ML algorithms typically work
with individual pixels independently.

Figure 2. Difference between classical machine learning and deep learning algorithms.
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4.1. Classical Machine Learning Algorithms

To solve various tasks using RS data, one of the most effective and popular methods
of classical machine learning is the random forest method (Random Forest, RF), which
combines the approaches of an ensemble (a composition) of algorithms, namely, decision
trees and the method of random subspaces. This method is widely applicable, for example,
for solving problems of classification of forest-forming trees, as well as for solving regression
problems, but it is not limited only to these tasks (described in Section 8). The ensemble is
performed over multiple trees trained on different data subsamples, which helps one to
avoid the overfitting issues occurring when only one decision tree is used. The resulting
class or value prediction is made by averaging over all trees or choosing a class that is
predicted by most of the trees. An important limitation of using a forest of trees compared
to a standard decision tree is the interpretability of the results. Namely, a random forest of
trees itself is much harder to interpret. The main parameters configured in the RF algorithm
are as follows: the number of trees that determine the complexity of the algorithm; the
number of features for splitting selection; the maximum depth of the trees responsible for
the retraining and accuracy of the model; the criterion by which the homogeneity (entropy)
of each leaf in the tree will be evaluated; the minimum number of objects at which splitting
is performed, with a decrease in this parameter, the quality of training increases, but the
training time also increases. One of the advantages of the RF algorithm is the speed of its
learning process and ease of use, meaning that the algorithm is already implemented mostly
with open-source programming languages and data analysis interfaces. For example,
the Python Scikit-learn library [62] has an implementation that allows the user to quickly
tune the hyperparameters and train and test the model.

Another effective method of classical machine learning capable of dealing with CV
tasks for RS data analysis is the Support Vector Machine (SVM). This is a class of algorithms
characterized by the use of kernels (including nonlinear ones) and the absence of local
minima; they are aimed at solving both classification and regression problems. In the
case of classification problems, the optimal hyperplane is determined, which provides the
best separation of classes. SVM requires parameters to be tuned at the implementation,
of which the main ones are the kernel type and its hyperparameters. One of the most
popular kernel types is the Gaussian kernel (rbf), in which the C and γ parameters are
configured for the misclassification penalty and the width of the kernel. It is necessary
to vary the above parameters to obtain better accuracy and avoid over-fitting. Support
Vector Regression (SVR) is based on the same approach as the SVM for the classification
task, specifically, error minimization at determining the separating hyperplane for class
extraction with a few slight differences.

The k-nearest neighbor (KNN) algorithm is a frequent choice for RS problems because
of its simplicity and high interpretability [63]. It is a non-parametric supervised learning
algorithm that commonly considers the Euclidean distance between an observed sample
and its neighbors to make a prediction. The most similar data points are located closer
to each other. Therefore, the class of a new data point can be estimated by voting the k
most close points as the most frequently observed class. The number of neighbors (k) that
participate in voting is defined empirically and depends on a particular task. The KNN
algorithm can also be used for a regression problem. So, the output of the algorithms for
the observed data point is the averaged target value for all k nearest neighbors.

The Gradient Boosting algorithm is also widely used in environmental studies both
for regression and classification tasks. The boosting technique is an efficient ensemble
approach when the model is built sequentially using weak learners [64]. Although gradient
boosting can be based on different learners, the most common choice is decision trees. Each
weak learner aims to minimize the error of the previous learner, being highly correlated
with the negative gradient of the loss function of the previously assembled trees [65].
XGBoost (“Extreme Gradient Boosting”) algorithm is an adjustment of gradient boosting
over trees that are based on the usage of a more powerful regularization technique to
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decrease over-fitting [66]. XGBoost supports parallelization within each tree, creating new
branches independently, which makes the algorithm faster.

To adjust the quality of machine learning algorithms, one can apply the following
approaches. For instance, the principal components analysis (PCA) is a dimensionality
reduction method that creates a smaller dataset from a large amount of features preserving
important information. This linear unsupervised statistical transformation was successfully
applied to RS multispectral and hyperspectral data [67]. Another approach to reduce
feature space is to use the RF algorithm for feature selection and then to train another
machine learning algorithm with selected features. However, correlated features should
be excluded as their importance might be underestimated. Another important option for
model performance adjustment is optimal parameters selection. To optimize machine
learning parameters, one can leverage various optimizations tools, such as Optuna [68],
or scikit-optimize [69] (including Bayesian optimization).

4.2. Deep Learning Algorithms

One of the main and frequently used architectures of CNNs for RS image processing,
including the forest mask segmentation, is the U-Net architecture [70]. The schematic
layout of various U-Net layers is shown in Figure 3a.

(a) (b)

(c) (d)

Figure 3. CNN architectures [71]: (a) U-Net; (b) FPN; (c) LinkNet; (d) PSPNet.

The architecture comprises two parts, forming a “U”-shape. The first part includes
several convolution layers (parameters can be configured) responsible for feature selection.
For a convolution operation, it is typical to use a 3-sized convolution kernel, followed by
a nonlinear ReLU and Max-pooling layer for dimensionality reduction. The second part
uses layers that convert a feature map from a compressed space into the initial dimension
(deconvolution). Also, in the second part of the deconvolution process, there is an attachment
of relevant maps of features obtained during the roll-up. As a result, the neural network’s
output produces an image mask of the same size as the input image, where each pixel
corresponds to a particular class. Training the neural network, namely, picking up values
in the kernels, is effected by using the backpropagation method of the error. The neural
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network’s weight (trainable) parameters are updated iteratively based on calculated error.
The error is computed using different loss functions (e.g., cross-entropy). The corresponding
gradients for all layers and weights in the neural network are then updated.

Loss =
∑N

i=1 ∑C
k=1 yik ∗ log ŷik

N
, (13)

where N is the number of pixels, C is the number of target classes, ŷ is the probability
predicted by the model that a pixel belongs to a particular target class, and y is the ground
truth label of membership of a pixel in a class (0 or 1).

In addition, one can configure the importance of each class with weight functions so
that the neural network can work with an unbalanced number of target classes.

Another efficient architecture for solving the problems of segmentation and mask selec-
tion is also worth mentioning—here we mean the Functional Pyramid Network (FPN) [72].
The schematic diagram (architecture) of FPN is shown in Figure 3b. This architecture
has two parts, one from the bottom-up (convolution) and another from the top-down
(deconvolution). One of the key features of this architecture is the simultaneous utiliza-
tion of features of different resolutions and levels. The lower semantic weight (the lower
generalizing ability) has high-resolution features, and the higher semantic weight has low
resolution features. The lateral connections between the two paths make it possible to
eliminate the problem of signal attenuation. As a result, it becomes possible to process
the detailed information obtained at the bottom of the first pyramid and semantically
significant features obtained at the top of the first pyramid.

Other neural network architectures relevant for RS tasks include FCN [73], DeepLab [74],
LinkNet [75] (Figure 3c), PSPNet [76] (Figure 3d).

All mentioned architectures have the same prediction pipeline. Input data is passed
from the first layer to the following layers. On each layer, the input signal is transformed
depending on weights of artificial neurons and then fed to the activation function. Thus,
non-linear data separation is enabled [77].

The neural network parameters as well as approach for its training takes a separate
vital place in the development of effective algorithms for solving RS problems, in partic-
ular to characterize vegetation with the possibility of further conversion to carbon stock.
The training parameters include the number of training epochs, the number of steps in
each epoch, the size of the batch (sub-sample), and the size of the images that form the
batch. The choice of these parameters affects the ultimate result of neural network pre-
dictions. Parameters monitoring and analysis during the training allow one to choose an
optimal moment of training process termination and to avoid overfitting. Additionally,
the convergence rate of the algorithm depends on the value of the step in learning (learning
rate) and the choice of the optimizer. In many studies, it is proposed to use optimizers like
SGD [78], Adam [79], and RMSProp [80]. The determination of the stopping moment for
neural network training is often based on such indicators as the “plateau”. The “plateau”
effect means that the validation sample’s accuracy does not increase during several epochs.
Additionally, among the configurable parameters of the neural network, it is worth men-
tioning the importance of the CNN’s optimal size (depth). The depth choice depends on
the problem to be solved and the amount of training data. Therefore, the number of layers
and neurons is task-specific. For instance, for a small dataset, it is preferable to use a model
with fewer learning parameters. However, if the dataset is large, common architectures
with large amount of parameters are required. Such neural networks often do not fit a
single GPU. To address this limitation, different approaches and strategies can be applied
in order to train large neural networks effectively [81]. To deal with overfitting and to
enhance model generalization, the dropout technique is usually implemented. It involves
discarding some randomly selected nodes (both from input and hidden layers) during each
training iteration. It reduces co-adaptation between neurons. During test time, dropout is
not implemented, but weights are adjusted by the used training dropout ratio. However,
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some dropout modifications support their application during the test phase such as Monte
Carlo dropout [82].

5. Evaluation Metrics

In this section, we describe the most commonly used metrics to evaluate ML and
DL models. The input and output data are looked upon here as raster images (a more
conventional representation for DL algorithms). However, the described metrics were
applied to evaluate ML algorithms that work with individual spatial points and satellite
features as tabular data.

5.1. Classification

To assess the per-pixel or region prediction quality of machine learning algorithms,
the following inputs are used:

1. Per-pixel mask of the target classes, ground truth;
2. Per-pixel predicted mask with target classes.

Masks are in the raster format; the value of pixels belonging to the background
is 0, and belonging to an object of the target class is 1 or more for a multiclass case.
Therefore, when we have only two classes (target class and background), the mask has a
Boolean representation. For instance, in the case of forest mask: areas covered by forest
vegetation are marked with value 1, areas of other types have label 0. To calculate the
prediction quality, True Positive (TP), False Positive (FP), True Negative (TN), and False
Negative (FN) values are considered. True Positive is the number of correctly classified
pixels of a given class; False Positive is the number of pixels classified as a given class while,
in fact, being of another class; True Negative is the number of correctly classified pixels of
another class; False Negative is the number of pixels of a given class, missed by the method.
One can estimate the model quality based on the ratio between correctly classified objects
and all objects representing the study area. This commonly used metric is Accuracy.

To evaluate the performance of neural networks for semantic segmentation or classical
machine learning models, one can also apply an F1-score, which is widely used in RS
tasks [83]. While the Accuracy metric is a good choice in the case of balanced classes,
the F1-score is capable of effectively assessing the prediction quality for imbalanced classes.
A high Accuracy score can be obtained for highly imbalanced data by assigning the majority
class’s label to all observations.

Another popular metric for semantic segmentation tasks is IoU (intersect over union).
F1-score and IoU are positively correlated metrics. However, F1-score is the harmonic
mean, and IoU is closer to the minimum value between Precision and Recall.

The area under the curve (AUC) from the receiver operating characteristic (ROC) also
helps to assess the quality of developed algorithms. True positive rate (TPR) and False
positive rate (FPR) are estimated in order to build the ROC curve for different decision
thresholds. We assume the model outputs certainty that the object belongs to the positive
class. Therefore, these thresholds determine objects belonging to the positive class. AUC is
the area for all possible decision thresholds for TPR and FPR combinations. It shows the
model ability to range predictions correctly.

5.2. Regression

One can distinguish the following metrics from the most common metrics in regression
tasks: mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE),
coefficient of determination (R2), mean absolute percentage error (MAPE), and mean bias
error (MBE). Although MAE, MSE, RMSE, and MAPE aim to estimate how close the model
prediction is to the actual values, they have differences. Depending on the task, they
can be effectively combined for deeper model results analysis. Intuitive interpretation is
indispensable for various practical forestry tasks. While MAE provides an error in the
original unit of measure of actual target values, MAPE is commonly used to assess the
error in percentages for more straightforward competitive analysis. Comparing MAPE and
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MBE with MAE, MSE, and RMSE, we can notice that only MAPE and MBE metrics take
into account the position of the actual target and predicted values, i.e., a switching between
these values leads to different results. MBE makes it possible to understand the model
tendency for under- or overestimation of the target values as it can be both positive and
negative. R2 shows the relation between the total variance explained by the model and the
total variance in actual target data.

6. Forest Mask Estimation on Remote Sensing Data

One of the initial steps in environmental studies based on RS data is the forest mask
estimation. One can extract the required vegetation properties within such a mask, for in-
stance, tree species, age, or canopy height. Another strongly related task to forest mask
estimation is the deforestation problem, as it directly affects forest boundaries. The ap-
proaches to solve these two tasks are often quite similar. Selection of optimal data type and
algorithm should always take into account the specifics of the problem to be solved. When
ML methods are applied for these tasks one usually considers the semantic segmentation
problem. According to the study requirements, different data sources can be used for this
task. Therefore, both low, medium, and high spatial resolutions cover various cases with
their advantages and disadvantages.

6.1. Use of Data of Different Spatial Resolution
6.1.1. Low Spatial Resolution

Low spatial resolution is recommended for regional and national assessments of forest
cover characteristics. One of the popular sources of such data is imagery of the MODIS
apparatus. Time series usage based on MODIS data with spatial resolution of 500 m in
pixels has been successfully implemented in [84] to assess changes in forest cover in Brazil.
For the same task of vegetation changes monitoring from MODIS images, the authors [85]
demonstrated accurate results comparable to maps based on Landsat satellite data on a
regional scale. The approach for rapid forest degradation assessment was proposed in [86].
Another commonly used data source for vegetation monitoring is ALOS PALSAR. In [87],
it was proposed to use PALSAR radiometric data with a spatial resolution of 50 m in
combination with MODIS multi-temporal data to obtain a forest cover map outside China.

6.1.2. Medium Spatial Resolution

Medium spatial resolution data are helpful for detailed forest mask segmentation.
High revisiting time, public availability of data, and spatial resolution of up to 10 m per
pixel make Sentinel-2 imagery a promising data source for many purposes such as forest
mask estimation. In [88], Sentinel-2 imagery were used for assessing forest masks in Europe.
Another source of multispectral data for forest plots is Landsat imagery. The effectiveness of
Landsat and Sentinel imagery for forest degradation was demonstrated in [89]. The use of
Sentinel-2 and Landsat data combination was recommended for tropical forest disturbance
estimation [90]. In [91], the authors created a forest cover map for the territory of Germany
and assessed the developed approach by comparing the generated map with national forest
inventory data.

It was shown that Sentinel-2 data provide additional spectral information enriching
aerial photography data for better predictions. Illegal logging drastically affects the state
of the environment. Therefore, ERS is applied for operational monitoring with the aim at
recognizing and preventing illegal logging. Medium spatial resolution satellite imagery is
a suitable data source for logging detection because of the extensive coverage areas and
rapid revisit time. Studies on illegal logging recognition using both multispectral and radar
data were presented in [92,93]. In [94], the authors proposed a method for forest logging
detection in Russia based on Landsat imagery. Time series are also considered in forest
monitoring tasks on the medium spatial resolution satellite data. In [95], a time series based
on Sentinel-2 imagery was used to assess the damage caused by windstorms in Italy. Forest
degradation was also considered in [88]. For precise annual spatial distributions analysis, a
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time series was implemented in [96], where a robust mapping approach based on Sentinel-2
data was provided.

One can use open access maps and tools for vegetation area estimation and supple-
mentary materials extraction such as cloud masks. Sentinel-2 provides a pixel classification
map based on Level-1C data that includes the following classes: cloud, cloud shadows,
vegetation, soils/deserts, water, snow, etc. The spatial resolution of the scene classification
map is 20 m [97]. Pan-European High-Resolution Layers (HRL) is another useful tool for
environmental studies, in particular, for forest cover estimation [98]. HRL is based on
Sentinel-1 and Sentinel-2 satellite data. Tree cover density, dominant leaf type, and forest-
type products are available for the reference year 2018 in 10 m spatial resolution.

6.1.3. High Spatial Resolution

High spatial resolution data are helpful when a more detailed forest mask is required,
including separation individual trees, small tree groups, and small plots in a forest with
meadows and tracks. In low or medium spatial resolution images, it is impossible to recog-
nize with a high accuracy such details as an individual tree: an individual pixel covers an
area exceeding 100 sq/m. To address this problem, one can use satellite images of high spa-
tial resolution: WorldView, Spot, RapidEye, and Planet (see Table 1). Mapping eucalyptus
trees were performed using high-resolution satellite data in [99], where WorldView-2 im-
agery usage provided a better accuracy than Spot-7 multispectral data. In [100], a method
based on satellite data of very high spatial resolution for allocating individual crowns
was proposed. A map with individual trees is helpful for detailed forest cover analysis.
To assess forest degradation and forest cover change, WorldView data were used in [101].
In [102], an effective methodology was proposed for detecting illegal logging on small plots
for the forests of Peru and Gabon. In [103], an approach using high-resolution data from
RapidEye to monitor land cover changes (and, in particular, forest areas) was put forward.
The deforestation problem was also considered using RapidEye data in [104]. The high
spatial and temporal resolution of Planet images were utilized with LiDAR measurements
to create the model for estimating the top-of-canopy height of tropical forests in Peru [105].
Images obtained from PlanetScope nanosatellite constellation were used to create a high
resolution (1 m) map representing tree cover in African drylands [106], where a possibility
to detect trees outside forests was shown.

6.1.4. Use of Data from Unmanned Aerial Vehicle

The very high spatial resolution provides a significantly better texture feature extrac-
tion than the medium spatial resolution. Therefore, unmanned aerial vehicle (UAV) data
are often used for environmental remote sensing studies. Masking the forest with such data
effectively used in assessing the state and environmental changes. To evaluate the effect
of forest fires, UAV data has been successfully applied in [107]. The approach was based
on using only RGB channels and has been tested for forest ecosystems in the Republic of
Korea. In [108], a method for detecting and counting individual trees in images of different
scales was proposed. To detect individual trees, UAV data have been successfully applied
to mixed conifer forests [109]. Combining the data of various resolutions and spectral
ranges, one can enrich a dataset with valuable features and achieve better prediction qual-
ity. In [110], the authors proposed using UAV data and photogrammetry as part of the
overall research methodology and Sentinel-1 data to assess forest degradation. However,
a severe drawback of UAV data usage for large-scale studies is the time and cost-consuming
of its collecting.

6.2. Computer Vision Algorithms for Forest Mask Estimation. Specifics and Limitations of
the Approach

Vegetation indices based on satellite spectral channels were suggested in many studies.
For example, a methodology for assessing forest degradation based on the LAI index analy-
sis using the MODIS data was given in [111] almost 40 years ago. Since then, vegetation
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indexes have been used in various studies as a simplest computer vision approach. In [112],
the NDVI index (normalized vegetation index) was shown as being applicable to the forest
degradation assessing task for the tropical forests of Malaysia. A significant drawback
of such an approach was the requirement of a threshold choice for various satellite data,
environment conditions, and seasons. Therefore, its reliability cannot be sufficient for
precise analysis.

Classical machine learning methods are aimed at automatization of the forest mapping
process. It requires less labeled data and computing capacity to train a model. Classical
machine learning algorithms were compared in [113] for land cover classes separation,
including forest areas. The authors reported better results for RF and SVM than for kNN.
However, RF and SVM showed close results, with AUC values 0.81 and 0.79. In [114],
the SVM method, in combination with a submerged mangrove recognition index, was
proposed to map mangrove forests with an overall accuracy of 94%. In [115], SVM with an
RBF kernel function outperformed the RF algorithm in the CORINE land cover classification
task. For forest area separation, an F1-score was found to be larger than 0.9.

To solve the problem of forest mapping, one of the most common approaches is based
on deep learning methods, namely convolutional neural networks (CNNs). The forest
mask segmentation involves identification of the pixels belonging to a forest class. It is an
example of a binary semantic segmentation task. For forest species classification (Section 7),
the main difference is that a CNN predicts one of several classes for each image pixel.
The major advantage of using a CNN over classical machine learning methods is that it
takes into account spatial characteristics. When assessing a pixel label, CNN uses spectral
information from the local area of the processed image. This provides a more accurate
estimation of forest masks due to the forest spatial structure that the CNN also learns.
The principal limitation of deep learning methods is the need for a large amount of labeled
data to train the model. In addition, training neural networks usually requires a lot of time
and computing resources.

One of the widespread CNN architectures for forest mask segmentation is the U-Net
architecture. In [116], U-Net with Inception encoder was implemented to obtain a high-
resolution (less than 1 m per pixel) detailed forest mask that also considers individual
trees outside the forest. Due to spatial texture features, the CNN-based approach provides
robust results for various territories using just RGB images. The authors also noticed
that a comparison between U-Net and FPN models gives better outcomes for the U-Net
model (F1-score of 0.929). U-Net was also implemented for very high spatial resolution
in [117]. For the medium spatial resolution of Sentinel-2 data (10 m per pixel), a modified
U-Net with attention mechanism shows high performance [118]. The authors declared the
advantage of U-Net architecture versus ResNet and FCN for experiments with different
locations using RGB bands and RGB plus NIR. An example of application and comparison
of U-Net, DeepLabv3+, FPN, PSPNet, and LinkNet architectures in Brazil’s Eucalyptus
Forest mapping task on medium spatial resolution data (Sentinel-2) was shown in [119].
The best result with IoU of 76.57 using DeepLabv3+ with the Efficient-net-b7 backbone
was achieved.

To deal with limited labeled data and adjust CNN model performance, one can apply
transfer learning techniques. In transfer learning, the pre-trained model is adopted for
new tasks and data specificity. In [120], transfer learning was used for forest mapping
with subsequent fine-tuning of the model over the target forest domain. The proposed ap-
proach enables one to extract features from unlabeled data and using them for progressive
unsupervised CNN training.

7. Forest-Forming Species Classification on Remote Sensing Data

After estimation the tree cover area as a forest mask, the next important step in forest
taxation is determining tree species. This is especially relevant for large territories and
locations, which are challenging to access [17]. In terms of CV, achieving the goal of
tree type classification is also based on the solution of the image semantic segmentation
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task. Although the determination of tree species includes mostly more than two classes,
the approach remains the same. Each image pixel needs to be labeled according to the class
based on the test data for the algorithm training.

The most commonly used metric for estimation of the quality of tree species prediction
from image data is the F1-score. Just as was described earlier in the case of forest mask esti-
mation, the evaluation of the F1-score is carried out for each class individually. The closer
the resulting value is to 1, the more similar are the prediction and reference labels.

7.1. Use of Data of Different Spatial Resolution

The use of the data of different resolutions is determined by the problem that needs
to be solved via the knowledge of the tree species composition across the area of interest.
In general, at different spatial resolutions, estimates of tree species composition may be
required for purposes of mapping large and difficult-to-access areas for biomass and
carbon estimation [121], to access succession trends on disturbed regions for a better
understanding of carbon accumulation patterns [122], to link climate effects with forest
management activities [123], for tree mortality monitoring and capturing of its patterns at
different scales [50,124], and natural and urban ecosystem assessment [125].

7.1.1. Low Spatial Resolution

Similarly to forest mask determination from low spatial resolution data, Terra MODIS
satellite imagery is a common choice of satellite data for forest species classification. An ap-
proach to determining the dominant species using the MODIS sensor data with calculation
of vegetation indices from multi-temporal images was proposed in [126]. Additionally,
the use of low spatial resolution data for solving a similar problem was proposed in [127],
and [128]. However, it was shown that coarse-scale satellite data might not capture many
of the target processes, e.g., degradation development [89], so recent low-resolution data
are often used for obtaining more general, aggregating characteristics. Such information
can be considered as a distribution of a set of unique surface characteristics reflecting
environmental conditions similarly, and mostly represented by land cover type classi-
fication [129], temporal dynamics of the distribution of derivatives such as vegetation
indices [130], or plant functional types [131]. Combination of low spatial resolution data
with more detailed imagery, e.g., MODIS data together with Landsat satellite data, as was
shown in [132], is a current trend.

7.1.2. Medium Spatial Resolution

A more detailed forest species determination can be achieved using the data of medium
spatial resolution, for example, obtained from Landsat and Sentinel missions.

The authors in [133] suggested using Sentinel-2 data to identify tree species in central
Europe. In [134], an approach based on a combination of ML algorithms was also presented
for classification of tree species in German forests. Another approach based on an appli-
cation of linear discriminant analysis to medium spatial resolution images was proposed
in [135]. Sentinel-2 data was also proposed for solving the problem of identification of forest
species based on a series of images for different dates [49]. In [49], the authors succeeded
to increase overall accuracy from 72.9% to 85.7% by using of the multi-temporal analysis.
Radar data can adjust multispectral-based predictions, it was shown for Sentinel-1 and -2
data in the task of forest and plantation mapping and stand ages prediction [136]. For better
understanding of forest properties and patterns, it is possible to use hyperspectral RS data.
It contains a wide continuous range of electromagnetic spectrum, while in multispectral
sensing, discrete wavelength regions are considered. As an example, the Hyperion in-
strument on board the Earth Observing-1 (EO-1) spacecraft with 30 m spatial resolution
provides 220 spectral bands for diverse environmental studies. In [137], Hyperion data
were used to classify mangrove species and to analyze their changes over a period of time.
Forest species distribution was assessed in [138]. Forest properties can be also effectively
discriminated using the new hyperspectral Precursore IperSpettrale della Missione Ap-
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plicativa (PRISMA) sensor, launched in 2019 and providing spatial resolution of 30 m [139].
These hyperspectral data are also accompanied by 5 m panchromatic band. PRISMA data
usage showed high results compared to Sentinel-2 for forest categories classification [140].
Although it is a promising RS data source, there are at present a few studies considering its
usage for vegetation analysis compared to more conventional data such as Sentinel-1 and
-2, Landsat-7, etc. [141].

7.1.3. High Spatial Resolution

High spatial resolution data allow one to operate not only with the spectral description
of the object under study, but also with its textural and spatial characteristics. For example,
the WorldView-2 panchromatic channel with a resolution of about 0.5 m (depending on the
geographic latitude of the survey) can be effectively used to determine the shape of a tree
crown. It in turn increases the likelihood of correct classification of tree species. In addition
to more detailed information from satellites providing high spatial resolution images,
the possibility of using time series, as in the case of data of lower spatial resolution, is also
an advantage of the approach. For example, the authors in [142] successfully implemented
multi-temporal WorldView images for forest hardwoods classification. In [143], tree species
were classified for tropical forests based on 16 high-resolution WorldView-3 bands. One of
the advantages of the WorldView-3 mission is the new SWIR sensing capabilities. Mangrove
species classification study was conducted for WorldView-2 data in [144], where the overall
accuracy 95.89% was achieved. Although WorldView-2 and UAV data provided high
results individually, their combination allows one to extract the most relevant features
for classification.

7.1.4. Use of Data from Unmanned Aerial Vehicle

Hyperspectral and multispectral airborne images are known as a significant source of
data for determining forest inventory characteristics [145–147]. The use of data-rich in both
spectral and spatial features can handle the recognition of multiple tree species even in the
case of complex terrain. Such approach provides an efficient classification on a small data
set in the presence of many classes. Additionally, it is often proposed to use a combination
of these data with LiDAR measurements [148]. An example of multi-copter UAVs with
spatial resolution less than 2 cm was described in [149]. The study area covered 51 ha in
Germany, which was sufficient for the representative analysis.

7.2. Computer Vision Algorithms for Classifying Forest-Forming Species Types. Specifics and
Limitations of the Approach

RF algorithm has demonstrated the ability to classify forest species, for example, when
obtaining a forest map in Wuhan, China [150]. The RF algorithm can be used as part
of a hierarchical tree type classification methodology. In the first stage, it is possible to
provide classification according to vegetative indices such as NDVI and RBI (Ratio Blue
Index), then classify forest areas and tree types using RF. SVM is broadly used for forest
type classification in [146,151]. A combination of LiDAR and hyperspectral data was used
in [152], where SVM outperformed other classical machine learning methods with respect
to the OA metric for species classification. However, in [144], better results were achieved
for RF than for SVM algorithm, with the best OA of 95.89% for species classification.

Both classical machine learning and deep learning algorithms can handle a single
image and a sequence of images covering the same region. For instance, in [153], all
available images were combined to train an RF model and to predict four forest species
with OA of 88.2%. One of the limitations of using a series of multispectral satellite images
is the occurrence of cloud-contaminated images, which can corrupt predictions.

Similarly to solving forest area segmentation tasks, deep learning methods (CNNs,
specifically) can be used for determination of forest species types. The main difference from
the forest segmentation task is that several classes of pixels are predicted, corresponding to
classes of tree species. We provide more details about the adjustable parameters of neural
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networks and their features in Section 4. An essential step in classification of tree species is
determining the crown shape, for which high spatial resolution images are needed. Thus,
when working with high spatial resolution images, a CNN makes it possible to create an
optimal feature space that characterizes various forms of crowns, leading to a more accurate
classification. For instance, in [154], the developed CNN was shown as being capable of
classifying tree species based on biological structures such as foliage shapes and branching
patterns. It is essential when just RGB bands are used, and different forest species may
have the same colors. Three of seven considered classes were classified with OA over 90%.
Due to very high spatial resolution of UAV, approach was capable of individual tree map-
ping. The U-Net architecture is also used to perform a hierarchical classification of dominant
species [155], where deciduous and coniferous forests are classified separately. Next, tree
types were determined within each class (conifer and deciduous). Such a hierarchical ap-
proach helps to address the class imbalance problem by splitting classes into smaller subsets
and simplifying the semantic segmentation problem for a CNN. The hierarchical approach
leads to the result improvement from F1-score of 0.69 to 0.83 compared with “one versus
all” classification. The effectiveness of the U-Net, U-Net++, and DeepLab architectures for
the forest dominant species estimation in the boreal region was also demonstrated in [156].
These three architectures showed comparable results. In [147], U-Net architecture was
modified for forest species classification __combined U-Net with the feature __ extraction
network ResNet. The OA was equal to 87%, which is higher than the initial model results.
Another architecture improvement is described in [157], where a class imbalance problem
was addressed. The approach involves jigsaw resampling strategy to create a balanced
training dataset. New training samples with the size of 128 × 128 pixels are combined
from smaller patches with the of 32 × 32 pixels, where each small patch covers a single tree
species. Proposed approach improved the baseline from 66% to 80% (quality is measured
as the proportion of correctly classified pixels to total pixels). The high-resolution data
provide significant features for a CNN model and facilitate its accurate predictions when
a sufficient amount of data (over 51 ha with spatial resolution less than 2 cm) are avail-
able [149]. Different tile sizes and spatial resolutions were examined. It was shown, that
large tile size is preferable in case of a sufficient amount of training data. The best model
with optimal tile size and spatial resolution achieved an OA of 89% and mean F1-score
of 73%. It is also possible to use approaches that combine data from several sources to
provide better accuracy. RS images can be supplemented with phenological parameters and
forest stand structure data. Although such features can be extracted from forest inventory
data, another approach is to train a model to predict it. For instance, in [158], the canopy
height was estimated using a CNN model. Next, these predictions are used to supply
multispectral data in a forest-type classification task.

8. Forest Resources Estimation on Remote Sensing Data

In this section, we discuss the following forest variables: aboveground biomass,
standing volume, and growing stock volume. The definition of aboveground biomass
(AGB) is the aboveground standing dry mass of live or dead matter from tree or shrub
(woody) life forms [159]. We refer to growing stock volume (GSV) as ”volume of living
and standing stems over a specified land area that includes the stem volumes from stump
height to the stem top and the bark but excludes the branches” [18]. The standing volume is
defined as “the volume of standing trees, living or dead, above stump measured over bark
to the top. It includes all trees regardless of diameter, tops of stems, large branches and dead
trees lying on the ground which can still be used for fibre or fuel” [160]. These variables
have a strong relationship and are considered as quantity measurements of forest and its
derivatives. An assessment of forest resources helps to effectively determine the forest
carbon stock. Therefore, such forest attributes estimation using RS data is an important
area of machine learning methods application.

The problem of aboveground biomass, timber volume, and growing stock estimation
is often solved as a regression problem in the following way. The regression task for RS
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data is a machine learning task, where the model is trained to assign some real value to
each pixel of the resulting digital map of the target territory. A machine learning model
uses a training set to determine the relationship between the feature description of objects
and the target value. Thus, just as in the semantic segmentation problem, the ground truth
image with the reference markup is used. During the training procedure, a model reduces
the difference between the prediction and the reference values according to the chosen
quality metric.

8.1. Use of Data of Different Spatial Resolution
8.1.1. Low Spatial Resolution

To obtain timber volume estimation on a large scale, it is often proposed to use MODIS
sensor data. Approaches for determination of forest biomass are presented in [161–163].
The data effectiveness was verified for regional changes monitoring and supplemented
forest inventory data for ecological assessment. Despite the possibility of a large spatial
coverage supported by this approach, for some practical problems, more detailed maps are
required. Therefore, one can consider higher spatial resolution data.

8.1.2. Medium Spatial Resolution

When it is necessary to estimate timber volume over a large area with greater details,
a common choice of RS data is medium spatial resolution. For example, this type of data
can be received from Sentinel and Landsat satellites. The potential of using Sentinel-2 data
to determine growing stock volume for the territory of Italy was demonstrated in [164],
where the prediction quality based on Sentinel-2 data was shown to be better than that
for Landsat images in 37.5% of cases and for RapidEye images in 62.5% of cases, even
though the resolution of the RapidEye satellite is significantly higher than that of Sentinel-2.
In [165], Sentinel-2 data was shown as being capable of determining growing stock volume
in Russia. Additionally, Sentinel images were used in [166] to map the timber volume in
the coniferous forests of Norway. The relevance of using these data was also confirmed in
other works on determining the biomass and stock volume in various territories [167,168].

Another useful instrument for environmental analysis that deserves additional consid-
eration is GEDI. It is the first spaceborne lidar that was developed exactly for environmental
monitoring purpose. It has a medium spatial of 25 m. One of its goal is to provide a
better understanding of the aboveground carbon balance of the tropical and temperate
forests [169]. It can accompany other RS data for enhanced biomass mapping and help to
estimate aboveground carbon change.

8.1.3. High Spatial Resolution

Commonly, high spatial resolution data is used when it is required to estimate timber
volume down to a single tree. In the actual studies on this topic, it is recommended to
use WorldView satellite images with a resolution of about 2 m for a spectral range of
channels from 396 nm to 1043 nm and sub-meter resolution for the panchromatic channel.
An example of using WorldView-2 stereo images was demonstrated in [170], where high-
resolution data and LiDAR measurements were compared in the problem of assessing the
timber stock for the forest area in Germany. In [171], panchromatic WorldView-2 stereo-
imagery is considered together with a digital elevation model derived from airborne laser
scanning. Using WorldView imagery for different geographic regions was also confirmed
by a study of Turkish forests in [172]. Forest standing biomass was estimated and used to
assess forest productivity in [173] based on WorldView-2 data. The authors evaluated the
importance of different bands and vegetation indices and highlighted the Red-edge band
significance. Spot-5 is another source of high-resolution data for aboveground biomass
estimation [174].
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8.1.4. Use of Data from Unmanned Aerial Vehicle

UAV data are selected for land cover surveys in cases where very detailed timber
volume estimation is required. The use of UAVs makes it possible to analyze the char-
acteristics of an individual tree by constructing a more informative feature description
of the vegetation cover with a resolution of up to several centimeters per pixel. The ap-
proach to determining the timber volume based on UAV images and photogrammetry
was tested with success in [175]. One well-established approach to forest growing stock
volume estimation is based on using satellite imagery in combination with UAV data [176].
This approach’s advantage is combining the spectral features obtained from the satellite
with highly detailed textural features. In [177], an approach to replace ground-based
measurements for growing stock volume estimation with UAV data was used with good
results. At the same time, ground-based measurement data were used in this research
only to assess the quality of algorithm predictions. In [178], data with a spatial resolution
of less than 10 cm per pixel were used to determine the stand volume. In [179], images
with the same spatial resolution were used to estimate forest biomass. It was presented
the effective use of UAV data for tree stem assessment in [180–182]. Not only images can
be used for forest analysis. Point cloud obtained from UAV can also be considered in
voxel-based representation for further computer vision algorithms application, as shown
in [180]. In [181], dense points cloud derived from multicopter is used to extract significant
characteristics for stem volume prediction using machine learning algorithms. For instance,
they estimated the height of the forested area by subtracting the digital terrain model (DTM)
from the digital surface model (DSM). DTM was obtained from terrestrial laser scanning,
while an unmanned aerial system was utilized to get DSM.

Although UAV provides very-high resolution data, one of the significant limitations of
UAV-based approaches compared to satellite data is the relative laboriousness of obtaining
such data on extensive areas.

8.2. Computer Vision Algorithms for the Task of Forest Resources Estimation. Specifics and
Limitations of the Approach

In many studies, it was demonstrated the effectiveness of the linear regression algo-
rithm in the problem of timber stock evaluation. The advantage of this approach is the ease
of implementation and use. In addition, an important characteristic is the interpretability of
the results. The work [183] proposed to use linear regression to estimate the diameter of tree
crowns from UAV data. An approach based on multiple linear regression was presented
in [184]. The described method makes it possible to determine the stock of plantations on
pine plots using Sentinel-2 images and aerial photography data. Different RS data sources
and spatial resolution make it important to preserve the same data georeference. Ground
Control Points (GCPs) were used to calculate UAV’s camera orientation and set a correct
georeferencing. Prediction of growing stock using a linear regression algorithm based on
Landsat-7 images is demonstrated in [185]. Both vegetation indices and linear regression
were implemented in [174].

It is also proposed to use the Random forest regression (RFR) algorithm for timber
stock estimation. The approach based on ultra-high spatial resolution data is described
in [181], where various RS measurements were considered. The methodology includes a
stratified random sampling of training examples and algorithm parameter optimization.
The parameters used in the RFR algorithm are described in more detail in Section 4.
Besides the problem of determining the stock of wood, the problem of estimating the stock
of carbon can be also directly solved using RS data and RFR algorithm. This approach was
tested for mangrove forests in [186]. In this research, various forest cover characteristics
were used to assess the stock: tree species, height, and textural features. Vegetation indices
based on UAV spectral data were also used to form the feature space. The most significant
features were selected based on the Boruta algorithm [187]. It is also important for UAV-
derived multispectral data to conduct a reflectance calibration of cameras to support
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accurate temporal analyses because digital numbers are affected by the atmospheric and
illumination conditions and cannot be considered as quantitative values [188].

SVR is another relevant approach for stem volume estimation [181]. An approach
for biomass estimation using the SVR algorithm with a radial basis function (RBF) kernel
was proposed in [189]. As it was shown earlier in Section 4, it is important to find the
optimal parameters of the algorithm, which can have a significant effect on the final
accuracy. In [189], the kernel parameters were selected using the grid search method.
The feature space was formed based on various RS data sources: Sentinel-1 radar data,
Sentinel-2 multispectral images with 10 vegetation indices obtained on their basis, and UAV
photogrammetry data. The use of the SVR algorithm for biomass estimation was also
proposed and shown to be effective in other studies [190,191].

Above-ground biomass estimation with the use of CNNs was examined in [192].
The prediction results, as measured by R2, were found to be equal to 0.943. The above-
ground carbon density of forests can be estimated directly using RS data and a CNN model,
as was demonstrated in [193], where a CNN model was shown to perform better than clas-
sical machine learning algorithms. In [194], a CNN-based approach yields RMSE of 20.3%
for the volume of growing stock estimation using airborne laser scanning. Although CNN
is highly promising for such studies, no strong difference between the k-NN and CNN
performance was observed. It was suggested that additional data should be utilized to
reveal the full potential of CNN models.

For more accurate growing stock volume estimation on the limited dataset size, a deep
neural network with transfer learning was implemented in [195]; this approach allowed
the authors to minimize the amount of ground-based measurements over different areas
in Finland.

9. Discussion

Based on the current trends in development of satellite imagery and data processing
algorithms, we expect the following trends in this domain. First of all, there is more
availability of high quality reference data for artificial intelligence algorithms and build-
in services for data processing that are provided by the space companies. Advanced
systems and cloud computing platforms will be easy to use even for inexperienced users.
Satellite constellations will have better revisit time and coverage, allowing near real time
observation of ground cover. Additionally, high resolution multispectral imagery will be
wider applicable, giving important information about investigated objects including forests.
Developments of special augmentation techniques and a few short learning algorithms will
allow us to detect and make more precise quantitative assessment of forest variables and
forest disturbing events. In this section, we provide more details about current limitations
and future works.

9.1. Forest Carbon Disturbing Events

Improved forest management in terms of carbon offsetting is based on carbon seques-
tration from the atmosphere. Precisely, it means the storage on a long-time basis of more
carbon compared to the regional baseline in the ecosystem considering land-use practices,
maintaining existing forests, and increasing total forest coverage, while decreasing mor-
tality [196,197]. On both large scales and in the case of small forest landowners and land
rent, this means enhancing carbon pools, thereby reducing emissions caused by different
processes of GHG into the atmosphere. At the same time, the above-ground biomass of
living trees is considered the most dynamic carbon pool affected by the plethora of factors
of distinct nature [198]. Such forest carbon disturbing factors include the development
of areas inundated with water and changes related to them and the soil hydrologic cycle
in general [199], the occurrence of deadwood due to the influence of biotic and abiotic
events [200], wildfires and harvesting [53,201]. Detection, attribution, and monitoring of
such occurrences can be covered using RS techniques. In this way, CV approaches should
also be considered for fully and semi-automated solutions development, while a wide range
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of stakeholders can use such solutions to plan and implement climate change mitigation
strategies based on nature preservation actions.

Studying flooded areas in terms of CV is accompanied by multi-challenging tasks.
Among the major ones, we mention the following tasks: detection of flooded territories
themselves and changes catching [202]; distinction between different types and classes of
flooded lands [203]; estimation of biomass and potential to CO2 sequestration [204]; fusion
of data of different domains to catch emission patterns and enhance accounting [205,206].
Such research is based on the solution of segmentation and classification tasks. A broad
range of tools for these tasks involves conventional unsupervised and supervised ML algo-
rithms such as RF, SVM, XGBoost, random walker segmentation, different types of neural
networks (mostly deep CNNs) variations of edge detection, and others. In [207], the per-
formance of CNN, AlexNet was compared with classic RF to distinct and map different
wetland types, including bog, fen, marsh, swamp, and also shallow water, and deep water
along with urban areas and upland. In this study, RapidEye multispectral imagery and a
small number of input features were used. CNN was shown to overperform RF, catching
both the dominant wetland classes and detailed spatial distribution of all studied land
cover classes, which showed an overall accuracy and Kappa coefficient of 94.82% and 0.93,
respectively. In [208], RF, as declared a computationally efficient and easily adjustable algo-
rithm, was applied to multi-year summer composites of Sentinel-1 and Sentinel-2 images.
Wetland spatial distribution was mapped, considering wetland classes across Canada,
covering an area of approximately one billion hectares. The model accuracy varied from
74% to 84% in different territories.

Similarly to wetland research, studying and monitoring wildfire events are comprehen-
sive and consist of the following main aspects: early fire and smoke detection; estimation of
fire severity and spread; fire behavior analysis and prediction; and detection and estimation
of post-fire territories. Forest fires are extremely hazardous to both natural ecosystems
and humans, destroying habitat areas, negatively affecting agriculture, and accompa-
nying significant emissions of retained carbon. Thus, related monitoring and detection
technologies are rapidly developing, so, for instance, several satellites with low spatial
resolution but short revisiting time already have fire detection sensors onboard [209,210].
The combination of UAV-based RS with CV techniques, based explicitly on CNN, includ-
ing previously discussed architectures such as U-Net, DeepLab, and other deep learning
architectures such as, e.g., GAN and LSTM, is an effective tool for wildfire monitoring. It
is extremely useful for firefighting actions and capable of catching early fires in reduced
time and more safely compared with ground inspections [210]. Such solutions can provide
real-time monitoring, but require powerful hardware. An original Burnt-Net inspired by
U-Net architecture was used for the development of an end-to-end solution for post-fire
tracking and management. It was utilized to map burned areas on Sentinel-2 images across
different countries, including Cyprus, Turkey, Greece, France, Portugal, and Spain, showing
high robustness and mean accuracy of more than 97% by overall accuracy [211]. In [212],
Maximum Likelihood, SVMs classifiers, and two multi-index methods were compared for
mapping burnt area. Burn severity was also assessed using SVMs and one hidden-layer NN
on Sentinel 1,2 images on the study location in Portugal. According to the results obtained,
SVMs showed the highest accuracy for both burnt area mapping and burn severity levels
estimation, with achieved an overall accuracy of 94.8% and 77.9%, respectively.

Deadwood represents essential carbon stock while simultaneously a significant con-
tributor to carbon dioxide emission and one of the major forest biodiversity loci [213].
The development of deadwood can be a consequence of the natural course of things or
triggered by biotic and abiotic factors such as pest or pathogen outbreaks, changes in
hydrologic regime due to climatic shifts, and windstorms [214,215]. Numerous studies
are dedicated to find a difference between target object (deadwood occurred due to a
specific reason) and other nontarget objects, or, for example, between damaged trees at
different stages of factor influence, existing together and displaying similar spectral sig-
natures [216,217]. For instance, in [218], it is recommended to apply a Neural Net with
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standard backpropagation and SVM among other supervised approaches for the dead-
wood detection in the case of Chilean Central-Patagonian Forests using high-resolution
multi-spectral data (RGB+NIR) with the best algorithm performance of 98%. In [219],
an approach based on CNNs fusion of Lidar and multispectral data was applied for 3D
tree type classification along with dead trees, showing an overall accuracy of more than
90% for all classes. At the same time, it was noted that the use of lidar-based data slightly
increased the overall accuracy. The proposed comprehensive solution facilitates fast model
convergence, as was pointed out even for datasets with a limited number of samples due
to the applied transfer learning technique.

9.2. Data and Labeling Limitations

Training an accurate and robust computer vision model requires representative data
that cover many possible scenes and are obtained under different illumination conditions.
Training models with many parameters on non-representative dataset with low number
of samples could lead to model overfitting. The use of models with small parameters
that could be trained on a small member of parameters does not allow one to obtain
acceptable accuracy and generalization. For a recent comprehensive analysis of overfitting
and underfitting reasons in machine learning applications for different domains, see [220].

Computer vision models for processing RS data are not an exception. A large amount
of well-annotated spatial data is required to train algorithms [221]. Moreover, there are
many additional issues that appear due to the complexity of the data collection procedure.
It is difficult and time-consuming to collect and directly label the amount of representa-
tive RS data. The principal impediments are weather conditions (clouds) and satellite
(sensor) revisit time [222,223]. Thus, expanding the dataset with additional useful and
reasonable data is vital. One way to solve this problem is to generate image samples from
the obtained data. The most common approach for generating new image samples is aug-
mentation. Several typical augmentation approaches are widely used in different domains,
starting from classical augmentations, which include geometrical, and color augmentations,
and finishing with application of ML techniques for augmentation [224]. Nevertheless,
new approaches are in high demand and still appearing [225]. However, there are many
restrictions in applying augmentation techniques for RS data because images may have a
complex structure [226]. For example, the relative locations of objects should be meaningful
after the creation of the new image sample. That is why it is important to carefully tune
the parameters of augmentation when applying even standard augmentations carefully.
However, there are some new advanced augmentation approaches that take into account
the specifics of RS domain. For example, in [227], an approach was put forward capable of
processing individual objects in the obtained image (RS data) and creating a new image
sample that includes a meaningful composition of the target objects. A different augmen-
tation approach proposed in [228] uses the multispectral specifics of RS data. The main
idea of the proposed approach is the generation of a new image sample by mixing spectral
bands from the satellite images collected for the same area but at different times.

The other limitation in the use of RS data in computer vision models is the involved
labeling procedure. Only an expert can create a precise manual markup with vegetation
characteristics based on these images (distinguish forest species, age, etc.). Ground-based
measurements also have particular limitations. For instance, forest inventory data can be
out of date. It also has some specificity in its organization. Information is often available
for individual stands that are not necessarily homogeneous. Therefore, the dominant
forest species (and other characteristics) are estimated in various tasks. It leads to some
mismatches in training data. As a result, CV methods in environmental studies aim to
work with invalid markup in particular cases. It is essential to develop a methodology
for automatic improvement of RS data labeling. One popular approach is the weakly
supervised learning, which is considered a fundamental problem in machine learning [229].
For land cover mapping and, in particular, forest areas, weakly supervised segmentation
was suggested in [230]. In [231], the problem of weakly supervised pixel-level mapping
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to predict tree species was addressed. Weakly supervised classification for forest species
estimation was proposed in [156] extract more homogeneous areas within individual stands.

To address spatial and temporal limitations in concrete environmental and forestry
tasks, a combination of Sentinel-2 and Sentinel-3 data can be used. In [232], it was applied
for evapotranspiration estimation. Although, there is a high importance of thermal fea-
tures obtained from Sentinel-3, their spatial resolution requires adjustment. Sharpened
high-resolution thermal data usage was suggested as a promising approach for environ-
mental studies.

9.3. Visual Transformers as State-of-the-Art CV Algorithms Relevant for Forest Taxation Problem

Visual transformer-based approaches, which have appeared relatively recently, have
also been used for dealing with problems of classification on environmental RS data [233,234]
and change detection [235]. These approaches can also be applied to forest characteristics
assessment. Transformer approaches are currently the most advanced models. These
approaches use multi-purpose attention mechanisms as the main building block for ob-
taining long-term contextual information and links between pixels in images rather than
standard layers. In the first step, the analyzed images are divided into groups and then
transformed into a sequence by constructing a new feature space. The resulting sequence is
then fed to several attention layers to form the final new presentation. The first sequence
of tokens is used in the classification layer at the classification stage. The detailed descrip-
tion of self-attention mechanisms and pretraining procedures in visual transformers are
described in [236]. One of the essential advantages of transformers is the possibility of
compressing the network and removing half of the layers while remaining a sufficiently ac-
curate classification [233]. Experimental results from various environmental RS data image
datasets [233–235] demonstrate the potency of transformers compared to other methods.

10. Conclusions

The present survey discusses the key aspects of forestry analysis based on RS data
and computer vision techniques. The study was focused on the particular forestry prob-
lems such as estimation of forested areas, tree species classification, and forest resources
evaluation. These tasks are highly valuable for meaningful environmental analysis in-
volving carbon stock monitoring and global climate changes. In these tasks, we aimed
to emphasize both algorithms and data importance. Although various satellite missions
and UAV-based approaches support effective solutions, the main current limitation is a
lack of high-quality reference data for artificial intelligence algorithms. Additionally, it
has been shown that data source and algorithm choice strongly depend on the objective
of the study, as temporal/spatial resolution and cost may vary drastically. For large-scale
analysis, satellite-based approaches are more preferable because of broader coverage, while
for more detailed measurements, UAV-based approaches allow one to achieve the required
results. Various RS data combination and advanced computer vision techniques such
as few-shot learning, transfer learning, weakly supervised learning, visual transformers,
augmentations techniques show promising perspectives for further environmental studies.
At the same time, physical nature of the observed environmental objects should be taken
into account both during the data acquisition, processing for computer vision algorithms,
or vegetation indices implementation.
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Abbreviations
The following abbreviations are used in this manuscript:

ARVI Atmospherically Resistant Vegetation Index
BAI Burned Area Index
CNN Convolutional neural network
CV Computer vision
DL Deep learning
EVI Enhanced Vegetation Index
FPN Functional pyramid network
GHG Greenhouse gas
kNN k Nearest Neighbor
NBR Normalised Burn Ratio
NBRT Normalised Burn Ratio Thermal
NDMI Normalized Difference Moisture Index
NDVI Normalised Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near-infrared
OA Overall accuracy
RF Random forest
RS Remote sensing
LD Linear dichroism
LSWI Land Surface Water Index
ML Machine learning
SAVI Soil Adjusted Vegetation Index
SVM Support vector machines
SWIR Short-wave infrared reflectance
VCI Vegetation Condition Index
UAV Unmanned aerial vehicle
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