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Abstract: In this paper, the problem of mainlobe deceptive jammer suppression is solved with
the frequency diversity array-multiple-input multiple-output (FDA-MIMO) radar system. At the
modeling stage, based on the FDA-MIMO radar, a quadratic phase code (QPC) is applied along
the slow time dimension in the transmit array. In the receiver, after decoding and principal range
compensation, the true and false targets that are generated in an identical angle, can be discriminated
in the joint transmit-receive-Doppler frequency domain. Particularly, the false targets are equivalently
moved from the mainlobe to the sidelobes in the transmit spatial frequency domain. Then, by
performing the data-dependent transmit-receive-Doppler three-dimensional beamforming, the false
targets are suppressed owing to Doppler and range mismatches. Moreover, by moving the jammers
to nulls in the Doppler frequency domain, the capability in terms of the maximum number of
suppressible jammers can be strengthened with an appropriate coding coefficient and frequency
increment. Numerical results can certify the suppression capability of the QPC-FDA-MIMO radar.

Keywords: mainlobe deceptive jammer suppression; quadratic phase code; three-dimensional beam-
forming; FDA-MIMO radar

1. Introduction

Radar systems have been widely used in military and civil applications owing to
their advantages of detecting targets in all-time and all-whether [1,2]. However, in the
complex electromagnetic environment, the jamming signals pose a severe threat to radar
systems [3,4]. Among distinct types of jammers, deceptive jammers are generated by in-
tercepting the radar’s waveform and re-transmitting it to fool the victim radars, making
it tough to discriminate between false targets and true ones [5]. Particularly, after some
appropriate modulations of the digital radio frequency memory (DRFM), the deception is
strengthened, and the false targets are produced with parameters such as angle, waveform,
and frequency the same as that of the true target [6,7]. The jammers which are situated at
the sidelobes of the radar antenna beam can be effectively suppressed via spatial processing
methods, such as generalized sidelobe canceller (GSC), ultra-low sidelobe antennas, and
space-time adaptive processing (STAP) [8,9]. However, the suppression of mainlobe decep-
tive jammers is more challenging due to limited degrees-of-freedom (DOFs) to distinguish
the true one from the false targets in the angle domain.

At present, methods to suppress mainlobe jammers have been explored by exploiting
the discrepancies between the false targets and the true target in various domains, such
as the time domain [10], frequency domain [11–13], spatial domain [14], and polarization
domain [15]. Particularly, pulse frequency agility was utilized in [16] by adopting distinct
frequencies among the transmit pulses. However, the coherence among pulses cannot be
ensured. Considering the suppression methods in the spatial domain, the methods based
on compressed sensing were utilized to reconstruct the echo signal for intermittent sam-
pling jammer [17]. In addition, the projection matrix/blocking matrix was utilized [18,19].
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Nevertheless, the projection matrix/blocking matrix is difficult to construct and the meth-
ods are sensitive to errors. Moreover, the signal can be separated from the source signal
based on the blind source separation [20–22]. However, the jammers and target must be
independent or less correlated, and additional prior knowledge is required to estimate the
number of sources. In [23–25], the polarization filter was designed to suppress the jammers.
However, some considerable limitations in practice exist when using the aforementioned
methods for suppressing the mainlobe deceptive jammers with the characteristics of high
density and high fidelity. Thus, it is worth investigating suppression approaches based on
novel radar frameworks.

In the decade, the frequency diversity array-multiple-input multiple-output (FDA-
MIMO) radar has attracted extensive attention. Unlike the phased array radar, a frequency
increment is adopted between all the adjacent elements in the transmit array, and the
range-angle-dependent transmit beampattern is generated [26–28]. Hence, extra DOFs in
the range domain are obtained, and the flexibility in signal processing is improved [29]. To
this end, a large number of studies are focused on jammer suppression by utilizing data-
dependent and data-independent beamforming methods in the FDA-MIMO radar, where
the false targets are suppressed by means of nulling in the joint transmit-receive spatial
domain [30–34]. Moreover, the PBN-BF method was utilized to improve the robustness of
jammer suppression by broadening the nulls [35]. In addition, similar to FDA-MIMO radar,
the suppression of mainlobe deceptive jammers with the Element-Pulse-Coding (EPC)-
MIMO radar was investigated [35–37]. Moreover, a new technology based on polarization
was developed in [38] by jointly utilizing the information including the angle, range, as well
as polarization to suppress the jammers. Additionally, a low-rank-low-rank-sparse method
was proposed to recover the signal of the target and suppresses the blocking jamming [39].
In [40], an optimization model was established by considering the frequency increments
regulation based on non-uniformly spaced FDA radar. However, the maximum number
of jammers with such a method equals that of the transmit elements. In other words, the
performance of jammer suppression is limited to the system DOFs.

In this paper, to address the issue of mainlobe jammer suppression, a novel coding
scheme in FDA-MIMO is suggested. During the modeling phase, a quadratic phase code
(QPC) is introduced in the slow time pulses. In this regard, extra DOFs in both range and
Doppler domains can be obtained. In the receiver, after decoding and principal range
compensation, the true and false targets that locate a couple of pulses behind the true target
are discriminated in the joint transmit-receive and Doppler frequency domain. In particular,
these false targets are equivalently moved to the sidelobes of the equivalent transmit beam
pattern. Furthermore, the data-dependent transmit-receive-Doppler three-dimensional
beamforming is developed to suppress the false targets by means of nulling in the transmit-
receive-Doppler domain due to range and Doppler mismatches. At the analysis stage, the
designs of the coding coefficient and frequency increment are investigated to increase the
number of suppressible false targets, where the jammers are moved to the nulls in the
beampattern of the Doppler frequency domain. Furthermore, to illustrate the effectiveness
of the mentioned suppression method, the simulation results are provided.

In this paper, the structure is given as follows. The QPC-FDA-MIMO radar system’s
signal model is provided in Section 2. The principle of main lobe deceptive jammer
suppression with the QPC-FDA-MIMO radar is investigated in Section 3. To demonstrate
the performance of the developed approaches, the numerical simulations are presented in
Section 4. In Section 5, conclusions are drawn.

2. Signal Model of FDA-MIMO Radar
2.1. Transmit Signal Model

A collocated MIMO radar is considered in a uniform linear array with N transmit and
M receive elements, where the first element is taken as the reference. A small frequency
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increment ∆ f is introduced across the array elements, and the carrier frequency of the m-th
element is assigned as

fm = f0 + (m− 1)∆ f , m = 1, 2, · · · , M (1)

where f0 indicates the reference carrier frequency.
Different from the conventional FDA-MIMO radar, the QPC factor of the k-th pulse is

designed as ϕmod(k) = exp
{

jπγk2} with γ the coding coefficient. Hence, the signal which
is transmitted by the m-th antenna element is:

sm,k(t) =

√
E
M

rect
(

t
Tp

)
Φm(t) exp{j2π fmt}ϕmod(k) (2)

where Tp denotes the radar pulse duration, E is the total energy, rect
(

t
Tp

)
=

{
1, 0 < t < TP
0, else

,

Φm(t) indicates the orthogonal waveform transmitted by the m-th element with the complex
envelope

Φm(t) =
1√
τb

L

∑
l=1

gm(l)rect
(

t− (l − 1)τb
τb

)
, l = 1, . . . , L (3)

where τb =
Tp
L is the length of the subpulse, L is the number of the subpulses,

gm(l) = ejzm(l), zm(l) ∈ [0, 2π].

2.2. Receive Signal Model

Assume that there is a point-like target in the far-field at angle θ and range Rs, whose
delayed pulse number is qs. Considering K pulses, the coding phase related to the k-th
(k = 1, · · · , K) pulse can be expressed as:

ϕmod,s(k) = ejπγ(k−qs)
2

(4)

The signal that is received by the n-th (n = 1, · · · , N) element is expressed as:

xn,k(t− τm,n) ≈ ξrect
(

t− τ0

Tp

) M

∑
m=1

Φm,k(t− τ0)ej2π∆ f (m−1)(t−τm,n+(k−1)Tr)ej2π f0(t−τm,n+(k−1)Tr)ej2π fd(k−1)Tr ϕmod,s(k) (5)

where the approximation holds for the assumption of a narrow band, ξ represents the
complex coefficient of the point target. τm,n = τ0− (m−1)d sin(θ)

c − (n−1)d sin(θ)
c represents the

round-trip propagation time delay, τ0 = 2Rs
c represents the common time delay, d donates

the inter-element spacing. fd = 2vs
λ0

is the Doppler frequency of the target with vs and λ0,
the target speed and wavelength, respectively.

Firstly, the received signal is mixed with e−j2π f0t. Then, as is shown in Figure 1, a group
of filters is utilized on each receive channel. What is more, take the l-th (l = 1, 2, . . . M) filter
as an example, and the received signal is firstly multiplied with e−j2π∆ f (l−1)t. Subsequently,
the transmitted waveforms are separated via matched filtering, where the l-th matched
filter is denoted as hl(t) = x∗l (−t), and the resulting signal is written as

xn,k(t) ≈ ξe−j2π f0τm,n rect
(

t− τ0

Tp

)
e−j2π∆ f (m−1)τm,n+j2π fd(k−1)Tr ϕmod,s(k) sin c(t− τ0) (6)
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Figure 1. Procedures of receive processing.

Subsequently, the QPC demodulation is performed along the slow time, and the
demodulation phase of each receive array element in the k-th pulse is defined as

ϕde(k) = e−jπγk2
(7)

After QPC demodulation, the residual phase is expressed as

ϕres(k) = ϕmod,s(k)ϕde(k) = e−j2π∆ fskejπqs
2γ (8)

where the first exponential term is linearly dependent on k, ∆ fs indicates the additional
normalized Doppler shift, which is expressed as

∆ fs = qsγ (9)

By stacking the received signals corresponding to N receive elements with K pulses,
the received signal is organized as an MN × K-dimensional vector, i.e.,

Ys = α{r� [b(θ)⊗ a(Rs, θ)]}hT( fD − ∆ fs) (10)

where r = 1N ⊗ r̃ ∈ CMN×1 with r̃ = [r̃1, r̃2, . . . , r̃M]T ∈ CN×1 is the output vector
after matched filtering, and fD = fd

fPRF
is the targets’ normalized Doppler frequency.

h( fD − ∆ fs) ∈ CK×1, b(θ) ∈ CN×1 and a(Rs, θ) ∈ CM×1, respectively, denote the Doppler
vector, the receive steering vector, and the transmit steering vector, with the forms of

h( fD − ∆ fs) = [1, ej2π( fD−∆ fs), . . . , ej2π( fD−∆ fs)(K−1)]
T

(11)

b(θ) = [1, ej2π d
λ sin θ , . . . , ej2π d

λ sin θ(N−1)]
T

(12)

a(Rs, θ) = [1, e−j2π∆ f Rs
c , . . . , e−j2π∆ f Rs

c (M−1)]
T
� [1, ej2π d

λ sin θ , . . . , ej2π d
λ sin θ(M−1)]

T
(13)

3. Principle of Mainlobe Deceptive Jammer Suppression in QPC-FDA-MIMO
3.1. Generation of False Targets

Consider a self-defense deception jammer equipped with a false target generator (FTG)
situated at an identical angle to the true one, where the range deception is achieved with
several pseudo-randomly distributed false targets after some appropriate modulation in
DRFM. Actually, the false targets are located behind the true one either in the same received
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pulse or at least one transmit pulse. In this paper, the latter case is concentrated on, namely,
the false targets and the true target have distinct numbers of delayed pulses.

The generation of the false targets in the QPC-FDA-MIMO radar is shown in Figure 2,
where the two false targets locate at least one slow time pulse behind the true one. However,
in an identical receive pulse, the false targets can be either ahead of the target, that is,
the false target 1, or behind the true one, that is, the false target 2. Moreover, QPC is
implemented among pulses while it is identical for all transmit elements.
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Let us consider H false targets and a case study of the h-th (h = 1, 2, . . . , H) false target,
whose number of delayed pulses is qjh, and its QPC code is the same as the k− qj-th pulse
as shown in Figure 2. Hence, the QPC code of the h-th false target is expressed as

Φmod,j(k) = ejπγ(k−qjh)
2

(14)

Then, after QPC demodulation, the residual phase is

Φres,j(k) = e−j2π∆ fjhkejπqjh
2γ (15)

where ∆ fjh denotes the additional normalized Doppler frequencies of the false target, i.e.,

∆ fjh = qjhγ (16)

By collecting the received signals from all elements, the received jamming signal can
be stacked into an MN × K-dimensional vector, i.e.,

Yj = α
{

r� [b(θ)⊗ a(Rj, θ)]
}

hT( fD − ∆ fjh) (17)

where Rj denotes the equivalent location of the h-th false target after time modulation in
the FTG, h( fD − ∆ fjh) ∈ CK×1 and a(Rj, θ) ∈ CM×1 denote the Doppler vector and the
transmit steering vector of the h-th false target, respectively with the forms of

h( fD − ∆ fjh) = [1, ej2π( fD−∆ fjh), . . . , ej2π( fD−∆ fjh)(K−1)]
T

(18)
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a(Rj, θ) = [1, e−j2π∆ f
Rj
c , . . . , e−j2π∆ f

Rj
c (M−1)]

T
� [1, ej2π d

λ sin θ , . . . , ej2π d
λ sin θ(M−1)]

T
(19)

It can be observed from (19) that after QPC demodulation, the false targets and the
true target have distinct additional normalized Doppler shifts. Hence, the false targets and
the true target are can be discriminated in the Doppler frequency domain.

Furthermore, the total received signal, considering H false targets, the true target and
the noise component, is expressed as

Y =
H

∑
h=1

Yjh + Ys + N (20)

where N ∼ CN
(
0, σ2 IMN

)
denotes the white Gaussian noise with Rn = σ2 IMN the covari-

ance matrix, IMN donates the MN ×MN-dimensional identity matrix, and σ2 donates the
noise power.

3.2. Mainlobe Deceptive Jammer Suppression

Based on the transmit and receive steering vectors in the QPC-FDA-MIMO radar, the
transmit spatial frequencies of the true and the h-th false targets are:

fT,s = −
2∆ f Rs

c
+

dT

λ0
sin(θ) (21)

fT,j = −
2∆ f Rj

c
+

dT

λ0
sin(θ) (22)

where Rs and Rj are the actual ranges of the true and the h-th false target, which are
represented as

Rs = Ruqs + rs (23)

Rj = Ruqjh + rj (24)

where Ru = c/(2 fPRF) indicates the maximum unambiguous range with fPRF the pulse
repetition frequency. rs and rj indicate the principal ranges of the true target and the h-th
false target, respectively.

Specifically, let us construct the compensating vector as [30]

y1 = [1, ej2π fc1 , · · · , ej2π fc1(M−1)]
T

(25)

where fc1 = 2ra∆ f
c is the range compensating frequency, and ra is the principal range

obtained by the range bin size and the range bin number.
What is more, the receive-transmit joint compensation vector is constructed as

A = 1N×K ⊗ y1 (26)

Then, the received data are compensated as

Ỹ = A� Y (27)

After the compensation range, bin-by range bin [34], the ranges of the true and the
h-th false target can be, respectively, written as

R̃s = Ruqs (28)

R̃j = Ruqjh (29)
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Accordingly, the transmit spatial frequencies of the true and the h-th false target are

f̃T,s = −
2∆ f Ruqs

c
+

dT

λ0
sin(θ) (30)

f̃T,j = −
2∆ f Ruqjh

c
+

dT

λ0
sin(θ) (31)

Hence, the targets relative to distinct range bins are concentrated in an identical receive
pulse after range compensation [34]. In other words, the transmit spatial frequencies of the
targets that are located in the same pulses (i.e., the range ambiguity region) are equal. As
shown in Figure 3, after compensation, the false targets 1 and 2 are situated in the same
position in the joint transmit-receive spatial frequency domain for the reason that they
have identical delayed pulses. However, the false target 4 and the true target cannot be
distinguished in the transmit-receive spatial domain because the number of delayed pulses
is M. In order to discriminate the false target 4 and the true one, it is necessary to utilize the
Doppler information.
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According to (9) and (16), the difference in the Doppler frequency between the true
and the h-th targets is

∆ fd = ∆ fs − ∆ fjh = qsγ− qjhγ = pγ (32)

where p =
∣∣∣qs − qjh

∣∣∣ is the delayed pulse difference between the h-th false target and the
true target. It is observed from (32) that the Doppler frequency difference depends on p and
γ. By this means, the false targets and the true target can be discriminated in the Doppler
frequency domain although they have an identical spatial frequency.

To proceed, a range-angle-Doppler-dependent three-dimensional (3D) beamformer is
constructed via the MVDR (Minimum Variance Distortionless Response) criterion, which is
written as follows {

min
w

wHR̃w

s.t.wHũ(R̃s, θ0, fD − ∆ fs) = 1
(33)
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where ũ(R̃s, θ0, fD − ∆ fs) = [b(θ) ⊗ a(R̃s, θ)] ⊗ hT( fD − ∆ fs) is the virtual steering vec-
tor of the target after compensation, R̃ is the jammer-plus-noise covariance matrix after
compensation, and the optimal weight vector w is calculated as:

w = µR̃
−1

ũ
(

R̃s, θ, fD − ∆ fs

)
(34)

where µ = 1
ũ(R̃s,θ, fD−∆ fs)

H
R̃
−1

ũ(R̃s,θ, fD−∆ fs)
.

Furthermore, the received data after compensation are processed through the range-
angle-Doppler–dependent MVDR beamformer, and the output signal is represented as

z = wHỸ (35)

Hence, the false targets are suppressed via range and Doppler mismatches.

3.3. Design of Frequency Increment and Coding Coefficient

In this subsection, the designs of the frequency increment and coding coefficient are
investigated. Suppose qs = 0 for simplicity. To begin with, in the transmit frequency
domain, the normalized equivalent transmit beampattern for the h-th false target is

PT

(
f h
T

)
= 1

M
sin(πM f h

T)
sin(π f h

T)
ej2π(M−1)( f h

T )

= e
jπ(M−1)(−

2∆ f R̃j
c + d

λ0
(sin(θ)−sin (θ0))

M
sin(πMZ(p,θ))

sin(πZ(p,θ))

(36)

where Z(p, θ) = − 2∆ f pRu
c + d

λ0
(sin(θ)− sin(θ0)), and when the denominator of PT

(
f h
T

)
is

not zero and the numerator is zero, the nulls of the beampattern exist, i.e.,

Z(p, θ)

{
= d

λ0
· v λ0

Md = v · 1
M

6= d
λ0
· v · λ0

d = v
(37)

where v = 1, 2, . . . , M− 1.
Moreover, according to (30) and (31), the difference between the transmit spatial

frequencies relative to the true and the h-th false target can be obtained as

∆ fT = f̃T,s − f̃T,j =
2∆ f Ru p

c
=

∆ f p
fr

= p(b + u) = p(b +
v
M

), v = 1, · · · , M− 1 (38)

where b = int(∆ f
fr
) is the integer part and u = v

M is the decimal part. Usually, b can be
ignored owing to the 2π periodicity of the exponential term. Notice that the condition
pu 6= 0 must be satisfied, otherwise, the jammer suppression is invalid because their trans-
mit spatial frequencies are identical. Accordingly, the frequency increment is designed as

∆ f = fr(b +
v
M

), v = 1, · · · , M− 1 (39)

Hence, the false targets with 1 ∼ M − 1 delayed pulses are relative to the first to
M − 1-th nulls of the beampattern, and by nulling at the beampattern, the false targets
are suppressed.

Similarly, according to (32), the difference between the false targets and the true target
in the Doppler frequency domain can be written as

∆ fd = pγ = p(g + b) (40)

where g is the integer part, which is neglected due to the 2π periodicity. b is the fractional
part. Similarly, b 6= 0 must be guaranteed to distinguish the true and false targets in
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the Doppler frequency domain. Assume that γ = 1
W with W the maximum number of

delayed pulses, thus, the false targets which are relative to 1 to W − 1 delayed pulses can
be discriminated and suppressed by satisfying ∆ fd = p

W /∈ Z+.
Figure 4 shows that the targets are distributed in a joint transmit-Doppler domain. It

is observed that although the true target and the false target 4 cannot be discriminated in
the transmit-receive frequency domain. They are distinguished in the Doppler frequency
domain. In contrast, the true target and the false target 3 cannot be discriminated in the
Doppler frequency domain because the difference in delayed pulses is W. However, they
are distinguished in the transmit-receive frequency domain. Based on the aforementioned
observations, by means of nulling in the joint transmit-Doppler frequency domain, the false
targets are suppressed. Then, the maximum number of the suppressible false targets in the
joint transmit-receive-Doppler domain can be given as

D = [M, W]− 1 (41)

where [M, W] denotes the least common factor of M and W. To further increase the
maximum numbers of the suppressible false targets, M and W are designed to be prime.
Hence, the maximum number of suppressible false targets is

D = MW − 1 (42)
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According to (9) and (13), when fD > γ, the Doppler frequencies of the targets
corresponding to distinct delayed pulses are identical, and the jammer suppression is
invalid. Hence, fd and vs are no more than 1

W of the corresponding maximums, respectively.
Accordingly, it is important to choose an appropriate value of W to satisfy the demands of
jammers suppression and speed detection simultaneously.

4. Simulations

In this section, simulation results are presented to assess the effectiveness of the
jammer suppression method based on the QPC-FDA-MIMO radar. Assume that four false
targets are produced in an identical FTG and the delayed pulses for the false targets 1, 2, 3,
and 4 are 1, 1, 15 and 16, respectively. The parameters of the QPC-FDA-MIMO system and
the targets are, respectively, listed in Tables 1 and 2.
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Table 1. Parameters of QPC-FDA-MIMO system.

Parameter Value Parameter Value

The carrier frequency 16 GHz Pulse repetition
frequency 10 kHz

Transmit elements number 16 Receive elements number 16

Transmit elements space 0.0093 m Receive elements space 0.0093 m

Coding coefficient 1/15 Frequency increment 0.625 kHz

Table 2. Parameters of targets.

True Target False Target 1 False Target 2 False Target 3 False Target 4

Angle (◦) 0 0 0 0 0

Range(km) 9 20.1 21 232.5 252

Range bin 300 170 200 250 400

Time delay (ms) 0.06 0.134 0.14 1.55 1.68

Velocity (m/s) 10 10 10 10 10

SNR/JNR (dB) 10 20 25 25 25

Delayed pulse 0 1 1 15 16

Figure 5 demonstrates the capon spectrum distributions of the targets in the joint
transmit-receive spatial frequency domain. It can be seen from the result that the targets are
situated at a straight line with an identical receive spatial frequency in Figure 5a. However,
the transmit spatial frequencies depend on the number of delayed pulses and range bins
before compensation. In contrast, after range compensation, the same delayed pulse targets
are concentrated in an identical transmit spatial frequency. As is intuitively displayed in
Figure 5b, false targets 1 and 2 can be discriminated from the true one, while false target 4
cannot be discriminated from the true one because it is located in the same position.
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Figure 6 shows the range-Doppler spectrum distributions of the targets. It is observed
in Figure 6a that, by projecting onto the Doppler domain, the targets are concentrated with
two peaks. In Figure 6b, after demodulation, the true target and the false target 4, which
have an identical spatial frequency, are distinguished in the joint range-Doppler frequency
domain. However, although the true one and the false target 3 are distinguished in the
transmit-receive spatial frequency domain as in Figure 5b, they are not distinguished in
the Doppler domain because of the difference in delayed pulses is W. Hence, considering
the joint transmit-receive-Doppler domain, all false targets can be discriminated from the
true ones.
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Figure 7a displays the 3D adaptive beampattern in the joint transmit-receive-Doppler
domain. Moreover, the transmit-receive slice of the 3D beampattern is in the QPC-FDA-
MIMO radar in Figure 7b, where fD − ∆ fs = 0. It is observed that the true one is located in
the 3-D beampattern’s center, and the false target 3, which is suppressed by nulling in the
spatial frequency domain, is situated at the same transmit-receive slice with the true one
with an identical Doppler frequency in Figure 7b. In addition, the false target 4, which has
an identical spatial frequency to the true one, is suppressed by nulling the Doppler domain.
Moreover, false targets 1 and 2 can be suppressed by nulling both the Doppler frequency
and the spatial frequency domains. On the contrary, the transmit-receive beampattern in the
traditional FDA-MIMO radar is plotted in Figure 7c, where distortion of the beampattern
occurs because the true target, which has the identical transmit spatial frequency compared
with the false target 4.
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Furthermore, as is shown in Figure 8 that comparisons of the output powers among
distinct radar frameworks are also provided. The true target has the maximum output
power in the QPC-FDA-MIMO radar, where the false targets are suppressed in the joint
transmit-receive-Doppler domain. In contrast, the false targets, whose delayed pulses are
more than M− 1 (such as false target 4), cannot be suppressed in the EPC-MIMO radar
and FDA-MIMO radar.
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The zones of false target suppression are shown in Figure 9, where the y-axis and the
x-axis denote the coding coefficient and the number of delayed pulses, respectively. Partic-
ularly, the yellow color indicates effective suppression, and the blue color indicates that
the jammer’s suppression is invalid. As is intuitively shown in Figure 9a,b, by modulating
with the same phase in both EPC-MIMO and FDA-MIMO, the first to the M− 1-th nulls of
the beampattern correspond to the false targets; the first to the M− 1-th delayed pulses
and the maximum number of suppressible jammers is M− 1. It is worth pointing out that,
by setting γ = 1/W and W = M− 1, the maximum number of suppressible jammers is
(M− 1)(M− 2). Hence, the proposed method has superiorities in improving the maximum
number of suppressible jammers, which is in agreement with the theoretical analyses.

Figure 10 shows the output signal-to-jammer-plus-noise ratio (SJNR) curves ver-
sus input signal-to-noise ratio (SNR) among different radar frameworks with 150 Monte
Carlo (MC) trails. What is more, the upper bound is provided as an ideal case. Re-
markably, both the EPC-MIMO and FDA-MIMO radars cannot suppress the false target
whose delayed pulse number is M, i.e., the false target 4, leading to a low SJNR. In con-
trast, all false targets are effectively suppressed by means of utilizing the data-dependent
transmit-receive-Doppler 3D beamforming in QPC-FDA-MIMO which improves the output
SJNR performance.
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5. Conclusions

In this paper, the method to suppress the main lobe deceptive jammers has been pre-
sented in the QPC-FDA-MIMO radar. In the modeling phase, QPC has been applied along
the slow time dimension in the transmit array of the FDA-MIMO radar. At the receiver,
the decoding and principal range compensation has been carried out to distinguish the
false targets and the true target in the transmit-receive-Doppler frequency domain. Then,
by performing the data-dependent transmit-receive-Doppler 3D beamforming, the false
targets have been suppressed. Moreover, the coding coefficient and frequency increments
have been designed to increase the maximum number of suppressible jammers. Numerical
results have been presented to assess the jammer suppression performance, where compar-
isons among various frameworks, containing FDA-MIMO and EPC-MIMO radars, have
been carried out in terms of the spectrum distribution and output SJNR. The suppression
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performance has been ensured and the maximum number of suppressible jammers is
obviously improved in the QPC-FDA-MIMO radar.

In the future, the suppression of fast-generated false targets delayed in the same
transmit pulse in comparison with the true target will be concentrated on and the scenario
of multiple true targets will be considered.
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