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Abstract: Ocean mesoscale eddies have an important role in the ocean and affect the underwa‑
ter sound speed field (SSF). Many physical models have been proposed for mesoscale eddy three‑
dimensional (3D) structure analysis and construction. Here, we propose a model for the reduced‑
order representation of 3D SSF with ocean mesoscale eddies. Particularly, the radial basis functions
(RBFs), which are guided by the universal physics model of mesoscale eddy in horizontal dimen‑
sions, are employed. RBF and empirical orthogonal function (EOF) are used as basis functions for
3D representation. The proposed method is an approximation of the classical Gaussian eddy model
in the first‑order form. Simulation results confirm the reduced‑order representation performance
and effectiveness in reconstruction using 136 days of HYCOM data in the northwestward of the
South China Sea with a warm eddy and a cold eddy. The proposed RBF + EOF method roughly
halves the number of coefficients for mesoscale eddy representation, compared with classical meth‑
ods. The reduced‑order representation method can be utilized in ocean acoustic tomography and
acoustic remote sensing in a mesoscale area.

Keywords: ocean acoustic tomography; dimension reduction; gaussian radial basis function; empir‑
ical orthogonal function; South China Sea

1. Introduction
Improving underwater sensing [1], localization [2,3], and communication [4] perfor‑

mance relies on accurate, fine‑grained, and agile sound speed awareness. Towards this
goal, acoustical oceanography research has put a lot of effort into acquiring the sound
speed fields via acousticmeasurements (e.g., ocean acoustic tomography (OAT)) [5–7]. SSF
inversion by OAT belongs to an inverse problem which is always an under‑determined
problem in practice [5,8]. In order to reduce the degree of under‑determination, the effec‑
tive reduced‑order representation of SSF and basis functions learning are considered the
first step [9]. Historically, the development of SSF reduced‑order representation (or basis
functions) hasmainly focused on capturing general spatial–temporal variations (e.g., EOFs
and Fourier basis functions) [8], while paying little attention to integrating the physics
knowledge of crucial ocean phenomena, particularly, the ocean mesoscale eddy consid‑
ered in this paper.

Ocean mesoscale eddies profoundly affect the heat and material transport across the
global oceans [10], thus resulting in varying sound speeds. To characterize the eddies’
physical properties, abundant observation data have been collected using various sensor
technologies (e.g., satellites, moorings, gliders, and Argo floats), which facilitate extensive
studies in physical oceanography [11,12]. Some studies in the field of ocean acoustics have

Remote Sens. 2022, 14, 5860. https://doi.org/10.3390/rs14225860 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225860
https://doi.org/10.3390/rs14225860
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5840-3238
https://doi.org/10.3390/rs14225860
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225860?type=check_update&version=2


Remote Sens. 2022, 14, 5860 2 of 20

focused on developing analytical models of the singlemesoscale eddy (3DGaussian shape,
etc.) and acoustic propagation theory through mesoscale eddies [13–17]. The parametric
model (such as the Gaussian eddymodel [14]) of 3D SSF of themesoscale eddy is powerful
and simple and has been widely used in acoustic field calculation and model‑based inver‑
sion. However, it is designed for single mesoscale eddy representation and is not suitable
for complex 3D SSFwith various ocean phenomena, not only for the singlemesoscale eddy.
The SSF outside the mesoscale eddy edge is not considered in the above model. The repre‑
sentation error of SSF determined by the parametric model has not been quantitatively cal‑
culated using reanalysis data. These models are not appropriate for the classical multi‑site
tomography scheme [18]. Although the statistical characteristics of mesoscale eddies [12]
and the physical attributes of a specific mesoscale eddy [11] are well documented in the
literature, no work seamlessly incorporates this knowledge into the SSF representation al‑
gorithm, which motivates the development of this paper.

The use of specific ocean phenomenon knowledge in SSF representation has been pre‑
liminarily introduced in some recent works. The thermal front forms homogeneous water
near the coast and stratified water off the shore, resulting in a range‑dependent temper‑
ature field. Feature models (FMs) are used as parameterization schemes for the 2D tem‑
perature field of the vertical slices of the temperature field using the range‑dependent hy‑
perbolic tangent function or exponential function. This method has been used in OAT for
ocean front reconstruction and is named feature‑oriented acoustic tomography (FOAT) [19].
Although the physical structure of thermal fronts has been considered, the key is FMs‑
based EOFs, while no horizontal (range‑dependent) structure is used in SSF or temperature
field inversion. Feature‑oriented ocean acoustic tomography makes use of the structure of
SSF with specific ocean phenomena such as front and eddy. The perturbation in the ocean
sound field can be simplified related to the fluctuation of SSF model parameters, which is
helpful in identifying the model parameters to some degree [20]. This method is suitable
for the case where the SSF is dominated by known oceanographic processes. The acoustic
signal characteristics are associated with the expected oceanographic main characteristics
such as location, intensity, scale, etc. Therefore, the physical‑guided 3D SSF representation
with mesoscale eddies method is proposed for mesoscale eddy FOAT.

In contrast to 2D front‑FMs, mesoscale eddies have a typical 3D structure (two‑
directional range‑dependent and depth‑dependent). Mesoscale eddies have a universal
structure with an associated pressure anomaly described by Gaussian range‑dependent
and stretched sinusoidal depth‑dependent functions [12]. Inspired by this physical univer‑
sal structure, we propose a physics‑guided FMs representation method. Gaussian‑shaped
radial basis function networks (RBF) [21,22] are used in horizontal dimensions’ representa‑
tion. Due to the strong non‑linear properties of mesoscale eddies, RBF provides non‑linear
behaviors to attempt to solve the turbulent behavior which is suitable for eddies represen‑
tation, while the coefficients of RBF inversion are solved in a linear sense. The links be‑
tween RBF and 3D SSF with ocean mesoscale eddies mainly manifest in two aspects. One
is that Gaussian‑shaped RBF is consistent with the shape of mesoscale eddy in the hori‑
zontal dimension. Another is that RBF can be used as general and effective basis functions
for SSF interpolation with or without mesoscale eddies. The effectiveness of RBFs as basis
functions have been demonstrated in ad‑hoc applications [23] such as vorticity representa‑
tion [24], current inversion in OAT [25], and well‑logging data inversion [26].

In this paper, a 3D SSF reduced‑order representation scheme is proposed. EOFs are
applied as basis functions in the vertical directionwhile semi‑data‑driven and semi‑model‑
driven RBFs are used in the horizontal directions. The radiuses of RBF are trained from
historical data, while the Gaussian‑shaped RBF is guided following the mesoscale eddies
physical model. To evaluate the performance of the proposed method, HYCOM SSF data
with identified mesoscale eddies will be used for simulation. The parameters of RBFs will
be discussed in detail. The performance of the proposed method will be compared to the
classic spectrum–analytical Fourier method [8] and the newly proposed fully data‑driven
tensor method [9].
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The structure of this paper is as follows: Section 2 introduces the data andmethods, in‑
cluding HYCOM data, sound speed calculation equation, various 3D basis function repre‑
sentation methods, and the RBF‑based method. Section 3 describes the results and discus‑
sion, including the performance of the proposed representation method and comparison
with benchmark methods, and the selection of RBF parameters. Section 4 is the summary
and future work.

2. Data and Methods
In this section, we first introduce the 3D SSF data that contains one or multiple

mesoscale eddies. Then, the state‑of‑the‑art general‑purpose reduced‑order representation
methods are briefly reviewed, which, however, have not taken the physical properties of
mesoscale eddies into account. Finally, by analyzing the physical model of a mesoscale
eddy, we propose a physics‑guided representation method tailored to 3D SSF data with
mesoscale eddies.

2.1. 3D SSF Data and Mesoscale Eddies
3D SSF data are calculated using the corresponding conductivity, temperature, and

depth (CTD) data from a data‑assimilative hybrid coordinate ocean model (HYCOM), fol‑
lowing the Mackenzie sound speed formula [27]:

c = 1448.96 + 4.591T − 5.304 × 10−2T2 + 2.374 × 10−4T3

+1.340(S − 35) + 1.630 × 10−2D + 1.675 × 10−7D2

−1.025 × 10−2T(S − 35)− 7.139 × 10−13TD3
, (1)

where c is the sound speed (in m/s), T is the temperature (in Celsius), D is the depth (in
meters), and S is the salinity (in PSU). Ranges of validity encompass: temperature −2 ◦C
to 30 ◦C, salinity 30 PSU to 40 PSU, and depth 0 to 8000 m.

The area considered is located in the north of the South China Sea, as shown in the
topographic map in Figure 1. The horizontal resolution of the data is 1/12◦, i.e., 7.6 km.
In longitude and latitude, 27 points are chosen, covering an area of 200 km × 200 km.
The HYCOM data have 37 layers in vertical depth, ranging from 0 m to 2500 m, with an
unequal grid. Here, depth grids are interpolated to have a resolution of 10m, thus resulting
in 251 points. Consequently, the 3D SSF has a grid size of 27× 27× 251. The data are from
6 November 2011 to 20 March 2012, across 136 days.

An aerial view of the whole of the South China Sea is shown in Figure 1a. The north‑
west of the South China Sea is enlarged in Figure 1b. The area in Figure 1c is the SSF
reconstruction area. The sea surface height anomaly (SSHA) data during this period were
measured by satellites, as shown in Figure 2, which has the same area in Figure 1b. During
this period, a warm eddy (anticyclone) and a cold eddy (cyclone) are moving across the
region, as seen in Figure 2. The 0.9 m contour line reflects the mesoscale warm eddy. The
warm eddy center is identified by the maximum of the SSHA contour. It can be seen from
Figure 2 that the mesoscale warm eddy moves southward into the area in the 25th day,
30 November 2011, center dotted by red circle in Figure 1c. Then it moved westward from
the 40th day, 15 December 2011, along the latitude of about 21.2◦N. It almost locates at the
center of the area in the 60th day, 4 January 2012. It moves out of the area in the 78th day,
22 January 2012, center dotted by yellow circle in Figure 1c. The locations of the eddy cen‑
ter are shown in Figure 1c and the trajectory of thewarm eddy center is plotted by the black
line. The cold eddy enters into the area in the 68th day, 12 January 2012, center dotted by
green circle in Figure 1c. The cold eddymoves out of the area in the 108th day, 21 February
2012, center dotted by blue circle in Figure 1c.



Remote Sens. 2022, 14, 5860 4 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

RBFs will be discussed in detail. The performance of the proposed method will be com-

pared to the classic spectrum–analytical Fourier method [8] and the newly proposed fully 

data-driven tensor method [9]. 

The structure of this paper is as follows: Section 2 introduces the data and methods, 

including HYCOM data, sound speed calculation equation, various 3D basis function rep-

resentation methods, and the RBF-based method. Section 3 describes the results and dis-

cussion, including the performance of the proposed representation method and compari-

son with benchmark methods, and the selection of RBF parameters. Section 4 is the sum-

mary and future work. 

2. Data and Methods 

In this section, we first introduce the 3D SSF data that contains one or multiple 

mesoscale eddies. Then, the state-of-the-art general-purpose reduced-order representa-

tion methods are briefly reviewed, which, however, have not taken the physical properties 

of mesoscale eddies into account. Finally, by analyzing the physical model of a mesoscale 

eddy, we propose a physics-guided representation method tailored to 3D SSF data with 

mesoscale eddies. 

2.1. 3D SSF Data and Mesoscale Eddies 

3D SSF data are calculated using the corresponding conductivity, temperature, and 

depth (CTD) data from a data-assimilative hybrid coordinate ocean model (HYCOM), fol-

lowing the Mackenzie sound speed formula [27]: 

2 2 4 3

2 7 2

2 13 3

1448.96 4.591 5.304 10 2.374 10

     1.340( 35) 1.630 10 1.675 10

     1.025 10 ( 35) 7.139 10

c T T T

S D D

T S TD

− −

− −

− −

= + −  + 

+ − +  + 

−  − − 

, (1) 

where c  is the sound speed (in m/s), T  is the temperature (in Celsius), D  is the depth 

(in meters), and S is the salinity (in PSU). Ranges of validity encompass: temperature −2 

°C to 30 °C, salinity 30 PSU to 40 PSU, and depth 0 to 8000 m. 

The area considered is located in the north of the South China Sea, as shown in the 

topographic map in Figure 1. The horizontal resolution of the data is 1/12°, i.e., 7.6 km. In 

longitude and latitude, 27 points are chosen, covering an area of 200 km   200 km. The 

HYCOM data have 37 layers in vertical depth, ranging from 0 m to 2500 m, with an une-

qual grid. Here, depth grids are interpolated to have a resolution of 10 m, thus resulting 

in 251 points. Consequently, the 3D SSF has a grid size of 27 27 251  . The data are from 

6 November 2011 to 20 March 2012, across 136 days. 

 

(a) (b) (c) 

Figure 1. The location of the reconstruction area and the trajectory of the warm eddy center. (a) The 

whole of the South China Sea. (b) Northwest of the South China Sea. (c) The SSF reconstruction area 
Figure 1. The location of the reconstruction area and the trajectory of the warm eddy center. (a) The
whole of the South China Sea. (b) Northwest of the South China Sea. (c) The SSF reconstruction
area and the trajectory of the warm eddy center by black line and the cold eddy by dashed black
line. Red circle indicates the location and day that warm mesoscale eddy enters into the area and
yellow circle for leaving out the area. Green circle indicates the location and day that cold mesoscale
eddy enters into the area and yellow circle for leaving the area. The date marked is in the format
Month/Day/Year.
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Figure 2. Sea surface height anomaly on different days (the white box is the selected reconstruction
area, and the black line is 0.9 m contour for mesoscale warm eddy).

To clearly show the 3D SSF variations by the warm mesoscale eddy, the 40th, 60th,
and 80th day 3D SSFs are demonstrated in Figure 3, with the 3D structure of the warm
mesoscale eddy being highlighted by black dashed lines. From the highlighted areas, it
can be observed that the inducing positive sound speed anomalies lie in the depth of 100m
to 700 m. The cold eddy is also shown in the corner of Figure 3c, side by side with the
warm eddy.
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Figure 3. 3D SSF data for different days and associatedmesoscale eddy 3D structure (in dashed black
line). (a–c) are 3D SSF in the 40th day, 60th day and 80th day, respectively.

We take a closer look at one section in Figure 3b. Taking one section from the 3D SSF
on the 60th day at 119.44◦E, the 2D SSF can be seen as a cross section of the mesoscale eddy
in Figure 4a. The isosonic line is downward, indicating a warm eddy in the area since the
warm eddy leads to positive sound speed anomalies compared with the nominal. It can
be seen that there are significant differences among the SSPs, mainly below the mixing
layer and above 700 m. The eddy center has the highest sound speed, and the sound speed
gradually decreases towards the edge of the eddy, as seen in Figure 4b.
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Figure 4. (a) 2D SSF cross section of the mesoscale eddy. (b) Three SSPs are selected in the edge,
middle, and center of the mesoscale eddy, respectively, which are corresponding to dashed lines
in (a).

The methods for reduced‑order representation include vertical representation and
horizontal representation. EOF is most widely used as a vertical basis function.
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2.2. Reduced‑Order Representation Methods Review

Here, the 3D SSF {c(x, y, z)}M,N,I
x=1,y=1,z=1 refers to the sound speed distribution in a 3D

space at a single time. x, y, z represent longitude, latitude, and depth, respectively. M, N, I
are the number of grids in longitude, latitude, and depth, respectively.

The 3D SSF contains themean part (range‑independent) and perturbation part (range‑
dependent). The mean SSP is the zeroth order basis function while perturbation can be
expressed as a sum of modal basis functions. Horizontal stratification characteristics in
the deep ocean are well known, due to the significant differences between the horizontal
and vertical scales of the ocean. Therefore, the 3D representation in the vertical dimension
(depth) and horizontal dimensions (longitude and latitude) are separately treated, taking
the following form:

c(x, y, z) = c(z) +
Nxy

∑
j=1

Nz

∑
i=1

wij[F(x, y)]j[E(z)]i, (2)

where c(z) is the mean SSP, [F(x, y)]j is the j‑th horizontal basis function and [E(z)]i is the
i‑th vertical basis function. Nxy and Nz denote the number of basis functions for horizontal
and vertical axes, respectively.

Based on the above numerical analysis, we further express the de‑mean 3D SSF in the
form of tensor, matrix, and vector. The tensor form of 3D SSF is expressed as χ ∈ RM×N×I .
Stacking the longitude–depth slice (mode–latitude unfolding), the tensor will be unfolded
into a matrix as X ∈ RI×MN . Expanding the matrix by depth (column vectorization), the
matrix will be vectored as x ∈ RIMN×1. That is, a 3D SSF can be expressed as χ, X, x in the
form of tensor, matrix, and vector, respectively. The relationship between them is

unfolding(χ) =X, (3)

vec(X) = x, (4)

where unfolding means mode–latitude unfolding and vec means column vectorization.
A sketch map of the transforms is shown in Figure 5.
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2.2.1. SSP Representation and EOF
The empirical orthogonal function (EOF) is the most widely used basis function in

the vertical dimension. EOFs are empirical modes calculated by historical sound speed
profiles. It is a pure data‑driven reduced‑order method. The calculation of EOFs will be
described after the matrix definition of 3D SSF.

The calculation of EOFs is drawn from the SVD decomposition of a set of SSPs. The
commonly usedmethod is to calculate the covariancematrix for principal component anal‑
ysis (PCA), that is, eigenvalue decomposition.

At first, the mean SSP is calculated. The mean of 3D SSF Y ∈ RI×MN is

m = (1/MN)
MN
∑

j=1
yj ∈ RI×1. A mean matrix is constructed byM = [m, . . . ,m] ∈ RI×MN .

SubtractM from Y and resulting the de‑mean 3D SSF matrix

X = [x1, . . . , xMN ] = Y−M ∈ RI×MN . (5)

Eigenvalue decomposition of the covariance matrix of X is

XXT = EΛET, (6)

where E = [e1, . . . , eI ] ∈ RI×I and Λ = diag([λ1, . . . , λI ]) with decreasing eigenvalues
λ1 ≥ · · · ≥ λI . In practice, the first K of I eigenvectors are generally taken for reduced‑
order representation with K ≪ I. The truncated SVD decomposition is expressed as
XXT ≈ EKΛKETK, where ΛK = diag([λ1, . . . , λK]) and

EK = [e1, . . . , eK] ∈ RI×K. (7)

The selection rule of K is generally as
K
∑

i=1
λi/

I
∑

i=1
λi greater than a certain threshold,

which can be taken as 90% or 99%. The empirical value of K in the literature is 2 to 6 [28–30].
The 3D SSF matrix is expressed as

X ≈ EKW, (8)

whereW ∈ RK×MN is the matrix of representation coefficients. Since the EOF matrix EK
satisfies orthogonality (e.g., ETKEK = IK), the coefficients matrix can be obtained by

Ŵ = ETKX. (9)

2.2.2. 3‑D SSF Representation
Furthermore, the orthogonality assumptions are applied for horizontal dimensions in

x and y, and we can separate basis functions in x and y, as

c(x, y, z) = c(z) +
Nx

∑
k=1

Ny

∑
j=1

Nz

∑
i=1

wijk[F1(x)]k[F2(y)]j[E(z)]i, (10)

where [F1(x)]Nx
k=1 is the basis function in the x‑axis (longitude) and [F2(y)]

Ny
j=1 in the y‑axis

(latitude), with a total of Nx and Ny, respectively.

A. Spectral‑analysis Method

Two‑dimensional Fourier decomposition is often used to represent the horizontal
dimensions of 3D SSF. As horizontal basis functions, Fourier basis are a reduced‑order
method of spectral analysis, which use exponential basis as structural modes. The 3D
reduced‑order representation using horizontal two‑dimensional Fourier basis and vertical
EOF basis can be expressed as
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c(x, y, z) =
NF1

∑
f1=1

NF2

∑
f2=1

KF

∑
k=1

w f1, f2,k
[
EKF

]
z,k

1D EOF

× exp
(

2π j
[

x( f1 − 1)
Lx

])
exp

(
2π j

[
y( f2 − 1)

Ly

])
, (11)

where
[
EKF

]
z,k is the z‑th depth and the k‑th order EOF. KF is the number of EOFs for z‑axis.

NF1 and NF2 denote the number of Fourier basis functions for the x‑axis and y‑axis.
For a 3D SSF, {c∗(x, y, z)}M,N,I

x=1,y=1,z=1, the representation coefficients {w∗
f1, f2,k

}
NF1 ,NF2 ,KF
f1=1, f2=1,k=1 can be expressed in matrix form as

X̂∗,u
= EKFW

∗FT, (12)

W∗ = ETKF
X∗,u

(
FT

)†
, (13)

where X∗,u ∈ RI×MN is 3D SSF in matrix form andW∗ ∈ RKF×NF1 NF2 is the matrix of repre‑
sentation coefficients. F1 and F2 are Fourier basis matrices and F = F2 ⊗ F1 ∈ CMN×NF1 NF2 .
The expression of F1 and F2 are listed in Appendix A. Henceforth, the method proposed
in this subsection is named Fourier + EOF.

B. Data‑Driven Method

A fully data‑drivenmethod for 3DSSF reduced‑order representation is describedhere,
which learns all of the basis functions in three directions from data.

Assuming the basis functions of the three dimensions are orthogonal to each other,
the basis functions can be obtained by tensor decomposition CPD. Here, we use the higher‑
order orthogonal iteration (HOOI) algorithm [9]. The specific calculation algorithm can be
found in the reference and will not be listed here. The theory insight of orthogonal tensor
decomposition shows that it is a universal 3D representation method. The depth basis
functions learned from HOOI are the same as EOFs.

The decomposition of HOOI can be expressed as

X = S ×1 B(1) ×2 B(2) ×3 B(3), (14)

where S ∈ RL1×L2×L3 is core‑tensor with a size of L1 × L2 × L3, B(1) ∈ RM×L1 ,
B(2) ∈ RN×L2 , B(3) ∈ RI×L3 are basis functions in longitude, latitude, and depth, respec‑
tively, and×p meansmode‑pproduct. Henceforth, themethodproposed in this subsection
is named HOOI.

For a reconstructed 3DSSF χ̂, X̂, x̂ in the formof tensor,matrix andvector respectively,
the reconstruction error is expressed by RMSE (root mean square error) of each grid point,
that is

RMSE =
1√

MNI
∥χ̂− χ∥F =

1√
MNI

∥X̂− X∥F =
1√

MNI
∥x̂− x∥2. (15)

2.3. RBF and Physics‑Guided Representation Method
The radial distance refers to the distance related to the position and unrelated to the

direction. The radial distance between the data point
→
p and the measurement point

→
p 0 is

r = φ(
→
p −→

p 0). In general, Euclidean distance is used as the radial distance r = ∥→p −→
p 0∥

where ∥∥ is l‑2 norm of the vector.
RBF is a function of radial distance. Here, we use Gaussian RBF which takes the

exponential weighted sum of the reciprocal of radial distance as the interpolation function.
The weighting function is

φ(r) = exp(− r2

2R02 ), (16)

where R0 is the width of RBF, representing the range and distribution in the input space.
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In physical oceanography, the universal structure of a mesoscale eddy is expressed
as pn(rn, z) = R(rn) · H(z) where R(rn) =

(
1 − r2

n/2
)
· exp

(
−r2

n/2
)
and rn = r/Rm. pn is

pressure anomaly, rn is the normalized range, r is the range, Rm is the radius of mesoscale
eddy and z is depth. Thus, the horizontal structure of the mesoscale eddy is expressed as

R(r) = exp
(
−r2/2Rm

2
)

. (17)

In the subsequent discussion, we will use the radius (a concept in the mesoscale eddy
model) as the width (a concept in RBF) to emphasize the physical meaning of width. How‑
ever, it should be noted that in the RBF interpolation, the optimal R0 is not equal to the
radius Rm of the mesoscale eddy. The 3D SSF includes various ocean phenomena includ‑
ing mesoscale eddy affecting SSF. It can be evaluated that the radius is related to the order
of RBF.

The Gaussian RBF is expressed as

Φ(r) =
P

∑
p=1

wp φ(rp) =
P

∑
p=1

wp φ

[
exp(−

rp
2

2R02 )

]
, (18)

and in matrix form as

Φ(P) =
P

∑
p=1

wp φ(∥P− Pp∥) =
P

∑
p=1

wp exp(− 1
2R02 ∥P− Pp∥2), (19)

where P indicate the points to be interpolated and Pp are the RBF centers. Here, P ∈
RMN×2 =

[
px,py

]
are all discrete longitude and latitude grids in the reconstructed re‑

gion, with longitude vector px ∈ RMN×1 = [px1 , px2 , . . . , pxMN ]
T and latitude vector py ∈

RMN×1 = [py1 , py2 , . . . , pyMN ]
T. Pp are selected center points from P, with a total num‑

ber of P while P < MN. wp is the weighting coefficient of p‑th RBF. The matrix form of
Φ ∈ RMN×P is,

Φ =


φ11 φ12 · · · φ1P
φ21 φ22 · · · φ2P
...

...
...

φ[MN]1 φ[MN]2 · · · φ[MN]P

, (20)

where
φip = φ(∥Pi − Pp∥) = exp(− 1

2R02 ∥P
i − Pp∥2

), (21)

where i indicates the i‑th row in P ∈ RMN×2 and p indicates p‑th RBF center Pp.
The inverse of Φ is solved by pseudo inverse, because Φ is not orthogonal, is de‑

rived by
Φ† = (ΦTΦ)

−1
ΦT. (22)

In thematrix form of 3D SSF representation, the coefficients and reconstructed 3D SSF
is shown as

W∗ = ETKF
X∗,u

(
ΦT

)†
, (23)

X̂∗,u
= EKFW

∗ΦT. (24)

In the vector form of 3D SSF representation, and define w∗ ≡ vec(W∗),
x∗,u ≡ vec(X∗,u), the Eq above can be expressed as [31]

x∗,u = (Φ ⊗ EKF )w
∗. (25)
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The order reduction of RBF representation is due to P < MN. There are two rules for
the selection of Pp, including random selection and regular selection. Random selection
refers to a random selection of points among all grid points while regular selection refers
to the selection of points in the region that are equally spaced in each direction. In addition,
the center of RBF can be learned by clusteringmethods, which is an adaptive self‑organized
algorithm. If the central positions of the mesoscale eddies are known, this point can be
selected. The central position of the mesoscale eddies generally can be obtained from the
satellite altimeter data, before taking charge of the underwater 3D SSF data.

The width R0 of RBFs is selected as a scalar here, that is, each order of RBF has the
same width, as well as isotropic RBFs. R0 is learned from historical data, which is the
correlation radius of the SSF. The radius is near the radius of the mesoscale eddy, ranging
from 50 km to 200 km. Empirically, the radius can be selected as 100 km. Henceforth, the
method proposed in this subsection is named RBF + EOF.

3. Results and Discussion
In this section, we interpret the theory of the RBF + EOF method in a physical and

data sense, evaluate the performance and discuss the parameters of the proposed method,
compared with benchmarking methods for 3D SSF reduced‑order representation.

3.1. Theoretical Interpretation and First‑Order RBF + EOF
Previously, there has been some literature accounting for the universal 3D structure

of mesoscale eddies such as [12,14], which both use the Gaussian function in horizontal
dimensions, indicating the physical guide of representing mesoscale eddies. Particularly,
the Gaussian eddy model [14] links the 3D SSF structure and the mesoscale eddy for the
first time, exploring the universal 3D SSF anomaly distribution feature. TheGaussian eddy
model represents one mesoscale eddy by one‑order Gaussian approximation.

RBF + EOF is the representation method proposed by us, which can represent and
reconstruct the 3D SSF. It is suitable for 3D SSF representation containing various ocean
phenomena including mesoscale eddies. RBF + EOF is a physics‑guided eddy represen‑
tation model. In theory, the first‑order RBF + EOF is physically inextricably linked to the
Gaussian eddy model. The formulation of the Gaussian eddy model and the first‑order
RBF + EOF are listed below for comparison.

The Gaussian eddy model [14] can be expressed as

∆c(x, y, z) = ∆cmax exp(− (
√

x2 + y2 − rc)
2

Dr2 ) exp(− (z − zc)
2

Dz2 ), (26)

The first‑order RBF + EOF is characterized by setting KF = 1 in Equation (24) and
P = 1 in Equation (20) as

∆c(x, y, z) = w11 exp(− (
√

x2 + y2 − rc)
2

R02 )[E(z)]1, (27)

We can find both of them have a similar form, especially since the exponential term is
almost the same as Dr = R0. The horizontal structures are both in Gaussian form, which
indicates that the Gaussian RBF is a physics‑guided universal structure in 3D SSF repre‑
sentation for mesoscale eddies. The relation between the first‑order RBF + EOF method
and the Gaussian eddy model has been viewed in a physical and mathematical sense, and
the difference in depth dimension term is further explained by numerical simulation using
HYCOM data.

3D SSF data on the 60th day are used to reconstruct by the Gaussian eddy model and
the first‑order RBF + EOF, respectively. The parameter is set to P = NEK = 1,
Dr = R0 = 80 km, zc = 350 m, the longitude and latitude of rc is 21.04◦N, 119.36◦E. As
shown in Figure 6, for the horizontal section of the 3D SSF, the Gaussian eddy model and
RBF have the same structure, which are both Gaussian approximations of the original data.
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As shown in Figure 7, the vertical profile of EOF and Gaussian eddy are similar, which is
the fitting and smoothing of the original HYCOM data. The Gaussian eddy has a symmet‑
rical structure of the center depth zc, which is slightly deeper than the actual value. The
true eddy has a nonsymmetrical structure of the center depth, which is learned by EOF,
showing the ability to learn features from data.
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As shown in Figure 8, the vertical slices of 3D SSF reconstructed by the Gaussian eddy
model and the first‑order RBF + EOF are compared. The RMSE of Gaussian eddy and RBF
+ EOF are 1.46 m/s and 1.32 m/s, respectively. Their performances are basically similar.
Considering the slight difference between them, RMSE of RBF + EOF is slightly lower be‑
cause the eddy in HYCOM data has the shape of a bowl rather than a ball, and the error of
EOF is relatively smaller than the Gaussian eddy model. According to simulation results,
the performance of the first‑order RBF + EOF is significantly superior from the 40th to 60th
day. During this period of time, the mesoscale eddy is completely located in the recon‑
struction area (as shown in Figure 2), indicating that the first‑order RBF + EOF has a pretty
representation performance to characterize the 3D SSF dominated by one mesoscale eddy.

According to the above analysis, we conclude that the first‑order RBF + EOF can be re‑
garded as an approximation of theGaussian eddymodel. The first‑order RBF is completely
consistent with the horizontal Gaussian eddy model. The first‑order EOF represents the
vertical characteristics of mesoscale eddy learned from the data while the Gaussian eddy
model is structured as a Gaussian shape with two parameters.
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3.2. Multi‑Order RBF + EOF Representation Method and Parameters Selection
In this subsection, we introduce the multi‑order RBF + EOF representation method

and show its representation results. The parameters selection of different parameters for
RBF + EOF is discussed, including the position of RBF center points, the order of RBF, and
the width of RBF. This section uses the data from the first day for testing.

We use the 3D SSF data on the 60th day to represent 3D SSF, similar to Section 3.1, with
the multi‑order RBF + EOFmethod and the Fourier + EOF method. The parameters are set
to NEK = 6, NF1 × NF2 = P = 36, R0 = 80 km. The center of RBFs is randomly selected. As
shown in Figure 9, the 36‑order RBFs represent themesoscalemore accurately in horizontal
dimensions, comparedwith the first‑order RBF in Figure 6. The vertical slice of amesoscale
eddy representation using multi‑order RBF + EOF in Figure 10 is more delicate compared
with the first‑order RBF + EOF in Figure 8. The Fourier method in Figures 9 and 10 has
less recoverable detail compared with multi‑order RBF + EOF, especially near the center
of the eddy.

Considering the amount of calculation, the pseudo inversion of matrix Φ in
Equation (22) is dominating. The amount of calculation for the multi‑order P RBFs inver‑
sion is P times of first‑order RBF, which takesmuch time. In practice, the pseudo inversion
for a matrix with size of 27 × 27 and P = 100 times only takes 0.02 s. This procedure can
be calculated and saved in advance to save time. Once the basis functions are calculated,
in the following representation, pseudo inversion will not be repeated.
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In the above simulation, the representation performance of themulti‑order RBF + EOF
method for the 3D SSF dominated by one mesoscale eddy is qualitatively evaluated. The
quantitative performance and robustness of more complex 3D SSF will be evaluated in the
next subsection, such as the 90th day including two mesoscale eddies. Afterward, param‑
eters selection will be carried out.

For the position’s selection of P RBF center points, there are two rules, random selec‑
tion, and regular selection. Regular selection refers to equally spaced points in the area
being selected which makes the distribution of RBF centers uniform space. Take 36 orders
of RBF as an example. Figure 11 shows the 36 points (blue circle) by random selection and
regular selection in the two‑dimensional horizontal region, where the horizontal and ver‑
tical axis represent the longitude and latitude grid points of the area to be reconstructed
with grid size 1/12◦.
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The position of RBF centers will affect the performance of 3D SSF representation.
We compare RBF center positions selected by different rules, including random selection
and regular selection. Random selection will select P points in the area randomly and
100 Monte Carlo experiments are carried out. It can be seen from Figure 12 that the av‑
erage performance of random selection is almost consistent with that of regular selection.
The specific performance of random selection is related to the SSF data. As shown in the
error bar in Figure 12, the performance of random selection may be better or worse than
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regular selection, while the latter always achieves a robust performance. In the case of low‑
order RBF order, the performance gap of random selection is large. Thereafter, the optimal
center point needs to be obtained by other algorithms. As the order of RBF increases, the
error bar gradually decreases to zeros. In the case of high‑order RBF (for example, in the
region of 200 km, the RBF is greater than 36 orders), the selection of the center point has
little impact on the reconstruction performance, which indicates the selection rules of RBF
centers will not be a key issue. Therefore, 36‑order RBFs will be selected as a reference.
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For different orders of RBF, the optimal radius R0 is different. We test the 3D SSF data
on the first day using 6 EOFs. As shown in Figure 13, with the increase of RBF order, the
mean optimal radius (thick black line) gradually decreases from 90 km to 40 km, and the
variance (thin line, error bar in figure) also decreases. This result is in conformity with the
theory because with the increase of the number of RBF centers, the region represented by
each order of RBF gradually converges from the global area to the local point. If the RBF
center takes all grid points in the reconstruction area, the radius should be infinite so that
the scale factor is zeros, that is, each order of RBF is equal to the value of the local point.
This theory is called the Nadaraya–Watson regression estimator (NWRE) [32]. Within a
value range, the radius is not very sensitive to RMSE. Whether 60 km or 80 km, the RMSE
is very close, which indicates the radius is relatively robust. Therefore, 80 km will be se‑
lected as a reference radius for all simulations, which balances the performance of different
RBF orders.
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3.3. Mesoscale 3D SSF Experiment
In this section, we evaluate the performances of the RBF + EOF method, the Fourier

+ EOF method [8], and the tensor decomposition‑based method (HOOI) [9], all in a long
time period (136 days) data. We also compare the number of coefficients and performance.

We tested 136 days of the 3D SSF data using all mentionedmethods and calculated the
RMSE. The parameter setting is shown in Table 1. As shown in Figure 14, the performance
of RBF + EOF is always better than Fourier + EOF, especially in the range from the 40th
to the 90th day. Although the performance of all methods decreased from the 60th to the
90th day, RBF + EOF has more advantages than Fourier + EOF. The performance of HOOI
is related to the selection of training data. As shown in Figure 14a–e the training data are
the first, 40th, 60th, 75th, and 90th day, respectively, which has the smallest RMSE on the
training day. When the training data of HOOI is the first day (training data without eddy)
as shown in Figure 14a, RMSE of HOOI is greater than that of other methods in all subse‑
quent days and increases linearly from the first day to the 60th day. That is due to the first
day data not containing mesoscale eddies, and HOOI learning no effective basis functions
related to mesoscale eddies. When the training data is set as the 40th day (training data
with a warm eddy), shown in Figure 14b, the RMSE in the 40th day and adjacent days are
smaller than that of other methods, but the performance will be worse than that of RBF +
EOF for most of the period, especially in the beginning (from the first day to the 20th day)
and end period with cold mesoscale eddy (from the 90th day to the 136th day). When the
training data is set as the 90th day (training data with a cold eddy) shown in Figure 14e,
the RMSE in the 90th day and adjacent days are smaller than that of other methods, similar
to the trend in Figure 14b. The results of other days shown in Figure 14c,d have a similar
situation, where RBF + EOF outperforms than HOOI during days without eddy, which
performs robustly during the period. Onmost days, RBF + EOF has the lowest RMSE than
HOOI regardless of the training data, while the former uses only one parameter learned
from data (the radius).

Table 1. Parameters settings.

Method RBF + EOF Fourier + EOF HOOI

Parameters P = 36, NEK = 6 NF1 = NF2 = 6, NEK = 6 L1 = L2 = L3 = 6

The Number of Coefficients 216 216 216

The performance comparison of various methods with different parameter numbers
is compared. Take the 20th day SSF data for HOOI training, and take the 60th day data for
performance comparison. The radius of RBF is set as 80 km for all cases.

Firstly, we compare the role of vertical dimension parameters, shown in case1 in
Table 2. With fixed horizontal dimension parameters which are all 36 orders, the perfor‑
mance comparison of the vertical dimension parameters is taken as 2 to 12 orders, respec‑
tively. The results are shownon the left of Figure 15a. With the samenumber of parameters,
the RMSE of RBF + EOF is smaller than the other two methods.

Table 2. Parameters setting.

Method RBF + EOF Fourier + EOF HOOI

Parameters
(Case1)

P = 62,
NEK = {2, 4, 6 . . . 10, 12}

NF1 = NF2 = 6
NEK = {2, 4, 6 . . . 10, 12}

L1 = L2 = 6
L3 = {2, 4, 6 . . . 10, 12}

Parameters
(Case2)

P = {4, 5 . . . 11, 12}2

NEK = 6
NF1 = NF2 = {4, 5 . . . 11, 12}

NEK = 6
L1 = L2 = {4, 5 . . . 11, 12}

L3 = 6

The Number of Coefficients(Case1) {72, 144, . . . 360, 432} {72, 144, . . . 360, 432} {72, 144, . . . 360, 432}
The Number of Coefficients(Case2) {96, 150, . . . 726, 864} {96, 150, . . . 726, 864} {96, 150, . . . 726, 864}
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Then, we compare the role of horizontal dimension parameters, shown in case2 in
Table 2. With fixed vertical dimension parameterswhich are all six orders, the performance
comparison of the horizontal dimension parameters is taken as 16 to 121 (square numbers),
respectively. The results are shown in Figure 15b. With same number of parameters, the
RMSE of RBF + EOF is smaller than the other twomethods. Especially in the case of a small
number of parameters, the performance of RBF + EOF is much better than Fourier + EOF.

Lastly, the number of parameters required to achieve the same performance (RMSE)
can be calculated. As shown in Figure 16, to achieve the goal of RMSE less than 0.35 m/s,
RBF + EOF needs 296 coefficients while HOOI needs 600 and Fourier + EOF needs 726,
which are 2.04 times and 2.47 times RBF + EOF, respectively. This result is based on a
SSF with a mesoscale warm eddy in the center of the reconstruction area, which is state‑
of‑the‑art performance for RBF + EOF method. This shows that the proposed RBF + EOF
method has good performance in the representation in the horizontal dimension, achieves
acceptable RMSE with a lower number of coefficients, and can greatly reduce the degree
of uncertainty in the inverse problem.
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4. Conclusions
In this paper, a 3D SSFwithmesoscale eddies has been considered byway of reduced‑

order representation with proposed effective basis functions. The physics of mesoscale ed‑
dies is connected to the RBF in a seamless physical guide andmath‑analytical method. The
first‑order RBF + EOF representation method is an approximation of the classic Gaussian
eddymodel. Multi‑order RBF + EOF is a semi‑data‑driven and semi‑model‑drivenmethod
combining knowledge in data and in physics.

The theory interpretation between 3D SSF with mesoscale eddy and Gaussian RBF
is shown and tested. The parameters of RBF are assessed in detail. The performance of
the RBF + EOF method is evaluated using the reanalysis 3D SSF data in the South China
Sea and compared to other benchmarkmethods including Fourier + EOF and tensor‑based
HOOI, showing robustness and accuracy in whole days. The results also indicate RBF +
EOF is relatively better with a lower number of representation coefficients, which will be
appropriate in acoustical oceanography.

We will use the proposed method in OAT for 3D SSF inversion and try to observe
mesoscale eddies in the South China Sea [33]. Several OAT experiments have been con‑
ducted [34] and mesoscale eddies have been captured with sea surface height anomalies
from satellites. Acoustic observation for 3D SSF andmesoscale eddies is still an interesting
area. We can express the measurement equation in OAT as

d = Gx,
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where d is acoustic arrival time, G is the measurement matrix and m is 3D SSF. Apply‑
ing Equation (25) x = (Φ ⊗ EKF )w (omitting markers) to the above, a linear problem is
derived as

d =
[
G(Φ ⊗ EKF )

]
w = Hw,

which is suitably solved by linear regression methods.
Linear formulation of RBF is used in this studywhile theRBFneural network (RBFNN)

has been widely used [22], including underwater acoustics such as shallow water geoa‑
coustic inversion [35]. An RBFNN‑based 3D SSF representation method with anisotropy
widths and adaptive centers is an interesting subject. An RBFNN‑based 3D SSF acoustic
inversion scheme is also attractive.
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