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Abstract: Extreme forest fires have been a historic concern in the forests of Canada, the Russian
Federation, and the USA, and are now an increasing threat in boreal Europe, where recent fire
events in 2014 and 2018 drew attention to Sweden. Our study objective was to understand the
vulnerability of Swedish forests to fire by spatially analyzing historical burned areas, and to link fire
events with weather, landscape, and fire-related socioeconomic factors. We developed an extensive
database of 1 × 1 km2 homogenous grids, where monthly burned areas were derived from the
MODIS FireCCI51 dataset. The database consists of various socio-economic, topographic-, forest-,
and weather-related remote sensing products. To include new factors in the IIASA’s FLAM model,
we developed a random forest model to assess the spatial probabilities of burned areas. Due to
Sweden’s geographical diversity, fire dynamics vary between six biogeographical zones. Therefore,
the model was applied to each zone separately. As an outcome, we obtained probabilities of burned
areas in the forests across Sweden and observed burned areas were well captured by the model.
The result accuracy differs with respect to zone; the area under the curve (AUC) was 0.875 and
0.94 for zones with few fires, but above 0.95 for zones with a higher number of fire events. Feature
importance analysis and their variability across Sweden provide valuable information to understand
the reasons behind forest fires. The Fine Fuel Moisture Code, population and road densities, slope and
aspect, and forest stand volume were found to be among the key fire-related factors in Sweden. Our
modeling approach can be extended to hotspot mapping in other boreal regions and thus is highly
policy-relevant. Visualization of our results is available in the Google Earth Engine Application.
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1. Introduction

Forest fires, often triggered by human activities and greatly exacerbated by climate
change, cause widespread destruction and are therefore an important global issue [1–3].
They contribute to greenhouse gas emissions, air pollution and associated health problems,
as well as social and economic disruption for people in fire-prone regions-problems targeted
by the Sustainable Development Goals [4]. While vegetation burning plays an important
ecological role in some ecosystems [5], climate change leads to longer fire seasons in
many parts of the world with an associated trend towards increasing extent, frequency,
and severity of fires, as well as the global occurrence of extreme (mega) fire events [6–8].
However, burned areas are decreasing in some regions of the world due to land use change,
which could result in a net-negative global trend of historical burned areas over the period
1998–2015 [9].

Forest fires are a familiar issue in Europe [10,11], where most of the burned areas have
historically been found in the Mediterranean region [11–13]. Forest fire models project an
increase in expected burned area and associated emissions under future climate change
scenarios in Europe [12,13]. Fire is an increasing threat in the European Boreal forests
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affected by climate change due to lengthened fire seasons [14]. Recent fire events in 2014
and 2018 have drawn attention to a need for more fire-related research in Sweden [15,16].

There is a variety of global models trying to simulate forest fire dynamics, including
CLM, JSBACH–SPITFIRE, LPJ–GUESS–SPITFIRE, and ORCHIDEE–SPITFIRE. However,
they are largely unable to capture inter-annual variations in historical burned areas [17].
Having strong biophysical components, these models can represent feedback between
forest fires and vegetation dynamics driven by climate change, but they lack representation
of interconnections between the vegetation and human activities due to the complexity of
these processes. This creates a research gap, because to explain current fire-regime changes
and assess probabilities of fire, climate change needs to be considered in combination with
other drivers [18].

The wildfire climate impacts and adaptation model (FLAM) is able to capture inter-
annual dynamics of burned areas by calibrating the spatially explicit suppression effi-
ciency [19,20]. However, the parameter representing suppression efficiency is rather techni-
cal and needs interpretation in terms of fire-related factors. Hot-spot mapping is a way to
understand factors behind fire ignitions and suppression efficiency. However, identifying
hot spots in Europe is still a challenging task when modeling at relatively high spatial reso-
lution [21]. In this paper, we concentrate on hot-spot mapping for one European country
and perform analysis at 1 × 1 km2 resolution.

Our study objective was to understand the vulnerability of Swedish forests to fire
by spatially analyzing historical burned areas and linking them with weather, landscape,
topography and fire-related socioeconomic factors. In this way, our research contributes
to the development of a wildfire model for Sweden [22]. Our study expands its analysis
to include an extreme fire event in 2018, has a larger number of predictors and uses
machine learning techniques [23] to find key variables and their interconnections. Our
study considers climatic controls [24] in combination with socio-economic and geographic
factors, leading to an integrated hot-spot mapping [25–27]. We developed an extensive
database of 1 × 1 km2 homogenous grids, where monthly areas burned in forests were
derived from the MODIS FireCCI51 dataset [28]. Spatial factors, including campsites, lakes,
and roads, topographic features including aspect, slope, and mean elevation, population
density, forest management intensity, and forest stand volume, were collected from various
sources and preprocessed. Monthly values of the Fine Fuel Moisture Code (FFMC) of
the Canadian Forest Fire Weather Index (FWI) [25,26] over the period 2011–2018 were
calculated from daily weather data with the FLAM model [20]. To include new factors
into FLAM, we developed a random forest model [27] to assess the spatial probabilities of
burned areas [29–32]. The model contained fifteen features representing various aspects of
wildfire behavior and was based on available remote sensing products. Model performance
was assessed using the Area Under the Curve (AUC) method, which is a commonly used
approach for classification model evaluation [33,34]. Feature importance analysis and their
variability across Sweden provide valuable information to understand the factors behind
forest fires. FFMC, population and road densities, slope and aspect, and forest stand volume
were found to be among the key fire-related factors in Sweden. Visualization of our results is
available in the Google Earth Engine Application (available at: https://reiniscimdins.users.
earthengine.app/view/swedenmaps (accessed on 10 October 2022)).

2. Materials and Methods
2.1. Study Area

Wildfire modeling was performed on forests in Sweden; the country has an elongated
shape with a latitudinal difference of 14 degrees (~1500 km). The presence of Scandina-
vian mountains results in climatic zone, biome, economic activity and population pattern
diversity in Sweden. This variability impacts wildfire regimes and potential fire occur-
rences across the regions of Sweden. Therefore, in our study Sweden was divided into
six vegetation zones, within which modeling was performed separately (Figure 1). During
the study period, Sweden suffered from two severe fire years—2014 and 2018. In 2014, a

https://reiniscimdins.users.earthengine.app/view/swedenmaps
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fire occurred in southern Sweden (Västmanland), 150 km NW from Stockholm, burning
~14,000 ha, causing 1000 evacuations and one fatality [35]. A second heatwave-induced fire
took place in 2018. When fires were distributed throughout the country, the total burned
area was ~ 24,300 ha, with the largest burned areas in Gävleborg and Jämtland counties,
with ~8500 ha in each of the regions [36]. These fires spread mostly in low populated areas
and therefore only a few villages were evacuated. Due to the extraordinary extent of the
fire, fire suppression was assisted and supported by numerous European countries [35].
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Figure 1. Study area (Sweden) and vegetation zones used for modeling.

2.2. Data Preparation

Our approach follows methodology previously applied to other countries, such as
Italy [29], Portugal [30] and Serbia [34], aiming to search for the spatial factors behind forest
fires, their importance and impact on probabilities of fire ignition and burned areas. To
understand the linkage between historical fire activity and weather, landscape, topography
and fire-related socioeconomic factors, we established a 1 × 1 km2 gridded geospatial
database which was generated using the ETRS89 LAEA Europe metric coordinate system
(EPSG:3035) and contained fifteen fire-related parameters. Variables and data flows are
illustrated in Figure 2.
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Daily computations of the Fine Fuel Moisture Code (FFMC) were performed using
the weather module of the FLAM model [20] based on daily HARMONIE (CRUHAR v.3.2)
weather data [31]. Outputs provided at the 0.125 × 0.125◦ grid in the WGS84 coordination
system were resampled to the 1 × 1 km2 grid and aggregated to a monthly time step.
Another weather-related feature we included in the database was lightning, which can be
considered as a natural source of fire ignition that also plays a significant role in northern
Scandinavia [37]. We obtained data on lightning strikes across Sweden from the Swedish
Meteorological and Hydrological Institute (SMHI). Lightning strikes were processed for
each pixel for every month from 2011 to 2018.

To construct a database, we used the following remote sensing products. Wildfire data
was obtained from the global remote-sensing-based fire product MODIS FireCCI_5_1 [32].
This dataset has a spatial resolution of 250 m and monthly temporal resolution. MODIS
data consist of three components: day of fire detection, the confidence level of detection
and land cover of burned area, based on the land cover product developed by [38]. This
study focused on forest fires; therefore, we used the MODIS land cover codes and selected
only those fires which occurred in the forests of Sweden. MODIS data was aggregated
to the 1 × 1 km2 resolution, where each pixel contained a binary value representing the
presence or absence of fire.

Probabilities of forest fire ignition and spread are conditional on the fuel availability
and its characteristics. It is assumed that older conifer forests in boreal conditions are
more vulnerable to fire as compared to younger stands with a larger deciduous tree ratio
in the forest composition [37]. To quantify and represent the fuel available for burning
in the model, we collected information about total forest stand volume (m3), deciduous
tree volume (m3) and stand age (years). These variables were aggregated to the database
grid from the Swedish national forest inventory data, representing the state of forests in
2010 [39] at 25 × 25 m2 resolution. Another forest descriptive parameter that was included
in the analysis represented forest management intensity. This information was aggregated
and extracted from a 100 × 100 m2 global forest management map [40], where intensity is
approximated to values from 0 to 1. Moreover, the spatial database contains information
about topographic features such as digital elevation model (DEM) maximum, average
values, mean slope and mean aspect values, which were calculated from the 25 × 25 m2

resolution Japan Aerospace Exploration Agency (JAXA) space product [41] and averaged
to 1 × 1 km2 pixels. These topographic features have an important effect on vegetation type
and moisture content [42]. For example, fire can spread faster on upward slopes, where
vegetation gets more preheated during wildfire [43]. The population and road densities
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are important factors related to forest fire occurrence and suppression [44,45]. We made
use of municipality level population density from the 1 × 1 km2 resolution NASA dataset,
representing the year 2015 [46]. Road density was obtained from the Open-street map
database [47]. The road vector layer was rasterized to 20 × 20 m2, and sums of road pixels
for each 1 × 1 km2 grid cell were used as indicator of road density. The forest fire ignition,
suppression and isolation are also dependent on waterbody presence in the landscape.
We used the CORINE land cover dataset to calculate waterbody ratio (between 0 and 1),
representing water coverage in each 1 × 1 km2 grid cell [48]. During 2006–2010, 80% of
forest fires with a known source in northern Europe were started by humans [49]. For
this reason, we generated the shelter and bonfire place density layer, which was based on
voluntary mapped locations [50], as a proxy to possible ignitions related to irresponsible
handling of fire during recreational activities in nature. As Sweden has a significant
latitudinal gradient (Figure 1), we used each pixel center latitude coordinate as one of the
explanatory variables, thereby summarizing weather and socioeconomic patterns, varying
along the north–south latitude. A summary of all variables is provided in Table 1.

Table 1. Modeling variable summary.

Nr. Variable Temporal
Resolution

Original Spatial
Resolution, m Source

1 Fine Fuel Moisture Code Monthly 1000 [31]

2 lightning Monthly 1000 [51]

3 MODIS FireCCI_5_1 Monthly 250 [32]

4 stand volume Static

25 [39]5 deciduous tree volume Static

6 stand age Static

7 forest management Static 100 [40]

8 elevation maximum Static

25 [41]
9 elevation average Static

10 mean slope Static

11 mean aspect Static

12 population density Static 1000 [46]

13 road density Static Vector (lines) [47]

14 lake density Static 250 [48]

15 campsites Static Vector (points) [50]

2.3. Model Setup

In this study we developed a random forest fire occurrence model based on multiple
weather, landscape and anthropogenic factors. Random forest is a widely used method for
wildfire modeling that has been applied to various regions of the world, e.g., Europe [52],
China [53], Canada [54] and the US [55]. The random forest algorithm is a multipurpose
regression and classification method which was introduced in 2001 by Breiman [56].

The algorithm builds the decision trees using data subsets and assesses their out-
puts [27]. The modeling database was divided into six parts according to the vegetation
zones (Figure 1) and the model was applied individually in each zone to better understand
the factor importance differences across Sweden, as well as reduce the model computa-
tion time.
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The random forest model was built using the R package caret [57] and it was set up
ignoring any collinearity relationships between the variables, meaning that all fifteen fire
predictors were considered. Each zone had calibration and validation datasets with 70%
and 30% of randomly selected rows, respectively. Every model was tuned using four
options to define the most appropriate number of variables (mtry 2, 4, 8, 15) at each of the
random forest splits. In all zones, we used mtry value 8 because it produced the highest
accuracy. Another parameter which influences the model accuracy is number of trees
(ntree); for our models, ntree was 70 and it was the same in all the zones and mtry trials.
The model was validated using three cross-validation rounds.

3. Results

Our analysis shows a seasonal pattern of forest fires in Sweden, with the majority
of events taking place from May to September (Figure 3), when most of the recorded
burned pixels correspond to historical Fine Fuel Moisture Code (FFMC) values between
80 and 85. The Fine Fuel Moisture Code is a quantification of moisture content of dead
fuel components and other litter. This value indicates the relative ignition and potential
flammability of fine fuels [58]. At the same time, in spring and early autumn FFMC values
are below 80, which is explained by high precipitation during these months (Figure 3a).
Zones 3 and 4 contained the largest burned areas over the study period, which could
result from favorable fuel and fire propagation conditions and lower suppression efficiency.
While zones 1 and 2 are densely populated with intensive agriculture management, the
northern zones (5 and 6) have sparse population with limited fuel potential, especially in
the mountainous areas (Figures 1 and 3b).
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Due to Sweden’s geographical diversity, the fire dynamics in Sweden vary between
six biogeographical zones. Therefore, the model was applied to each zone separately.
Observed burned areas were well captured by the model, providing useful information
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about the distribution of fire risk across Sweden (Figure 3). Its performance was determined
using the Area Under the Curve (AUC) method and approach, a commonly used approach
for classification model evaluation [33,34]. The model prediction accuracy was tested using
validation datasets and all the data (validation and calibration). Model accuracy differed
across the zones, but in all six vegetation areas validation datasets produced a prediction
accuracy above 85%. Moreover, when all information was taken into consideration, AUC
was at least 95% (Table 2).

Table 2. AUC performance for each zone, considering the validation dataset and all the data.

AUC

Validation All

Zone 1 0.875 0.961
Zone 2 0.999 0.999
Zone 3 0.990 0.997
Zone 4 0.903 0.951
Zone 5 0.950 0.983
Zone 6 1.000 1.000

The fire prediction results were visualized in Google Earth Engine Application (Figure 4).
This application gives an opportunity to explore the study site and use the intuitive Google
Maps interface and layer comparison tools to visually assess the model performance with the
reference burned area (MODIS). Maps with forest fire predictions show model capabilities to
distinguish the main fire areas in the northern part of Sweden (Figure 4). Predictions match
with the MODIS data, having some scattered overestimated probability around the reference
fire pixels.
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Modeling outcomes were evaluated using confusion matrix-based threshold analysis.
We produced an equal-size interval thresholds from 0.1 to 0.5 with a step of 0.1 to better
understand the sensitivity and specificity tradeoff concept of probability classification
(Figure 5). Despite the relevant differences in terms of the vegetation zone sizes and fire
frequencies, the results reveal a consistent and general trend where increased classification
threshold values have a positive relation with false negative results, but true positive and
false positive values decrease with increasing threshold values. Threshold levels should
be determined considering the rationale of the decision-makers by providing risks that
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come with the commission and omission error occurrence. These trendlines provide useful
information to consider the tradeoffs that come with the classification tasks.
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Analysis of Importance of Random Forest Factors

Feature importance analysis and their variability across Sweden provide valuable
information to better understand and evaluate factors behind forest fires. Each factor
has a different impact on forest fires in each vegetation zone; therefore, we prepared a
summary with the variable explanatory value and its corresponding importance rank
(Table 3). Latitude and FFMC values were the dominant explanatory variables in all
six vegetation zones, except zone 1 where FFMC ranked 9th in terms of importance.
We averaged the variable importance metric in all six zones. This measure reports the
Mean Square Error percentage increase (%IncMSE) if a certain variable is excluded from
a set of predictors—the greater the %IncMSE value, the higher the contribution of the
variable to the model’s prediction. FFMC and Latitude were the most powerful drivers
for the prediction model, having average importance values of 78.2 and 86.0, respectively.
Lightning strikes, another weather-related variable, only ranked at the 11th position overall,
with an average %IncMSE of 12%. Socio-economic components such as population and
road densities could be considered as the second most important category related to forest
fire occurrence in the Swedish landscape. Population density had an average ranking
of 5.2 and 46.4%IncMSE. One of the predictors—the number of campsites in each of the
spatial database grid cells—was expected to contribute to more advanced quantification of
possible threats associated with recreation, with an assumption that recreational activities
contribute to irresponsible fire use. Nonetheless, this explanatory variable had the least
meaningful effect in this study (see Table 3), not supporting our hypothesis. Topographic
features, such as mean elevation value, slope and aspect, provided meaningful impacts on
the model performance across the study area. Aspect, with a mean importance position of
9.8 and %IncMSE of 20.6%, was the least important topographic feature. In direct contrast
is the most important topographical feature, average pixel elevation value (DEM avg), with
a mean position of 5.7 and %IncMSE of 35.2%. Forest stand properties were expected to be
an important variable to describe the potentially flammable environment; however, forest-
linked characteristics such as stand volume, deciduous stand, stand age and management
intensity in general had the least influence on predictions. Two of the most important forest
characteristics in this model were forest stand volume and forest management information.
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Forest stand data exclusion from the model resulted in an average prediction MSE drop of
30.6%, whereas forest management exclusion produced a 24.2% drop (Table 3).

Table 3. Random forest variable importance in each vegetation zone.

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Average
Variable Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value

FFMC 9 31.3 2 84.6 1 100.0 1 100.0 1 100.0 1 100.0 2.5 86.0
lightning 7 35.6 7 20.7 15 0.0 14 7.8 15 0.0 9 10.9 11.2 12.5
latitude 1 100.0 1 100.0 2 44.7 2 81.0 2 72.4 2 70.8 1.7 78.2

lakes 5 52.9 12 6.9 9 18.9 10 25.8 11 12.2 9 10.9 9.3 21.3
roads 3 73.9 9 16.5 10 18.1 7 34.0 10 14.6 4 53.2 7.2 35.1

stand vol. 4 55.5 13 4.2 5 25.2 6 34.2 3 36.1 8 28.3 6.5 30.6
DEM max 6 45.3 5 29.0 7 23.0 9 29.7 5 31.3 7 40.8 6.5 33.2
DEM avg 8 32.9 6 26.3 6 24.0 5 34.8 6 28.7 3 64.2 5.7 35.2

population 2 91.3 4 32.6 3 39.8 3 60.3 13 11.1 6 43.2 5.2 46.4
deciduous vol. 15 0.0 14 4.1 13 14.5 13 16.8 12 11.2 9 10.9 12.7 9.6

stand age 10 28.9 8 20.7 12 15.4 12 20.2 9 17.7 15 0.0 11.0 17.2
slope 14 12.9 3 44.1 8 19.1 11 24.1 8 18.6 5 46.5 8.2 27.6
aspect 13 21.8 11 12.9 11 17.9 4 41.5 7 20.0 13 9.5 9.8 20.6

campsites 11 26.9 15 0.0 14 3.9 15 0.0 14 2.8 9 10.9 13.0 7.4
forest

management 11 26.9 10 14.3 4 32.5 8 30.1 4 34.2 14 7.0 8.5 24.2

4. Discussion

The strong influence of FFMC on fire probability values means that climate change
will most likely affect the fire season by prolonging it in the spring and autumn directions.
Venäläinen and Aalto [59] published extensive research about the effects of climate change
and forest management on forest fire occurrence in Fennoscandia. They stressed the
uncertainty that comes with long-term projections and concluded that high fire seasons in
Sweden will remain occasional. Climate change might influence forest conditions, which
would likely impact fire occurrence. New climatic conditions could realistically increase
the drought-, tree uprooting-, bark beetle- and deadwood-related fire risks.

Numerous scientists have concluded that fire occurrence is dependent on popula-
tion [60] and road densities [11], but density increment can result in mixed effects [22].
More inhabitants and increased accessibility might result in increasing recreational activi-
ties, sometimes leading to irresponsible attitudes with fire. Knorr et al. [61] reported that
fire occurrence has a positive correlation with population density only when it ranges
from 0 to 0.1 people/km2. Increased population density usually comes with improved
infrastructure which increases the forest management intensity and quality, raises people’s
awareness about the processes in the forest and considerably improves fire suppression
activities in case of raging fire. One of the predictors in our random forest model was the
presence of campsites, but this variable had the smallest explanatory power with the lowest
average rank and %IncMSE value. This could be explained by non-existing relationship or
randomness, but on the other hand, forests next to the campsites could be more intensively
managed, thereby reducing fuel availability and ignition potential.

Scientists in Finland [59] and Austria [62] proposed that 10% and 15%, respectively, of
all fires are started by lightning strikes. Similarly, our study indicates the importance of
lightning, although it is hard to compare our results with previous studies, because our
study indicates general lightning importance in each of the random forest models. Here,
we note that monthly dynamics of lightning strikes across Sweden (see Figure A1) shows a
positive correlation with extreme burned areas in 2014 and 2018, peaking in July. Research
focused on lightning ignitions would require analysis at a daily time step.

Forest operation, i.e., harvesting and site preparation, leads to an additional risk for
fire ignition and propagation in the Swedish forests. The Västmanland fire in 2014 was
caused by rocky soil preparation using heavy mechanical machinery. These soil precautions
sometimes take place soon after the clear cut when felling leftovers and tree debris might
lose their moisture content and become a potentially highly flammable material [59]. The
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study explanatory variable list could be extended with the latest forest activity type and
data, which in combination with forest soil or geology information might be an interesting
asset, because the combination of site condition and management activities might explain
fire occurrence patterns in Sweden. A limiting factor for historical fire data analysis is the
consistency of the data collection methodology. Harmonized data is a key aspect to avoid
misrepresented conclusions and biased decisions.

High variability in explanatory variables and a large dataset size have led to extensive
computation times and required the usage of high-performance hardware. Therefore,
optimization of algorithms, perhaps using cloud computing, would be important for
future research. Future research could provide worthy additions if we could evaluate
how accurate a model would perform if only one country-wise model were calibrated to
predict fire occurrence. Fire model performance might get worse if we tested how the
model would predict the fire occurrence using years outside the calibration time range
(2011–2018). Another investigation could be to test the performance of the model when
using separate fire event datasets for the validation and calibration pixels. The performed
analysis contributes to the implementation of additional fire-related factors in process-based
models, e.g., FLAM [20], to optimize conditional probabilities of ignition, suppression,
and fire spread. This helps to capture the spatial and intertemporal variability of areas
burned [19].

There are several policy implications of our results. First, the hot-spot mapping could
be an important tool for identification of areas which are potentially vulnerable to forest fires.
This could help policy makers in their management decisions, e.g., increasing suppression
efficiency by optimizing infrastructure and logistics of fire fighters, or preventing fires
by putting warning signs in the forest areas. Second, the threshold analysis presented in
Figure 5 allows policy makers to consider the trade-offs between false alarms and missed
forest fires due to no alarm. Policy makers could consider costs associated with these
alternatives and adjust threshold values accordingly. Finally, our results show that climate
is one of the main drivers of forest fires in Sweden. Therefore, policy makers at a global
scale are recommended to integrate climate change mitigation with guided development.

5. Conclusions

This study was developed to understand the weather, topographic, forest stand,
socioeconomic and weather factor interlinkages, and the ability to predict historically
burned areas using a random forest model. Our study demonstrates fire hotspot mapping
at a high resolution. Furthermore, it provides an advanced methodology for using fifteen
openly available data sources to achieve high model accuracy in each of the six vegetation
zones in Sweden. The Area Under the Curve (AUC) values changed from zone to zone,
not undercutting a value of 0.875. The modeled fire probabilities were evaluated using
thresholds, thereby producing more information on tradeoffs between the classification’s
specificity and sensitivity concepts. This provides policy makers the opportunity to improve
decision making over missed fire detection and false alerts. The Fine Fuel Moisture Code
(FFMC) and latitudinal pixel value have been identified as the main driving forces for forest
fires in all vegetation zones. This research provides additional contributions to the existing
forest fire knowledge about the situation in boreal forests of Northern Europe. Finally, our
results support international analyses that, irrespective of changes in management, it is
evident that climate change is very likely to increase the frequency and impact of wildland
fires in the coming decades, also in Scandinavia.
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