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Abstract: Extreme forest fires have been a historic concern in the forests of Canada, the Russian 

Federation, and the USA, and are now an increasing threat in boreal Europe, where recent fire events 

in 2014 and 2018 drew attention to Sweden. Our study objective was to understand the vulnerability 

of Swedish forests to fire by spatially analyzing historical burned areas, and to link fire events with 

weather, landscape, and fire-related socioeconomic factors. We developed an extensive database of 

1 × 1 km2 homogenous grids, where monthly burned areas were derived from the MODIS FireCCI51 

dataset. The database consists of various socio-economic, topographic-, forest-, and weather-related 

remote sensing products. To include new factors in the IIASA’s FLAM model, we developed a ran-

dom forest model to assess the spatial probabilities of burned areas. Due to Sweden’s geographical 

diversity, fire dynamics vary between six biogeographical zones. Therefore, the model was applied 

to each zone separately. As an outcome, we obtained probabilities of burned areas in the forests 

across Sweden and observed burned areas were well captured by the model. The result accuracy 

differs with respect to zone; the area under the curve (AUC) was 0.875 and 0.94 for zones with few 

fires, but above 0.95 for zones with a higher number of fire events. Feature importance analysis and 

their variability across Sweden provide valuable information to understand the reasons behind for-

est fires. The Fine Fuel Moisture Code, population and road densities, slope and aspect, and forest 

stand volume were found to be among the key fire-related factors in Sweden. Our modeling ap-

proach can be extended to hotspot mapping in other boreal regions and thus is highly policy-rele-

vant. Visualization of our results is available in the Google Earth Engine Application.  
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1. Introduction 

Forest fires, often triggered by human activities and greatly exacerbated by climate 

change, cause widespread destruction and are therefore an important global issue [1–3]. 

They contribute to greenhouse gas emissions, air pollution and associated health prob-

lems, as well as social and economic disruption for people in fire-prone regions - problems 

targeted by the Sustainable Development Goals [4]. While vegetation burning plays an 

important ecological role in some ecosystems [5], climate change leads to longer fire sea-

sons in many parts of the world with an associated trend towards increasing extent, fre-

quency, and severity of fires, as well as the global occurrence of extreme (mega) fire events 

[6–8]. However, burned areas are decreasing in some regions of the world due to land use 

change, which could result in a net-negative global trend of historical burned areas over 

the period 1998–2015 [9]. 

Forest fires are a familiar issue in Europe [10,11], where most of the burned areas 

have historically been found in the Mediterranean region [11–13]. Forest fire models pro-

ject an increase in expected burned area and associated emissions under future climate 

change scenarios in Europe [12], [13]. Fire is an increasing threat in the European Boreal 
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forests affected by climate change due to lengthened fire seasons [14]. Recent fire events 

in 2014 and 2018 have drawn attention to a need for more fire-related research in Sweden 

[15,16].  

There is a variety of global models trying to simulate forest fire dynamics, including 

CLM, JSBACH–SPITFIRE, LPJ–GUESS–SPITFIRE, and ORCHIDEE–SPITFIRE. However, 

they are largely unable to capture inter-annual variations in historical burned areas [17]. 

Having strong biophysical components, these models can represent feedback between for-

est fires and vegetation dynamics driven by climate change, but they lack representation 

of interconnections between the vegetation and human activities due to the complexity of 

these processes. This creates a research gap, because to explain current fire-regime 

changes and assess probabilities of fire, climate change needs to be considered in combi-

nation with other drivers [18]. 

The wildfire climate impacts and adaptation model (FLAM) is able to capture inter-

annual dynamics of burned areas by calibrating the spatially explicit suppression effi-

ciency [19,20]. However, the parameter representing suppression efficiency is rather tech-

nical and needs interpretation in terms of fire-related factors. Hot-spot mapping is a way 

to understand factors behind fire ignitions and suppression efficiency. However, identi-

fying hot spots in Europe is still a challenging task when modeling at relatively high spa-

tial resolution [21]. In this paper, we concentrate on hot-spot mapping for one European 

country and perform analysis at 1 × 1 km2 resolution. 

Our study objective was to understand the vulnerability of Swedish forests to fire by 

spatially analyzing historical burned areas and linking them with weather, landscape, to-

pography and fire-related socioeconomic factors. In this way, our research contributes to 

the development of a wildfire model for Sweden [22]. Our study expands its analysis to 

include an extreme fire event in 2018, has a larger number of predictors and uses machine 

learning techniques [23] to find key variables and their interconnections. Our study con-

siders climatic controls [24] in combination with socio-economic and geographic factors, 

leading to an integrated hot-spot mapping [25–27]. We developed an extensive database 

of 1 × 1 km2 homogenous grids, where monthly areas burned in forests were derived from 

the MODIS FireCCI51 dataset [28]. Spatial factors, including campsites, lakes, and roads, 

topographic features including aspect, slope, and mean elevation, population density, for-

est management intensity, and forest stand volume, were collected from various sources 

and preprocessed. Monthly values of the Fine Fuel Moisture Code (FFMC) of the Cana-

dian Forest Fire Weather Index (FWI) [25,26] over the period 2011–2018 were calculated 

from daily weather data with the FLAM model [20]. To include new factors into FLAM, 

we developed a random forest model [27] to assess the spatial probabilities of burned 

areas [29–32].The model contained fifteen features representing various aspects of wild-

fire behavior and was based on available remote sensing products. Model performance 

was assessed using the Area Under the Curve (AUC) method, which is a commonly used 

approach for classification model evaluation [33,34]. Feature importance analysis and 

their variability across Sweden provide valuable information to understand the factors 

behind forest fires. FFMC, population and road densities, slope and aspect, and forest 

stand volume were found to be among the key fire-related factors in Sweden. Visualiza-

tion of our results is available in the Google Earth Engine Application (available at: 

https://reiniscimdins.users.earthengine.app/view/swedenmaps). 

2. Materials and Methods 

2.1. Study Area 

Wildfire modeling was performed on forests in Sweden; the country has an elongated 

shape with a latitudinal difference of 14 degrees (~1,500 km). The presence of Scandina-

vian mountains results in climatic zone, biome, economic activity and population pattern 

diversity in Sweden. This variability impacts wildfire regimes and potential fire occur-

rences across the regions of Sweden. Therefore, in our study Sweden was divided into six 
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vegetation zones, within which modeling was performed separately (Figure 1). During 

the study period, Sweden suffered from two severe fire years—2014 and 2018. In 2014, a 

fire occurred in southern Sweden (Västmanland), 150 km NW from Stockholm, burning 

~14,000 ha, causing 1,000 evacuations and one fatality [35]. A second heatwave-induced 

fire took place in 2018. When fires were distributed throughout the country, the total 

burned area was ~ 24,300 ha, with the largest burned areas in Gävleborg and Jämtland 

counties, with ~8,500 ha in each of the regions [36]. These fires spread mostly in low pop-

ulated areas and therefore only a few villages were evacuated. Due to the extraordinary 

extent of the fire, fire suppression was assisted and supported by numerous European 

countries [35]. 

 

Figure 1. Study area (Sweden) and vegetation zones used for modeling. 

2.2. Data Preparation  

Our approach follows methodology previously applied to other countries, such as 

Italy [29], Portugal [30] and Serbia [34], aiming to search for the spatial factors behind 

forest fires, their importance and impact on probabilities of fire ignition and burned areas. 

To understand the linkage between historical fire activity and weather, landscape, topog-

raphy and fire-related socioeconomic factors, we established a 1 × 1 km2 gridded geospa-

tial database which was generated using the ETRS89 LAEA Europe metric coordinate sys-

tem (EPSG:3035) and contained fifteen fire-related parameters. Variables and data flows 

are illustrated in Figure 2. 
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Figure 2. Data processing workflow. 

Daily computations of the Fine Fuel Moisture Code (FFMC) were performed using 

the weather module of the FLAM model [20] based on daily HARMONIE (CRUHAR 

v.3.2) weather data [31]. Outputs provided at the 0.125 × 0.125° grid in the WGS84 coor-

dination system were resampled to the 1 × 1 km2 grid and aggregated to a monthly time 

step. Another weather-related feature we included in the database was lightning, which 

can be considered as a natural source of fire ignition that also plays a significant role in 

northern Scandinavia [37]. We obtained data on lightning strikes across Sweden from the 

Swedish Meteorological and Hydrological Institute (SMHI). Lightning strikes were pro-

cessed for each pixel for every month from 2011 to 2018. 

To construct a database, we used the following remote sensing products. Wildfire 

data was obtained from the global remote-sensing-based fire product MODIS FireCCI_5_1 

[32]. This dataset has a spatial resolution of 250 m and monthly temporal resolution. 

MODIS data consist of three components: day of fire detection, the confidence level of 

detection and land cover of burned area, based on the land cover product developed by 

[38]. This study focused on forest fires; therefore, we used the MODIS land cover codes 

and selected only those fires which occurred in the forests of Sweden. MODIS data was 

aggregated to the 1 × 1 km2 resolution, where each pixel contained a binary value repre-

senting the presence or absence of fire. 

Probabilities of forest fire ignition and spread are conditional on the fuel availability 

and its characteristics. It is assumed that older conifer forests in boreal conditions are more 

vulnerable to fire as compared to younger stands with a larger deciduous tree ratio in the 

forest composition [37]. To quantify and represent the fuel available for burning in the 

model, we collected information about total forest stand volume (m3), deciduous tree vol-

ume (m3) and stand age (years). These variables were aggregated to the database grid 

from the Swedish national forest inventory data, representing the state of forests in 2010 

[39] at 25 × 25 m2 resolution. Another forest descriptive parameter that was included in 

the analysis represented forest management intensity. This information was aggregated 

and extracted from a 100 × 100 m2 global forest management map [40], where intensity is 

approximated to values from 0 to 1. Moreover, the spatial database contains information 

about topographic features such as digital elevation model (DEM) maximum, average val-

ues, mean slope and mean aspect values, which were calculated from the 25 × 25 m2 reso-

lution Japan Aerospace Exploration Agency (JAXA) space product [41] and averaged to 1 

× 1 km2 pixels. These topographic features have an important effect on vegetation type 

and moisture content [42]. For example, fire can spread faster on upward slopes, where 

vegetation gets more preheated during wildfire [43]. The population and road densities 
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are important factors related to forest fire occurrence and suppression [44,45]. We made 

use of municipality level population density from the 1 × 1 km2 resolution NASA dataset, 

representing the year 2015 [46]. Road density was obtained from the Open-street map da-

tabase [47]. The road vector layer was rasterized to 20 × 20 m2, and sums of road pixels for 

each 1 × 1 km2 grid cell were used as indicator of road density. The forest fire ignition, 

suppression and isolation are also dependent on waterbody presence in the landscape. 

We used the CORINE land cover dataset to calculate waterbody ratio (between 0 and 1), 

representing water coverage in each 1 × 1 km2 grid cell [48]. During 2006–2010, 80% of 

forest fires with a known source in northern Europe were started by humans [49]. For this 

reason, we generated the shelter and bonfire place density layer, which was based on vol-

untary mapped locations [50], as a proxy to possible ignitions related to irresponsible han-

dling of fire during recreational activities in nature. As Sweden has a significant latitudi-

nal gradient (Figure 1), we used each pixel center latitude coordinate as one of the explan-

atory variables, thereby summarizing weather and socioeconomic patterns, varying along 

the north–south latitude. A summary of all variables is provided in Table 1. 

Table 1. Modeling variable summary. 

Nr. Variable 
Temporal 

Resolution 

Original Spatial 

Resolution, m 
Source 

1 
Fine Fuel Moisture 

Code 
Monthly 1,000 [31] 

2 lightning Monthly 1,000 [51] 

3 MODIS FireCCI_5_1 Monthly 250 [32] 

4 stand volume Static 

25 [39] 5 deciduous tree volume Static 

6 stand age Static 

7 forest management Static 100 [40] 

8 elevation maximum Static 

25 [41] 
9 elevation average Static 

10 mean slope Static 

11 mean aspect Static 

12 population density Static 1,000 [46] 

13 road density Static Vector (lines) [47] 

14 lake density Static 250 [48] 

15 campsites Static Vector (points) [50] 

2.3. Model Setup 

In this study we developed a random forest fire occurrence model based on multiple 

weather, landscape and anthropogenic factors. Random forest is a widely used method 

for wildfire modeling that has been applied to various regions of the world, e.g., Europe 

[52], China [53], Canada [54] and the US [55]. The random forest algorithm is a multipur-

pose regression and classification method which was introduced in 2001 by Breiman [56].  

The algorithm builds the decision trees using data subsets and assesses their outputs [27]. 

The modeling database was divided into six parts according to the vegetation zones (Fig-

ure 1) and the model was applied individually in each zone to better understand the factor 

importance differences across Sweden, as well as reduce the model computation time.  

The random forest model was built using the R package caret [57] and it was set up ignor-

ing any collinearity relationships between the variables, meaning that all fifteen fire pre-

dictors were considered. Each zone had calibration and validation datasets with 70% and 

30% of randomly selected rows, respectively. Every model was tuned using four options 

to define the most appropriate number of variables (mtry 2, 4, 8, 15) at each of the random 

forest splits. In all zones, we used mtry value 8 because it produced the highest accuracy. 
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Another parameter which influences the model accuracy is number of trees (ntree); for 

our models, ntree was 70 and it was the same in all the zones and mtry trials. The model 

was validated using three cross-validation rounds. 

3. Results 

Our analysis shows a seasonal pattern of forest fires in Sweden, with the majority of 

events taking place from May to September (Figure 3), when most of the recorded burned 

pixels correspond to historical Fine Fuel Moisture Code (FFMC) values between 80 and 

85. The Fine Fuel Moisture Code is a quantification of moisture content of dead fuel com-

ponents and other litter. This value indicates the relative ignition and potential flamma-

bility of fine fuels [58]. At the same time, in spring and early autumn FFMC values are 

below 80, which is explained by high precipitation during these months (Figure 3a). Zones 

3 and 4 contained the largest burned areas over the study period, which could result from 

favorable fuel and fire propagation conditions and lower suppression efficiency. While 

zones 1 and 2 are densely populated with intensive agriculture management, the northern 

zones (5 and 6) have sparse population with limited fuel potential, especially in the moun-

tainous areas (Figures 1 and 3b). 

 

Figure 3. Burned area in Sweden divided by year (a) and vegetation zone (b). 

Due to Sweden’s geographical diversity, the fire dynamics in Sweden vary between 

six biogeographical zones. Therefore, the model was applied to each zone separately. Ob-

served burned areas were well captured by the model, providing useful information 

about the distribution of fire risk across Sweden (Figure 3). Its performance was deter-

mined using the Area Under the Curve (AUC) method and approach, a commonly used 

approach for classification model evaluation [33,34]. The model prediction accuracy was 

tested using validation datasets and all the data (validation and calibration). Model accu-

racy differed across the zones, but in all six vegetation areas validation datasets produced 
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a prediction accuracy above 85%. Moreover, when all information was taken into consid-

eration, AUC was at least 95% (Table 2). 

Table 2. AUC performance for each zone, considering the validation dataset and all the data. 

 AUC 

 Validation All 

Zone 1 0.875 0.961 

Zone 2 0.999 0.999 

Zone 3 0.990 0.997 

Zone 4 0.903 0.951 

Zone 5 0.950 0.983 

Zone 6 1.000 1.000 

The fire prediction results were visualized in Google Earth Engine Application (Fig-

ure 4). This application gives an opportunity to explore the study site and use the intuitive 

Google Maps interface and layer comparison tools to visually assess the model perfor-

mance with the reference burned area (MODIS). Maps with forest fire predictions show 

model capabilities to distinguish the main fire areas in the northern part of Sweden (Fig-

ure 4). Predictions match with the MODIS data, having some scattered overestimated 

probability around the reference fire pixels. 

 

Figure 4. MODIS burned area (A) and random forest probability values (B) from our Google Earth 

Engine app. 

Modeling outcomes were evaluated using confusion matrix-based threshold analy-

sis. We produced an equal-size interval thresholds from 0.1 to 0.5 with a step of 0.1 to 

better understand the sensitivity and specificity tradeoff concept of probability classifica-

tion (Figure 5). Despite the relevant differences in terms of the vegetation zone sizes and 

fire frequencies, the results reveal a consistent and general trend where increased classifi-

cation threshold values have a positive relation with false negative results, but true posi-

tive and false positive values decrease with increasing threshold values. Threshold levels 

should be determined considering the rationale of the decision-makers by providing risks 

that come with the commission and omission error occurrence. These trendlines provide 

useful information to consider the tradeoffs that come with the classification tasks.  
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Figure 5. Impacts of the random forest prediction threshold on the sensitivity and specificity re-

sults. 

Analysis of Importance of Random Forest Factors  

Feature importance analysis and their variability across Sweden provide valuable in-

formation to better understand and evaluate factors behind forest fires. Each factor has a 

different impact on forest fires in each vegetation zone; therefore, we prepared a summary 

with the variable explanatory value and its corresponding importance rank (Table 3). Lat-

itude and FFMC values were the dominant explanatory variables in all six vegetation 

zones, except zone 1 where FFMC ranked 9th in terms of importance. We averaged the 

variable importance metric in all six zones. This measure reports the Mean Square Error 

percentage increase (%IncMSE) if a certain variable is excluded from a set of predictors—

the greater the %IncMSE value, the higher the contribution of the variable to the model’s 

prediction. FFMC and Latitude were the most powerful drivers for the prediction model, 

having average importance values of 78.2 and 86.0, respectively. Lightning strikes, an-

other weather-related variable, only ranked at the 11th position overall, with an average 

%IncMSE of 12%. Socio-economic components such as population and road densities 

could be considered as the second most important category related to forest fire occur-

rence in the Swedish landscape. Population density had an average ranking of 5.2 and 

46.4%IncMSE. One of the predictors - the number of campsites in each of the spatial data-

base grid cells - was expected to contribute to more advanced quantification of possible 

threats associated with recreation, with an assumption that recreational activities contrib-

ute to irresponsible fire use. Nonetheless, this explanatory variable had the least mean-

ingful effect in this study (see Table 3), not supporting our hypothesis. Topographic fea-

tures, such as mean elevation value, slope and aspect, provided meaningful impacts on 

the model performance across the study area. Aspect, with a mean importance position of 

9.8 and %IncMSE of 20.6%, was the least important topographic feature. In direct contrast 

is the most important topographical feature, average pixel elevation value (DEM avg), 

with a mean position of 5.7 and %IncMSE of 35.2%. Forest stand properties were expected 

to be an important variable to describe the potentially flammable environment; however, 

forest-linked characteristics such as stand volume, deciduous stand, stand age and man-

agement intensity in general had the least influence on predictions. Two of the most im-

portant forest characteristics in this model were forest stand volume and forest manage-

ment information. Forest stand data exclusion from the model resulted in an average pre-

diction MSE drop of 30.6%, whereas forest management exclusion produced a 24.2% drop 

(Table 3).  
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Table 3. Random forest variable importance in each vegetation zone. 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Average 

Variable Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value 

FFMC 9 31.3 2 84.6 1 100.0 1 100.0 1 100.0 1 100.0 2.5 86.0 

lightning 7 35.6 7 20.7 15 0.0 14 7.8 15 0.0 9 10.9 11.2 12.5 

latitude 1 100.0 1 100.0 2 44.7 2 81.0 2 72.4 2 70.8 1.7 78.2 

lakes 5 52.9 12 6.9 9 18.9 10 25.8 11 12.2 9 10.9 9.3 21.3 

roads 3 73.9 9 16.5 10 18.1 7 34.0 10 14.6 4 53.2 7.2 35.1 

stand vol. 4 55.5 13 4.2 5 25.2 6 34.2 3 36.1 8 28.3 6.5 30.6 

DEM max 6 45.3 5 29.0 7 23.0 9 29.7 5 31.3 7 40.8 6.5 33.2 

DEM avg 8 32.9 6 26.3 6 24.0 5 34.8 6 28.7 3 64.2 5.7 35.2 

population 2 91.3 4 32.6 3 39.8 3 60.3 13 11.1 6 43.2 5.2 46.4 

deciduous vol. 15 0.0 14 4.1 13 14.5 13 16.8 12 11.2 9 10.9 12.7 9.6 

stand age 10 28.9 8 20.7 12 15.4 12 20.2 9 17.7 15 0.0 11.0 17.2 

slope 14 12.9 3 44.1 8 19.1 11 24.1 8 18.6 5 46.5 8.2 27.6 

aspect 13 21.8 11 12.9 11 17.9 4 41.5 7 20.0 13 9.5 9.8 20.6 

campsites 11 26.9 15 0.0 14 3.9 15 0.0 14 2.8 9 10.9 13.0 7.4 

forest manage-

ment 
11 26.9 10 14.3 4 32.5 8 30.1 4 34.2 14 7.0 8.5 24.2 

4. Discussion 

The strong influence of FFMC on fire probability values means that climate change 

will most likely affect the fire season by prolonging it in the spring and autumn directions. 

Venäläinen and Aalto [59] published extensive research about the effects of climate 

change and forest management on forest fire occurrence in Fennoscandia. They stressed 

the uncertainty that comes with long-term projections and concluded that high fire sea-

sons in Sweden will remain occasional. Climate change might influence forest conditions, 

which would likely impact fire occurrence. New climatic conditions could realistically in-

crease the drought-, tree uprooting-, bark beetle- and deadwood-related fire risks. 

Numerous scientists have concluded that fire occurrence is dependent on population 

[60] and road densities [11], but density increment can result in mixed effects [22]. More 

inhabitants and increased accessibility might result in increasing recreational activities, 

sometimes leading to irresponsible attitudes with fire. Knorr et al. [61] reported that fire 

occurrence has a positive correlation with population density only when it ranges from 0 

to 0.1 people/km2. Increased population density usually comes with improved infrastruc-

ture which increases the forest management intensity and quality, raises people’s aware-

ness about the processes in the forest and considerably improves fire suppression activi-

ties in case of raging fire. One of the predictors in our random forest model was the pres-

ence of campsites, but this variable had the smallest explanatory power with the lowest 

average rank and %IncMSE value. This could be explained by non-existing relationship 

or randomness, but on the other hand, forests next to the campsites could be more inten-

sively managed, thereby reducing fuel availability and ignition potential. 

Scientists in Finland [59] and Austria [62] proposed that 10% and 15%, respectively, 

of all fires are started by lightning strikes. Similarly, our study indicates the importance 

of lightning, although it is hard to compare our results with previous studies, because our 

study indicates general lightning importance in each of the random forest models. Here, 

we note that monthly dynamics of lightning strikes across Sweden (see Figure A1) shows 

a positive correlation with extreme burned areas in 2014 and 2018, peaking in July. Re-

search focused on lightning ignitions would require analysis at a daily time step. 

Forest operation, i.e., harvesting and site preparation, leads to an additional risk for 

fire ignition and propagation in the Swedish forests. The Västmanland fire in 2014 was 
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caused by rocky soil preparation using heavy mechanical machinery. These soil precau-

tions sometimes take place soon after the clear cut when felling leftovers and tree debris 

might lose their moisture content and become a potentially highly flammable material 

[59]. The study explanatory variable list could be extended with the latest forest activity 

type and data, which in combination with forest soil or geology information might be an 

interesting asset, because the combination of site condition and management activities 

might explain fire occurrence patterns in Sweden. A limiting factor for historical fire data 

analysis is the consistency of the data collection methodology. Harmonized data is a key 

aspect to avoid misrepresented conclusions and biased decisions. 

High variability in explanatory variables and a large dataset size have led to exten-

sive computation times and required the usage of high-performance hardware. Therefore, 

optimization of algorithms, perhaps using cloud computing, would be important for fu-

ture research. Future research could provide worthy additions if we could evaluate how 

accurate a model would perform if only one country-wise model were calibrated to pre-

dict fire occurrence. Fire model performance might get worse if we tested how the model 

would predict the fire occurrence using years outside the calibration time range (2011–

2018). Another investigation could be to test the performance of the model when using 

separate fire event datasets for the validation and calibration pixels. The performed anal-

ysis contributes to the implementation of additional fire-related factors in process-based 

models, e.g., FLAM [20], to optimize conditional probabilities of ignition, suppression, 

and fire spread. This helps to capture the spatial and intertemporal variability of areas 

burned [19]. 

There are several policy implications of our results. First, the hot-spot mapping could 

be an important tool for identification of areas which are potentially vulnerable to forest 

fires. This could help policy makers in their management decisions, e.g., increasing sup-

pression efficiency by optimizing infrastructure and logistics of fire fighters, or preventing 

fires by putting warning signs in the forest areas. Second, the threshold analysis presented 

in Figure 5 allows policy makers to consider the trade-offs between false alarms and 

missed forest fires due to no alarm. Policy makers could consider costs associated with 

these alternatives and adjust threshold values accordingly. Finally, our results show that 

climate is one of the main drivers of forest fires in Sweden. Therefore, policy makers at a 

global scale are recommended to integrate climate change mitigation with guided devel-

opment. 

5. Conclusions 

This study was developed to understand the weather, topographic, forest stand, so-

cioeconomic and weather factor interlinkages, and the ability to predict historically 

burned areas using a random forest model. Our study demonstrates fire hotspot mapping 

at a high resolution. Furthermore, it provides an advanced methodology for using fifteen 

openly available data sources to achieve high model accuracy in each of the six vegetation 

zones in Sweden. The Area Under the Curve (AUC) values changed from zone to zone, 

not undercutting a value of 0.875. The modeled fire probabilities were evaluated using 

thresholds, thereby producing more information on tradeoffs between the classification’s 

specificity and sensitivity concepts. This provides policy makers the opportunity to im-

prove decision making over missed fire detection and false alerts. The Fine Fuel Moisture 

Code (FFMC) and latitudinal pixel value have been identified as the main driving forces 

for forest fires in all vegetation zones. This research provides additional contributions to 

the existing forest fire knowledge about the situation in boreal forests of Northern Europe. 

Finally, our results support international analyses that, irrespective of changes in manage-

ment, it is evident that climate change is very likely to increase the frequency and impact 

of wildland fires in the coming decades, also in Scandinavia. 
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