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Abstract: In recent years, supervised learning, represented by deep learning, has shown good
performance in remote sensing image scene classification with its powerful feature learning ability.
However, this method requires large-scale and high-quality handcrafted labeled datasets, which
leads to a high cost of obtaining annotated samples. Self-supervised learning can alleviate this
problem by using unlabeled data to learn the image’s feature representation and then migrate to the
downstream task. In this study, we use an encoder–decoder structure to construct a self-supervised
learning architecture. In the encoding stage, the image mask is used to discard some of the image
patches randomly, and the image’s feature representation can be learned from the remaining image
patches. In the decoding stage, the lightweight decoder is used to recover the pixels of the original
image patches according to the features learned in the encoding stage. We constructed a large-scale
unlabeled training set using several public scene classification datasets and Gaofen-2 satellite data to
train the self-supervised learning model. In the downstream task, we use the encoder structure with
the masked image patches that have been removed as the backbone network of the scene classification
task. Then, we fine-tune the pre-trained weights of self-supervised learning in the encoding stage
on two open datasets with complex scene categories. The datasets include NWPU-RESISC45 and
AID. Compared with other mainstream supervised learning methods and self-supervised learning
methods, our proposed method has better performance than the most state-of-the-art methods in the
task of remote sensing image scene classification.

Keywords: self-supervised learning; vision transformer; random mask; remote sensing image scene
classification; unlabeled datasets

1. Introduction

With the rapid development and progress of remote sensing technology, more and
more remote sensing images with high-resolution can be obtained easily. In addition to rich
spatial and texture information, these remote sensing images also contain a lot of potential
semantic information. The development trend promotes the application of remote sensing
data as useful information in many fields, such as land resource management and urban
planning [1,2]. Because of the limitation of low spatial resolution, early remote sensing
image classification methods were mainly based on pixels and targets [3]. Because the
pixels or targets only contain low-level local feature information, it is impossible to obtain
semantic information (such as industrial areas, commercial areas, schools, etc.) on the scene
level. With the increasing spatial resolution of remote sensing images, scene-level image
classification combined with the context information in a larger interpretation unit has
become a hot research issue [4]. The target of this research is to meet the requirements of
higher-level remote sensing image interpretation and bridge the “semantic gap” between
local features in low-level and global scene semantic features in high-level. Each remote
sensing image is composed of different ground objects. Through high spatial resolution
remote sensing image scene classification technology, we can accurately assign a unique
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scene category to each remote sensing image based on global semantic information [5].
At present, handcrafted feature extraction, feature coding, and deep learning are three
main methods of remote sensing image scene classification. Commonly used handcrafted
features include color histogram [6], gray level co-occurrence matrix (GLCM) [7], Gabor
feature [8], local binary pattern (LBP) [9], scale-invariant feature transform (SIFT) [10]
feature, histogram of oriented gradient (HOG) [11] feature and GIST [12] feature. Although
these features are stable and easy to calculate, when the spatial distribution of object
images is very complex, the discriminability of these features may be greatly reduced.
For example, low-density residential areas and high-density residential areas are easily
confused, and churches and palaces have many similar structures. Therefore, the effect of
scene classification is very poor. Compared with the low-level features extracted directly, the
feature coding methods which belong to the middle-level features have a stronger learning
ability and can express more abundant image information. Commonly used feature coding
methods include bag of visual words (BOVW) [13], vector locally aggregated descriptors
(VLAD) [14] and fisher vector (FV) [15]. The feature coding methods have considered more
comprehensive information, which have improved the semantic understanding. Because
the essence of the feature encoding method is the further integration of the low-level
features, which has a high dependence on the artificially designed features. As a result,
the "semantic gap" between middle-level features and high-level semantic features of the
image scene has not yet been eliminated.

In recent years, benefit from the development of artificial intelligence technology, deep
learning methods with powerful feature learning ability and multi-level feature expression
ability have been successfully applied in many fields which include remote sensing scene
classification. Through deep learning methods, we can extract high-level features of images
without manual intervention, and achieve “end-to-end” learning in the task of image
target recognition and classification. Among many deep learning methods, convolutional
neural network (CNN) is the most successful method applied in remote sensing image
processing. Since then, the accuracy of remote sensing image scene classification has
been greatly improved [1]. Early scene classification methods based on CNN usually
need to completely train a new CNN model from scratch. Nevertheless, the CNN model
depends on data-driven. It is known to all that deep CNN networks usually contain
millions of trainable parameters and need to collect a large number of annotated training
datasets [16]. However, the accurate annotation of remote sensing image scenes is tedious
work, which requires rich experience and professional geographical knowledge. In the
currently published remote sensing image scene classification datasets, although there exist
large datasets containing millions of samples, the categories of scenes included are still very
limited. As a representative example, MillionAID [17] is so far the largest remote sensing
image dataset with a scale of millions of images similar to ImageNet-1K. However, the
dataset only contains 51 scene categories, and compared with the 1000 scene categories
of the ImageNet-1K dataset, there is a large gap between them. Owing to the scarcity of
training datasets, methods based on CNN still face many challenges in remote sensing
image interpretation tasks in a large area and complex scenes (such as global mapping [18]).
To alleviate the dependence on labeled samples of remote sensing images, one of the most
common methods is to use pre-trained convolutional neural networks on large-scale labeled
natural image samples, such as the ImageNet dataset [19] with over 10 million labeled
natural image samples, and then fine-tune the network in the way of transfer learning
to complete remote sensing scene classification. Commonly used pre-trained networks
include AlexNet [20], VGGNet [21], GoogleNet [22], ResNet [23], and CaffeNet [24]. In
the case of insufficient samples, although the pre-trained model on ImageNet can be well
generalized to the tasks of remote sensing image scene classification tasks and effectively
alleviate the overfitting problem, there are still some deficiencies in the following aspects:

(1) The image generation mechanism of remote sensing images is different from natural
images. Natural images usually only have three bands of RGB. In addition to visible light
bands, remote sensing images may also have infrared bands. If the pre-trained network on
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natural images is directly used for fine-tuning, spectral features outside the visible light
range can not be fully exploited, which will lead to the network parameters not being
optimized according to the unique features of remote sensing images.

(2) The structure of remote sensing images is more complex than the natural images.
For remote sensing scene classification, we usually obtain the local image patches from
large satellite images with several resolutions, and they are composed of highly complex
geometric structures. Ground-truth objects vary widely in terms of perspective, scale, and
shape, and at the same time, they have inter-class similarities and intra-class differences.

(3) Pre-training the network on the ImageNet dataset has a high time cost. When
classifying a remote sensing scene, we usually use a model that has been trained on the
ImageNet dataset, ignoring the time and computational cost of pre-training, which gives
us the impression that the use of a pre-trained model can reduce the time cost.

Self-supervised learning is a method that was first successfully applied in the field of
computer vision. It is the most promising way to solve the above problems. Self-supervised
learning is a new machine learning paradigm that has become popular in recent years [25].
A significant difference between self-supervised learning and supervised learning is that
self-supervised learning can mine its own supervision information through a large number
of unlabeled data sets with rich self-supervised learning signals that were artificially
designed. The self-supervised learning signals can be used to construct pseudo-labels,
then replace the traditional manual labeled data to drive the model for feature learning.
Self-supervised learning techniques have made great success in natural image analysis
tasks, and even in some subdivision tasks (such as image object detection, medical image
segmentation, and target tracking), the overall accuracy has approached or even exceeded
supervised learning methods [26], but there is little research about remote sensing. In our
paper, we propose a self-supervised learning architecture based on an encoder–decoder
structure. Firstly, we divide the image uniformly into local patches and then flatten them
into a sequence of patches. Then, in the encoding stage, some of the image patches are
discarded by the image mask randomly, the image’s feature representation can be learned
from the remained image patches, and finally combined with the mask token of the image
to form a joint encoding. In the decoding stage, a lightweight decoder is used to recover
the original image according to the features learned in the encoding stage. The above
process is performed on an unlabeled remote sensing dataset. Using remote sensing scene
classification as a downstream task, we fine-tune the pre-trained weights in the encoding
stage of self-supervised learning. Our contributions include the following aspects:

(1) To solve the problem of dependence on a large number of labeled remote sensing
images in the supervised learning paradigm in scene classification, we introduce a self-
supervised learning framework with an encoder–decoder structure, the method can learn
its feature representation from unlabeled images.

(2) We introduce a strategy based on image patch recovery to train the self-supervised
task. We randomly discard some of the image patches by using the image mask and learn
the image features representation from the remained image patches and then combine
them with the mask token of the image to form a joint encoding. Then, the image patches
discarded in the encoder can be reconstructed. In addition, we also take into account
the position information of the remained image patches itself, the position information
of the remained image patches and the masked image remained relative to the original
image remained sequence. Hence, two position embedding operations were performed,
respectively.

(3) We constructed an unlabeled dataset for the training of the self-supervised learning
task by using the public artificially produced scene classification training dataset and the
Gaofen-2 satellite data without human intervention. The comparative experiments have
been conducted on the two datasets, respectively, which proved that the unlabeled data
produced without manual intervention can be used for self-supervised training, which is
helpful to improve over accuracy of scene classification task.
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The rest of the paper is organized as follows: the related work is briefly introduced in
Section 2, which included transfer learning, few-shot learning and self-supervised learning.
In Section 3, we introduce the proposed method. Section 4 presents the experiment results,
and we draw a conclusion in Section 5.

2. Related Work

A. Transfer Learning
Transfer learning is a method of applying knowledge acquired in one domain to solve

a new problem in another but related field. The purpose is to transfer existing knowledge
to a specific domain with a small amount of annotated data. Because there are very few
samples in new tasks, transfer learning can effectively use the existing data to solve the
learning problems in new tasks. There are three ways to use the pre-trained CNN model in
remote sensing image scene classification: full training, fine-tuning, and feature extraction.
When fine-tuning the pre-trained CNN model through newly labeled training samples
in the target field, the network has been established based on the optimized initialization
parameters, and the training parameters can converge faster. Therefore, the fine-tuning
method has strong adaptability and good performance in the task of remote sensing scene
classification [27]. However, the method of fine-tuning is highly dependent on the existing
pre-trained CNN network structure, which is not flexible enough. When the knowledge of
the deep network is transferred to the small-scale training dataset, it still faces the problem
of gradient disappearance [16]. The convolution layer or full connection layer of the pre-
trained model can play a role of feature extractor. Combined with other machine learning
methods, the extracted deep features can be further optimized. The features represent
the global information of the image can be extracted through the fully connected (FC)
layer, which contain rich high-level semantic information that can efficiently distinguish
different scenes [28]. Chaib et al. [29] integrated different full connection layer features
in CNN to strengthen the expression ability of image features. The approach of transfer
learning has a wide range of applications in remote sensing scene classification, such as
references [1,30–32].

B. Few-Shot Learning
The few-shot learning method has been a research hotspot in recent years, which

can learn from the prior knowledge with few annotated datasets [33,34]. Currently, few-
shot learning methods are mainly implemented based on meta-learning. Meta-learning
is suitable for learning with few-samples and multi-task, which can solve the problems
of rapid learning and rapid adaptation when new tasks lack training samples [35]. Meta
learning requires the support of multiple different but related tasks. Each task has its own
training set and test set [36]. To face the challenges of fast learning of new tasks with
few samples, multiple tasks similar to the new tasks are necessary to be constructed, and
they will be used as training sets to participate in meta-training [37,38]. The successful
application of few-shot learning on natural image classification has attracted a large number
of researchers in the field of remote sensing, who try to apply few-shot learning to remote
sensing scene classification. Zhai et al. [39] proposed a model based on meta-learning
method with gradient descent and has the particularity that knowledge learned from one
data set can be easily and rapidly adapted to a new data set. Li et al. [40] proposed a model
called discriminative learning of adaptive match network (DLA-MatchNet) which can
automatically discover discriminative regions. The method can leverage an episode-based
strategy to train the model. Once trained, the model can predict the category of query
image without further fine-tuning. Li et al. [41] propose a method called RS-MetaNet, the
method can raise the level of learning from the sample to the task by organizing training in
a meta way, and it can learn to learn a metric space that can well classify remote sensing
scenes from a series of tasks. Li et al. [42] introduced an end-to-end framework called self-
supervised contrastive learning-based metric learning network (SCL-MLNet) for few-shot
remote sensing (RS) scene classification. Although the approach of few-shot learning for
remote sensing scene image classification can overcome the dependence on a large amount
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of training datasets, at present, the classification accuracy of this method is not high, and
there is still a lot of room for improvement.

C. Self-supervised Learning
Self-supervised learning is a new machine learning paradigm emerging in recent

years [25], which has attracted the attention of a large number of researchers. Unlike
supervised learning, it can learn latent feature representation of images from massive
unlabeled data through the agent task of self-supervised learning, which is artificially
designed. The way of using unlabeled images for representation learning has become
particularly attractive in the field of remote sensing because it is very difficult to obtain
large-scale labeled samples. At the same time, the method can overcome the impact of
differences between natural images and remote sensing images in the previous transfer
learning process. Self-supervised learning techniques have been successfully applied in
natural image processing tasks, but little research has been done about remote sensing.
Tao et al. [43] proposed a self-supervised learning (SSL) method, and they demonstrated
that the SSL paradigm outperforms the traditional methods. Moreover, they analyzed
the impacts of three factors on RSI scene classification. They only made an attempt on
small-scale datasets that the train images are less than 30,000. Zhao et al. [44] proposed
a MTL framework integrating self-supervised learning method and scene classification
tasks, so that the CNN models can train more discriminant features, but the number of
parameters are not increasing. Kang et al. [45] introduced a new unsupervised deep metric
learning model, the model integrated the advantages of spatial enhancement contrast loss
and momentum update-based optimization. Although they conducted self-supervised
learning task training on two datasets (NAIP dataset and Eurosat dataset) that include
100,000 images, respectively, they also used the same type of datasets in the downstream
task to test the performance of the model, which did not take advantage of the strong gener-
alization performance of pre-trained model from self-supervised learning. Stojni et al. [26]
proposed a contrastive multi-view coding (CMC) self-supervised learning framework,
which was trained in a natural scene dataset (ImageNet1000), high-resolution remote sens-
ing datasets (NWPU-RESISC45 dataset, DOTA dataset, and NWPUVHR-10 dataset) and a
low- resolution dataset (bigearthnet). The number of images they contained was 1,200,000,
196,215 and 269,695, respectively. Although the scale of remote sensing datasets they used
is larger than before, high-resolution remote sensing datasets are still hand-crafted datasets.
They did not use the labels, and the categories of scenes in the datasets are limited, which
can not fully represent the diversity and complexity of remote sensing image scenes.

3. Proposed Method

The self-supervised learning network proposed in this paper is essentially an au-
toencoder structure, as shown in Figure 1. Rumelhart et al. [46] proposed the concept of
Auto Encoder (AE) in 1986 and applied it to high-dimensional complex data processing,
which promoted the development of neural networks. He et al. [47] proposed a masked
autoencoder for self-supervised learning. AE is an unsupervised learning algorithm, and
the network structure generally consists of two parts: an encoder for feature extraction and
a decoder for target reconstruction. Generally speaking, the structure of the encoding and
decoding of the autoencoder is symmetric, but the autoencoder framework designed in
this paper is an asymmetric structure. The encoder can label the order of image patches by
position embedding. In addition, it can also process the mask and mask token of the image
patches, and the decoder does not contain these functions.
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Figure 1. The overall architecture of the self-supervised learning network.

A. VIT
The Vision Transformer (VIT) model is developed based on the transformer model

and is widely applied in computer vision. The Transformer was introduced by Vaswani
et al. [48] to overcome the defects that recurrent neural networks cannot be parallelized
in natural language processing (NLP), which consists of an encoder and a decoder. In
the encoding stage, the words in the sentence are firstly converted into word vectors,
then the global self-attention feature map is obtained through the self-attention module,
residual connection, and layer normalization. Finally, the output of the encoder is obtained
by the feedforward network, residual connection, and layer normalization. The VIT
model proposed by Dosovitskiy et al. [49] is the first time that the encoder structure of
the Transformer is directly used for image classification, laying a solid foundation for the
development of the transformer in computer vision. To adapt to the structure of the input
data of the transformer, the images need to be divided into non-overlapping image patches
in the VIT model, and then the image patches are flattened and embedded in position
encoding. Finally, a one-dimensional vector is obtained. The application of the transformer
in computer vision usually uses this method to input images or feature maps. For the image
classification task, a classifier is usually connected in the end to map the output features
by the encoder to the scene category. In the process of scene classification, the useful
information is usually concentrated in a specific area. The traditional CNN architecture is a
filter based on a local receptive field, which treats each pixel equally. However, for the scene
classification of the whole image, the contribution of each pixel in the image is different.
For example, airports are mainly identified according to the aircraft contained in the image,
while commercial and residential areas are identified according to the geometric outline,
texture features, and spatial arrangement of buildings. VIT model adopts a multi-head
self-attention (MSA) mechanism, which can automatically learn the contribution of each
pixel to scene classification, which is more in line with the image recognition process of the
real human visual system.

B. Encoder
As shown in Figure 1, the left side of the encoder is composed of the standard VIT

structure, in which the classification header has been removed, and the function of the right
part is to restore the number of image patches. During the data processing of the encoder,
we discard the masked image patches. Here, we add the positional embeddings to the
output features of VIT and mask tokens of the image, respectively, and concatenate them
together, then the length of concatenated feature vectors is equal to the total number of
image patches. Finally, the output features are sent to the decoder. The main structure of VIT
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is composed of an embedding layer and a transformer encoder. The transformer encoder
cannot process two-dimensional images directly, and can only accept one-dimensional
vectors as input. Therefore, when using VIT, it is necessary to map the two-dimensional
matrix to the one-dimensional vector.

We suppose that the size of the input remote sensing image P is c× h× w, where c
represents the number of channels, h represents the height, and w represents the width. We
uniformly divide the image into non-overlapping image patches, and the size is c× hp×wp,
hp and wp, usually set to 16, then the total number of image patches m = hw/hpwp. All
the image patches are concatenated together to form a patch sequence (P1, P2, . . . , Pm) with
a length of m, and then the patch sequence is input into the linear embedding layer and
projected into a vector of dimension N, then the vector can be used as input data of the
transformer encoder. The process of linear embedding can be expressed by the following
formula:

L0 = [P1E; P2E; . . . ; PmE] + Epos, E ∈ R(hpwpc)×d,

Epos ∈ R(m+1)×d (1)

where E represents a learnable embedding matrix and Epos represents position encoding.
Since the transformer’s self-attention is disordered, the patch sequence (P1, P2, . . . , Pm) is
regarded as a group of disordered patches. To maintain the relative spatial position of
the patch in the raw image, Epos is used to embed the position information into the patch
sequence. [P1E; P2E; . . . ; PmE] represents that we concatenate the P1E, P2E, . . . , and PmE
together. The position encoding method adopted in this paper can be expressed by the
following formula [50]:

Epos(2i) = sin(pos/10,0002i/d)

Epos(2i+1) = cos(pos/10,0002i/d) (2)

where pos represents the regional position index of the image and d represents the position
encoding dimension, i represents the ith dimension of the position encoding vector.

The paper adopts a random mask-based self-supervised learning framework to predict
deleted patches from visible unmasked patches. The transformer encoder only processes
the visible patches, so the masked patches are removed from the vector L0 after the linear
embedding operation. If the number of patches to be masked is n, then the number of
visible patches is m− n. After this step, the patch sequence L1 can be expressed by the
following formula:

L1 = [P1; P2; . . . ; Pm−n] (3)

[P1; P2; . . . , Pm−n] represents that we concatenate the P1, P2, . . . , and Pm−n together. The
transformer encoder takes L1 as the input sequence for feature extraction. The Transformer
encoder consists of several layers with same structure. Each layer mainly includes a MSA
module and a multi-layer perceptron (MLP) module with. To ensure the consistency of data
distribution, the data must be processed by a normalization layer before being input into
each module. In addition, a residual skip connection is used in each module. The perceptron
layer consists of two fully connected layers, then nonlinear mapping is performed between
the two dense layers through a GeLU activation function. The transformer encoder is made
up of several such units. If the number of such units is k, the calculation process of the
transformer encoder can be expressed as following:

L′k = MSA(LN(Lk − 1)) + Lk − 1, k = 1, 2, . . . , K

Lk = MSA(LN(L′k)) + L′k, k = 1, 2, . . . , K (4)

where Lk represents the kth layer of the transformer encoder, LN represents the abbreviation
of Layer Norm, and MSA represents the abbreviation of MSA.
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The last layer of the encoder is to integrate the output of the features by the transformer
encoder and the features of the masked patches while embedding their position information
separately. Finally, they are concatenated and sent to the decoder for the reconstruction of
the discarded image patches. The masked patches feature can be represented by a trainable
and shared mask token. The whole process can be expressed as follows:

T = [p′1; p′2; . . . ; p′n] + EM
pos

Lcat = [Lk + EV
pos; T] (5)

In the above formula, p′n represents the nth mask token, EM
pos represents the position

embedded feature of the image patches that are masked, Lk represents the feature vector
output by the Transformer encoder, and EV

pos represents the position embedded feature of
the image patches that are not masked. Lcat represents that the mask token of the embedded
position information and the previously extracted features are concatenated together, and
the length of the features vector is exactly equal to the number of all image patches.

C. MSA mechanism
MSA is a key part of VIT, and the structure is shown in Figure 2. Firstly, three learnable

matrices that represent different weights are used to transform the input matrix of the
encoder to obtain the query matrix Q, the key matrix K, and the value matrix V. Then,
through the scaled dot-product attention, the self-attention feature map is calculated. The
ultimate goal of multi-head self-attention is to obtain multi-independent attention feature
maps, which are realized by multi-group transformation matrices. Finally, the multi-head
attention feature map is obtained by concatenating different attention feature maps. The
formula for calculating attention features is as follows

Attention(Q, K, V) = so f tmax

(
QKT
√

dk

)
V (6)

Among them, Q, K, and V are two-dimensional matrices composed of vectors, the dot
product between the matrix Q and the transpose of the matrix K represents a correlation
matrix. Because Q and K come from the transformation of the same matrix, the correlation
matrix can describe the correlation between the input vectors. To avoid the vanishing
gradients caused by the softmax operation, a coefficient is used to scale the correlation
matrix.

√
dk represents a coefficient, where dk represents the dimension of the vector k,

which is used to scale the output. The activated correlation matrix is dot-multiplied with V
to obtain the global self-attention map.

LInearLInearLInearLInearLInearLInear

Scaled Dot-Product Attention

Linear LinearLinear

Q K V

Concat

Linear

Figure 2. Multi-headed self-attention.
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D. Decoder
The main structure of the decoder is the same as that of the transformer encoder in

the encoder, which consists of a stack of MSA modules and MLP modules. The role of the
decoder is to recover the masked image patches by predicting a vector of pixel values for
each masked token. The fully connected layer in the end is used to map the number of
feature channels output by the transformer encoder to be consistent with the number of
pixels in the masked image patches. Finally, the predicted mask patch pixel value is filled
to its original position, thus completing the reconstruction of the entire image. It is worth
emphasizing that in the training process, our loss function only calculates the mean square
error of the predicted pixels value and the original image pixels value for the masked image
patches because we only predict the pixels value of the mask token.

E. Remote Sensing Image Scene Classification
When the training of the self-supervised learning model has been completed, we use

the VIT module in the encoder to extract the features and add a classifier in the end of the
network, they form a scene classifier together. The dimension of the output feature is equal
to the scene categories. Although the structure of the scene classifier is similar to the VIT
module in the encoder, there lies a significant difference between them. In the pre-training
stage, the VIT module only needs to process the image patches that are not masked, but all
the image patches need to be processed in the classifier, and the masked image patches are
no longer removed.

4. Experiments and Analysis

A. Datasets description
In this experiment, we used 11 kinds of different datasets, each of which is described in

detail in Table 1. Among them, UC Merced, WHU-RS19, SIRI-WHU, RSI-CB256, RSSCN7,
RSC11, OPTIMAL-31, PatternNet, and GID datasets are used for pre-training of self-
supervised learning models. The first 8 data sets are public remote sensing scene classi-
fication data sets with labels, with a total of 65,797 images. In the pre-training process,
labels are not required. The image size is uniformly resized to 224 × 224. We name it
the public image dataset (PID). Although unlabeled scene classification datasets have also
been used in previous studies to train self-supervised models, these datasets are manually
produced and carefully selected to identify specific kinds of scenes. The categories of scenes
included are very limited, the number of samples is not large, and the production cost
is very expensive. In a word, the unlabeled datasets are not naturally generated. GID
dataset (Gaofen image dataset) is a remote sensing image’s semantic segmentation dataset
produced by Wuhan University, which contains 150 high-resolution Gaofen-2 images (the
image size 6800 × 7200) obtained from more than 60 cities in China. These images cover
a geographical area of more than 50,000 square kilometers. Images in GID have high
intra-class similarity and low inter-class separability. We select images from which the
distribution of ground objects is relatively uniform as training samples. Because the uneven
samples will lead to a large number of redundant datasets. For example, most areas of
the whole image are covered by water, farmland, and forests with single texture features,
which means that the distribution of ground objects is uneven. Too many samples like these
images will not help improve classification performance, but will lead to an increase in cal-
culation cost. For training samples, each image is cut into non-overlapping image patches
with the size of 224 × 224. In order to keep consistent with the number of images selected
from public remote sensing scene classification data sets, we randomly selected 65,797
images from the generated image patches for the pre-training process of the self-supervised
learning model. We combine PID and GID to construct a large-scale unlabeled dataset with
a total of 131,594 images, which we name as Large Scale Image Dataset (LSID). In addition,
to verify the performance of the self-supervised learning method, we selected two complex
scene classification datasets as train datasets and test datasets for scene classification tasks,
namely the NWPU-RESISC45(NWPU) and AID datasets, the detailed descriptions are
shown in Table 1.
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Table 1. The experiment datasets.

Datasets Image Number
Perclass

Number of Scene
Categories Total Number Size Data Sources

UC Merced [13] 100 21 2100 256 × 256 Aerial orthoimagery

WHU-RS19 [50] 50∼61 19 1005 600 × 600 Google Earth

SIRI-WHU [51] 200 12 2400 200 × 200 Google Earth

RSI-CB256 [52] about 690 35 24,000 256 × 256 Google Earth and
Bing Maps

RSSCN7 [53] 400 7 2800 400 × 400 Google Earth

RSC11 [54] about 100 11 1232 512 × 512 Google Earth

OPTIMAL-31 [55] 60 31 1860 256 × 256 Google Earth

PatternNet [56] 800 38 30,400 256 × 256 Google Earth

GID [57] - - - 6800 × 7200 Gaofen-2

NWPU-
RESISC45 [4] 700 45 31,500 256 × 256 Google Earth

AID [58] 220∼420 30 10,000 600 × 600 Google Earth

B. Experiment Setup
Our experiments are composed of two groups. The purpose of the first group is to

verify the performance of our proposed self-supervised learning network. We conduct
pre-training experiments on the LSID dataset, and then perform the scene classification ex-
periment on the NWPU dataset and AID dataset, respectively, which we call self-supervised
learning scene classification (SSLSC). Meanwhile, we also exploit the VIT model pre-trained
on the natural dataset to conduct scene classification experiments on the NWPU dataset
and AID dataset to compare and analyze the advantages of the SSLSC method. We also
use the VIT model for scene classification based on the SSLSC method, which has the same
structure as the VIT model used for pre-training on natural datasets. The other group of the
experiment is designed to compare the performance of our proposed self-supervised learn-
ing network on the PID and AID datasets, the models are pre-trained on these two datasets,
respectively. Then, we fine-tune the model on the NWPU dataset and AID dataset for scene
classification. In the pre-training stage of the SSLSC method, we set the learning rate to
1.5 × 10−4, the epoch to 500, and the batch to 64. The depth of the transformer encoder in
the encoder is set to 12, and it is set to 4 in the decoder. The random mask ratio of the image
patches is set to 0.75, which means 75% of the image patches are randomly discarded for
each image during the encoding stage and then reconstructed during the decoding stage.
In the model fine-tuning stage of the SSLSC method, the learning rate is set to 1 × 10−3, the
epoch is set to 200, the batch is set to 64, and the depth of the transformer encoder in the
encoder is set to 12. The attention head is set to 12 and the embedding layer dimension is
set to 768 in all encoders. For the NWPU data set, the training ratio is set to 10% and 20%,
whereas for the AID data set, the training ratio is set to 20% and 50%, respectively. To obtain
reliable results, the experiments were repeated 10 times during scene classification. We
choose the overall accuracy and confusion matrix to evaluate the performance of the model
and finally calculate the average of the overall accuracy of 10 experiments as the accuracy
of the model. In addition, we use the best model in the training process to calculate the
confusion matrix. The settings of these parameters of the VIT model pre-trained on the
natural dataset are consistent with the VIT model fine-tuned by SSLSC, and we choose the
ViT-B_16 model trained on the ImageNet2021 and ImageNet-21 data sets as the pre-trained
model. All our experiments are conducted on a computer, which has 2.70 GHz × 12 core
CPU with 32GB memory, configured with a GeForce GTX 1080 Ti graphics card with 11GB
memory capacity.

C. Experimental results of SSLSC
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To validate the effectiveness of our proposed method, we compare it with some
other state-of-the-art methods in this section. As is known to all, the performance of the
method based on deep learning in scene classification far surpasses the traditional machine
learning method based on handcrafted feature extraction. Therefore, the methods used for
comparison are all based on deep learning.

(1) Result on LSID dataset: LSID is a large-scale unlabeled training dataset that we
constructed to train the self-supervised learning task. The goal of this stage is to learn the
features of the image from the unmasked image patches, so as to recover the pixels of the
masked image patches. The final pre-trained model can be used as a feature extractor for
fine-tuning in downstream scene classification tasks. We can show the reconstruction effect
of the model on the pixels of the masked image patches. The better the reconstruction
effect of image pixels, the more representative the features extracted by the encoder of
the self-supervised learning framework, and it also shows that the pre-trained model is
suitable as a feature extractor for downstream tasks. Now, we randomly select an image
from each of five typical scene categories which represent mountain, dense residential,
commercial area, church, and airport to restore the image pixels and evaluate the feature
extraction ability of the proposed model. We carried out the experiments on the NWPU
dataset and AID dataset, respectively.

The experimental results on the two datasets are shown in Figures 3 and 4, respectively.
The images of five scene categories are represented from left to right, which are mountain,
dense residential, commercial area, church, and airport. The images from top to bottom
represent the original image, the masked image, and the reconstructed image in turn.
Comparing the results in Figures 3 and 4, we can find that the discarded pixels can be
well recovered. In particular, through the comparison between the original image and the
reconstructed image, we can see that the latter can be consistent with the former in color and
texture. Through analysis, we can draw a conclusion that the encoder of the self-supervised
learning framework proposed in this paper can extract representative image features, which
have good robustness. The pre-trained model can well predict the discarded pixels of the
masked image patches on the NWPU dataset and AID dataset.

Figure 3. Pixel reconstruction results of self-supervised learning pre-trained model on NWPU
data set.
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Figure 4. Pixel reconstruction results of self-supervised learning pre-trained model on AID data set.

(2) Result on NWPU dataset: Table 2 shows the overall accuracy comparison of scene
classification, and Figure 5 shows the classification confusion matrix, all of which are based
on the NWPU dataset. The methods in Table 2 mainly include the current mainstream CNN-
based methods and their variants. For example, AlexNet [20], GoogleNet [22], VGGNet-
16 [21] and EfficientNet [59] are all classic CNN networks. D-CNN with AlexNet [60],
D-CNN with GoogleNet [60], D-CNN with VGGNet-16 [60], Siamese ResNet50 [61] and
ResNeXt-101+MTL [44] are variants of AlexNet, GoogleNet, VGGNet-16, ResNet50 and
ResNeXt-101, respectively. In addition, we also list some excellent methods proposed in
the past two years and compare their classification accuracies. These methods include
RCOVBOVW [62], EMTCAL [63], T-CNN [64], and ResNet-101+EAM [65]. From Table 2, it
can be observed that the overall accuracy of our method surpasses all methods. Among
the previous methods listed in the table, Hydra [66] has the best performance on the 10%
training dataset, with an overall accuracy of 92.44%, but our method has an overall accuracy
of 92.68%, which is 0.24% higher than the former. Hydra [66] is also the method that
performs best on 20% of the training dataset, the overall accuracy reaches 94.51%, but our
method has an overall accuracy of 94.73%, which is 0.22% higher than the former. It is worth
emphasizing that ResNeXt-101+MTL [44] is also a self-supervised learning method, and
on 10% and 20% training datasets, the overall accuracy is 91.91% and 94.21%, respectively.
Compared with this, our overall accuracy is improved by 0.77% and 0.52%, respectively.
In addition, ViT-B_16 [224 × 224] represents the Vision Transformer framework, the input
image size is 224 × 224, and the image is divided into 16 × 16 image patches. We use the
pre-trained model, which is trained on two natural datasets (ImageNet2021 and ImageNet-
21), to fine-tune for the scene classification task, the overall accuracy is 91.89% on 10% of
the training dataset, and which is 93.26% on 20% of that dataset. It is obviously that our
overall accuracy is improved by 0.79% and 1.47%, respectively.
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Table 2. OA (%) of eighteen kinds of methods and our method under the training ratio of 10% and
20% on NWPU dataset.

Method
Training Ratio

10% 20%

AlexNet [20] 76.69 ± 0.21 79.85 ± 0.13

GoogleNet [22] 76.19 ± 0.38 78.48 ± 0.26

VGGNet-16 [21] 76.47 ± 0.18 79.79 ± 0.15

D-CNN based on AlexNet [60] 85.56 ± 0.20 87.24 ± 0.12

D-CNN based on
GoogleNet [60] 86.89 ± 0.10 90.49 ± 0.15

D-CNN based on
VGGNet-16 [60] 89.22 ± 0.5 91.89 ± 0.22

Siamese ResNet50 [61] - 92.28

EfficientNet [59] 90.91 ± 0.16 94.37 ± 0.14

ADSSM [67] 91.69 ± 0.22 94.29 ± 0.14

SF-CNN [68] 89.89 ± 0.16 92.55 ± 0.14

DNE [69] - 96.01

Hydra [66] 92.44 ± 0.34 94.51 ± 0.21

ResNeXt-101+MTL [44] 91.91 ± 0.18 94.21 ± 0.15

RCOVBOVW [62] 90.25 ± 0.13 92.37 ± 0.18

EMTCAL [63] 91.63 ± 0.19 93.65 ± 0.12

T-CNN [64] 90.25 ± 0.14 93.05 ± 0.12

ResNet-101+EAM [65] 91.91 ± 0.12 94.29 ± 0.09

ViT-B_16 [224 × 224] 91.89 ± 0.43 93.26 ± 0.1

SSLSC+LSID 92.68 ± 0.15 94.73 ± 0.11

In addition, Figure 5 shows the confusion matrix for scene classification on the NWPU
dataset. From Figure 5, we can observe that the proposed model can identify most of the
scene categories correctly, their overall accuracy exceeds 90%, especially for the images
with scene categories of airplane, chaparral, circular farmland, cloud, harbor, parking lot,
snowberg, and storage tank, the overall accuracy reaches 100%. However, the recognition
accuracy is relatively low for some scene categories. For example, for church, commercial
area, mountain, palace, railway station, and wetland, their overall accuracies are 87%, 89%,
87%, 84%, 89% and 89%, respectively. Through further analysis, we can summarize the
reasons for the lower recognition accuracy of these scene categories. Figure 5 shows that
8% of the churches were mistakenly classified as palaces, while 11% of the palaces were
mistakenly classified as churches, because churches and palaces have many similarities in
architectural structure. Overall, 6% of the mountains were identified as deserts because
the sparsely vegetated mountains had a similar color to the desert, and 7% of the railway
stations are identified as railways. According to common sense, there are generally dense
railways around the railway station, and they are easy to identify as railways. Additionally,
6% of wetlands were identified as lakes because both wetlands and lakes contain water
bodies, and wetlands are easily classified as lakes when there is a lot of water in them.
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Figure 5. Confusion matrix of our proposed method on NWPU dataset.
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(3) Result on AID dataset: Table 3 and Figure 6 are the scene classification results on
the AID dataset. Similar to Table 2, the methods compared in Table 3 mainly include the
current mainstream CNN-based methods and their variants. We can see that our method
has the highest overall accuracy than other methods when the training ratio is set to 50%.
The accuracies are 94.13% and 97.44% on the 20% and 50% training datasets, respectively.
In the previous methods, on 20% training dataset, the method with the highest accuracy is
EMTCAL [63], and the overall accuracy reaches 94.69%. Unfortunately, the accuracy of our
method is 0.56% lower than that. On the 50% training dataset, the method with the highest
accuracy is CNNs-WD [70], and the accuracy reaches 97.24%. Although CNNs-WD [70]
is already excellent, the accuracy is 0.46% lower than that of our method. In addition, we
also compare with other self-supervised learning methods and Vision Transformer, among
which, CMC [26] and ResNeXt-101+MTL [44] are self-supervised learning methods. On the
50% training dataset, the overall accuracy of CMC [26] is 95.58%, and the overall accuracy of
ResNeXt-101+MTL [44] is 96.89%, but our method outperforms them by 1.86% and 0.55%,
respectively. On two different rates of a training dataset, the overall accuracy of Vision
Transformer is 93.54% and 96.25%, which are 0.59% and 1.19% lower than our method.
Figure 6 shows the confusion matrix. It can be observed from Figure 6 that nearly half of the
scene categories have an overall accuracy of 100%. They are baseball field, beach, bridge,
desert, forest, meadow, mountain, pond, port, river, sparse residential, stadium, storage
tanks, and viaducts. Only two scene categories have overall accuracies below 90%, resort
and square, with accuracies of 87% and 89%, respectively. Through further analysis, it can
be seen that 3% of the resorts are identified as parks, and 3% of the resorts are identified as
schools. In addition, 3% of squares are identified as center, and 3% of squares are identified
as church. Resort, park, and square are all interspersed with trees and grass among the
sparse buildings, there are some similarities in spectral and spatial arrangement. Square,
center, and church have a common feature that they all contain circular building structures,
then the geometric shapes shown in the images have certain similarities, so these scene
categories are very easy to be misclassified. Compared with the current state-of-the-art
methods, this shows that our method is superior to most of the previous methods.

D. Comparison of Classification Accuracies Based on Different Pre-Training Datasets
As described in the dataset description section above, the GID dataset is an unlabeled

data set constructed by directly cropping the visible light band of the Gaofen-2 remote
sensing image into image patches. The generation process requires no manual intervention
and can be completed in just a few minutes. The PID dataset is produced by integrating
many public scene classification datasets. Although we have not used labels, the construc-
tion process of these datasets is very complex, and they are produced by careful manual
selection. Labeling datasets requires strong professional knowledge and rich experience,
and it also takes a long time. Therefore, so far, there are not enough labeled datasets that
can be used for scene classification in remote sensing. In this section, we use GID and
PID datasets to train the self-supervised learning model, respectively, then fine-tune the
pre-trained model on the labeled scene classification dataset, and evaluate the performance
of the model with overall accuracy. Our experiments are performed on the NWPU and AID
datasets, respectively. Additionally, we also compare the results with ViT-B_16 [224 × 224]
and SSLSC+LSID. Tables 4 and 5 show the experimental results. It can be seen from Table 4
that the overall accuracy of SSLSC+PID is higher than that of SSLSC+GID, which is 0.24%
higher on 10% training set and 0.4% higher on 20% training set respectively. Compared with
SSLSC+LSID, the overall accuracy of SSLSC+PID is 5.23% and 3% lower on the 10% and
20% training sets, respectively. Table 5 shows the results on the AID dataset. The overall
accuracy of SSLSC+PID is 0.46% higher than that of SSLSC+GID on 20% of the training rate.
However, on 50% training rate, the results are exactly the opposite. The overall accuracy
of SSLSC+PID is 0.2% higher than that of SSLSC+GID. Compared with SSLSC+LSID, the
overall accuracy of SSLSC+PID is 2.39% and 2.54% lower on the 20% and 50% training sets,
respectively. In addition, both the metrics of SSLSC+GID and SSLSC+PID in Tables 4 and 5
were lower than ViT-B_16 [224 × 224]. The ViT-B_16 [224 × 224] is a traditional supervised
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learning framework. In this experiment, we choose the model trained on ImageNet2021
and ImageNet-21 datasets, which have more than one million labeled samples and contain
1000 scene categories as the pretrained model. However, in the comparison experiments,
both PID and GID datasets contain 65,797 samples, and compared with natural image
datasets, these two datasets are much smaller in scale. Hence, the overall accuracy of
ViT-B_16 [224× 224] is lower. The LSID dataset is composed of the PID dataset and the GID
dataset. In all combinations in Tables 4 and 5, the performance of SSLSC+LSID outperforms
the other methods.

Table 3. OA (%) of twenty kinds of methods and our method under the training ratio of 20% and
50% on AID dataset.

Method
Training Ratio

20% 50%

CaffeNet [58] 86.86 ± 0.47 89.53 ± 0.31

VGG-VD-16 [58] 86.59 ± 0.29 89.64 ± 0.36

GoogLeNet [58] 83.44 ± 0.40 86.39 ± 0.55

DenseNet121 [71] 93.76 ± 0.23 94.73 ± 0.26

DenseNet169 [71] 92.43 ± 0.36 94.17 ± 0.33

VGG19 [72] 87.73 ± 0.25 91.71 ± 0.42

ResNet50 [72] 92.39 ± 0.15 94.69 ± 0.19

InceptionV3 [72] 93.27 ± 0.17 95.07 ± 0.22

HW-CNNs [73] - 96.98 ± 0.33

SF-CNN [68] 93.60 ± 0.12 96.66 ± 0.11

CNNs-WD [70] - 97.24 ± 0.32

RSFJR [74] - 96.81 ± 1.36

GBN [75] 92.20 ± 0.23 95.48 ± 0.12

CNN-CapsNet [76] 93.79 ± 0.13 96.32 ± 0.12

CMC [26] - 95.58

ResNeXt-101+MTL [44] 93.96 ± 0.11 96.89 ± 0.18

EMTCAL [63] 94.69 ± 0.14 96.41 ± 0.23

T-CNN [64] 94.55 ± 0.27 96.72 ± 0.23

ResNet-101+EAM [65] 94.26 ± 0.11 97.06 ± 0.19

ViT-B_16 [224 × 224] 93.54 ± 0.25 96.25 ± 0.17

SSLSC+LSID 94.13 ± 0.29 97.44 ± 0.14

Table 4. OA (%) of experiment on NWPU with different pre-training datasets.

Method
Training Ratio

10% 20%

SSLSC+GID 87.21 91.33

SSLSC+PID 87.45 91.73

ViT-B_16 [224 × 224] 91.89 93.26

SSLSC+LSID 92.68 94.73
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Figure 6. Confusion matrix of our proposed method on AID dataset.
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Table 5. OA (%) of experiment on AID with different pre-training datasets.

Method
Training Ratio

20% 50%

SSLSC+GID 91.28 95.10

SSLSC+PID 91.74 94.90

ViT-B_16 [224 × 224] 93.54 96.25

SSLSC+LSID 94.13 97.44

Through further analysis, it can be found that the PID dataset has several advantages
over the GID dataset. First of all, the PID dataset has high inter-class dissimilarity and low
inter-class similarity. Because it is manually selected, the distribution of ground objects
in each image is more in line with the corresponding scene category. Secondly, for the
downstream scene classification task, the distribution of scene categories in the PID dataset
is more uniform, which can ensure that each scene category has a certain amount of data.
Taking churches as an example, the GID data comes from cities in China, where the number
of churches is relatively small. Finally, the PID dataset comes from a wide range of sources,
some from aerial orthophotos, some from Google Earth, etc., which included different
types of sensors and different sizes of spatial resolution. Therefore, the overall accuracy
on the PID dataset is slightly higher in most cases. In general, the accuracy difference
between SSLSC+GID and SSLSC+PID is not great, but the GID dataset is very easy to obtain,
which has great advantages in applying large-scale unlabeled datasets to the training of
self-supervised learning.

E. Effects of different pre-training models on training loss
In this section, we mainly analyze the effects of different pre-training models on train-

ing loss. LSID, GID, and PID represent three different pre-training datasets, respectively.
We pre-train the self-supervised model on these three datasets to form three different kinds
of pre-trained models. Then, we fine-tune the models on the downstream task of remote
sensing scene classification; SSLSC + LSID, SSLSC + GID, and SSLSC + PID represent these
three different methods, respectively. VIT stands for Vision Transformer, which uses a
model (i.e., ViT-B_16 [224 × 224]) pre-trained on a natural dataset. We analyze the effects of
different pre-training models on training loss in the process of training the scene classifica-
tion model. Our experiments are performed on the NWPU dataset and the AID dataset, the
rate of the training set is set to 20% and 50%, respectively, and the epoch is set to 200. The
results are shown in Figures 7 and 8. We can observe from Figures 7 and 8 that the changing
trend of the loss value of SSLSC+LSID, SSLSC+GID, and SSLSC+PID on the two data sets is
almost the same, and the loss value decreases rapidly with the progress of training. When
the epoch is greater than 75, the loss value only fluctuates in a small range, and the model
has converged. However, compared with our method, the changing trend of the loss value
of VIT is quite different. On the NWPU dataset, the loss value tends to stabilize when the
epoch value is about 150. On the AID dataset, the model starts to converge when the epoch
value is greater than 170. In addition, the variation range of losses is also quite different on
two different pre-trained models. On the pre-training model based on unlabeled remote
sensing data sets, the loss range is smaller, between 1.5 and 4. On pre-trained models based
on natural data sets, the loss variation is much larger, between 0 and 4. Which may be one
of the reasons why our method can reach convergence first. In general, compared with the
VIT model, which is pre-trained on the natural dataset, our method can reach convergence
first, which can save training time. Further analysis shows that an unlabeled remote sensing
dataset we used in the pre-trained stage is consistent with the scene classification dataset in
the downstream task in terms of spectrum, texture, and geometric structure. Therefore, our
method can learn more representative image representations, convergence can be achieved
with fewer iterations. In addition, the dataset we used does not need manual annotation,
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so we can complete the task of scene classification on remote sensing image datasets more
efficiently.

Figure 7. Train loss of our proposed method on NWPU dataset.

Figure 8. Train loss of our proposed method on AID dataset.

5. Conclusions

In this study, we proposed a scene classification method for a remote sensing image
based on a self-supervised learning framework, which can use an unlabeled dataset to
learn the representation of the image, and then transfer the learned knowledge to the scene
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classification task. The self-supervised learning framework consists of an encoder and
a decoder. The function of the encoder is to process the unmasked image patches, learn
the feature representation of the image, and then combine them with the mask token of
the image to form a joint encoding. The role of the decoder is to reconstruct the pixels of
the masked image patches. The whole process is trained on unlabeled images, and the
training dataset is constructed based on Gaofen-2 remote sensing images and public scene
classification datasets. Then, we transfer the parameter weights learned by the encoder to
fine-tune the scene classification task. The scene classification experiments were carried out
on two public and challenging datasets (NWPU dataset and AID dataset), respectively. We
used the OA of the classification and the confusion matrix to evaluate the performance of
the model and compared it with the current mainstream scene classification methods. We
can draw a conclusion that our method is superior to most state-of-the-art methods. We
conducted comparative experiments on two different unlabeled datasets, one of which was
integrated based on the public hand-crafted scene classification datasets, and the other was
randomly generated based on Gaofen-2 satellite imagery. Through analysis, our method
can also achieve good performance on an unlabeled dataset that was generated without
human intervention. Finally, we analyzed the effects of different pre-training models
on training loss. The results show that our method can reach convergence with fewer
iterations, then we can save the training time. In conclusion, our method can overcome the
dependence on large-scale labeled datasets of the traditional supervised learning methods.
The above experiments prove that our method has obvious advantages over other methods

In future research, we will consider using multi-source data to randomly generate
unlabeled datasets to train the self-supervised learning model and then apply it to the scene
classification of remote sensing images. These datasets include different spatial resolutions,
different band combinations, different sensors, and different countries and regions, so as to
further improve the accuracy of scene classification.
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