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Abstract: Clouds have an enormous influence on the hydrological cycle, Earth’s radiation budget,
and climate changes. Accurate automatic recognition of cloud shape based on ground-based cloud
images is beneficial to analyze the atmospheric motion state and water vapor content, and then to
predict weather trends and identify severe weather processes. Cloud type classification remains
challenging due to the variable and diverse appearance of clouds. Deep learning-based methods
have improved the feature extraction ability and the accuracy of cloud type classification, but face
the problem of lack of labeled samples. In this paper, we proposed a novel classification approach
of ground-based cloud images based on contrastive self-supervised learning (CSSL) to reduce the
dependence on the number of labeled samples. First, data augmentation is applied to the input
data to obtain augmented samples. Then contrastive self-supervised learning is used to pre-train
the deep model with a contrastive loss and a momentum update-based optimization. After pre-
training, a supervised fine-tuning procedure is adopted on labeled data to classify ground-based
cloud images. Experimental results have confirmed the effectiveness of the proposed method. This
study can provide inspiration and technical reference for the analysis and processing of other types
of meteorological remote sensing data under the scenario of insufficient labeled samples.

Keywords: cloud classification; deep learning; self-supervised learning (SSL); contrastive learning

1. Introduction

In meteorological observation, cloud analysis plays a crucial role since clouds affect the
hydrological cycle, Earth’s radiation budget, and climate changes [1–4]. Cloud observation
can mainly be divided into two categories: satellite-based [5–7] and ground-based [8–10].
The satellite remote sensing observation aims to monitor the distribution, movement and
change of clouds over large areas from a downward viewpoint. However, satellite observa-
tion cannot provide sufficient spatial and temporal resolutions to describe detailed cloud
characteristics over a particular area [10,11]. On the other hand, the ground-based cloud
observation open up new opportunities for monitoring and understanding regional sky
conditions [10]. In comparison with satellite images of clouds, ground-based cloud images
are mainly used to observe local sky areas, with higher temporal and spatial resolution.
Typical ground-based remote sensing observation instruments include Total Sky Imager
(TSI) [12], Whole Sky Imager (WSI) [13,14], and All Sky Imager (ASI) [15,16]. Figure 1
shows the pictures of typical TSI and ASI. What they observe is the information at the
bottom of the cloud, and the cloud features are more obvious, which is more conducive
to assisting the weather forecast in local areas [17]. For example, using the data obtained
from ground-based equipment, forecasters can judge the types of clouds and then analyze
the weather change trend (e.g., stratus clouds usually indicate a sunny day, while cumu-
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lonimbus capillatus clouds indicate thunderstorm weather). Therefore, the ground-based
method plays an irreplaceable role in cloud observation at a local scale.

(a) TSI (b) ASI

Figure 1. Examples of Total Sky Imager (TSI) (source of picture: https://gml.noaa.gov/grad/
surfrad/tsipics.html, accessed on 30 October 2022) and All Sky Imager (ASI) (source of picture:
https://www.eko-instruments.com, accessed on 30 October 2022). (a) The TSI is composed of a web
camera suspended over a convex mirror. (b) The ASI-16 All Sky Imager utilizes a 5MP camera and
fish-eye lens with an anti-reflective coated quartz dome.

Cloud observation involves three main aspects, i.e., height, coverage, and type [10],
which are important reference data for analyzing sky conditions and forecasting short-term
weather. Among them, cloud types are mainly reflected in the form of cloud shapes. With
the advancement of cloud measurement equipment, the observation of cloud height and
cloud coverage by the meteorological department has achieved instrumental measurement
and can ensure high reliability, while the observation and identification of cloud shapes is
still dominated by manual observation. The cloud shape reflects the physical properties of
the cloud to a certain extent, and its change and development are an effective representation
of the atmospheric motion state [18,19]. Accurate automatic recognition of cloud shape
based on ground-based cloud images is beneficial to continuously obtain cloud shape
information, analyze atmospheric motion state and water vapor content, etc., and then
predict weather trends and identify severe weather processes [11].

With the development of ground-based remote sensing observation instruments, a
large amount of cloud images are collected. The data from these imaging devices provide
preconditions for research on automatic cloud classification. Essentially, cloud type classifi-
cation using ground-based cloud images is the specific application of pattern recognition
technology in the field of cloud observation. Its main task is to classify each cloud image
captured from ground into the corresponding cloud category, such as stratus, cumulus,
cirrus, cumulonimbus, etc.

Early research on ground-based image classification relied on manual classification
methods, which focused on features such as texture, structure and color features in con-
junction with traditional machine learning methods to classify ground-based cloud images.
These methods include decision tree, K-nearest neighbors (KNN) classifier, support vector
machine (SVM), extreme learning machine (ELM), linear discriminant analysis (LDA),
etc. Buch et al. [20] used LAWS texture, pixel location and pixel brightness to describe
different clouds, and used a binary decision tree as a classifier for classification. On this
basis, Singh et al. [21] combined several other forms of texture information, such as autocor-
relation, co-occurrence matrices, edge frequency, etc., to jointly characterize ground-based
cloud images, and compared the classification ability of three classifiers (KNN, linear clas-

https://gml.noaa.gov/grad/surfrad/tsipics.html
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sifier, neural network). The statistical texture features and pattern features using Fourier
spectrum are employed in Calbó et al [8], where a threshold-based method is used for
classification. Heinle et al. [22] proposed to describe the cloud image using spectral fea-
tures (mean, standard deviation, skewness, and difference) and texture features (energy,
entropy, contrast, homogenity, and cloud cover). Combined with the KNN classifier, the
ground-based cloud images were divided into seven categories. Liu et al. [23] studied the
classification of near-infrared ground-based cloud images, using features including gray
mean value, cloud fraction, edge sharpness, and cloud mass and gap distribution parame-
ters. Isosalo et al. [24] compared the performance of local binary pattern (LBP) and local
edge pattern (LEP) features, using KNN as the classifier, and pointed out that LBP features
are more suitable for ground-based cloud image classification. On this basis, Refs. [25,26]
proposed saliency LBP and stable LBP, respectively, as features for ground-based cloud
image classification, and the classifiers used were the nearest neighbor classifier, SVM
and multilayer perceptron (MLP), respectively. In addition, Oikonomou et al. [27] used
regional LBP to take into account both global and local textural information from cloud
type patterns to improve the classification accuracy, where a linear SVM and LDA clas-
sifiers are adopted in the classification stage. Zhuo et al. [28] proposed that the spatial
distribution of contours can represent the structural information of cloud shapes, and used
the CENTRIST descriptor pyramid to simultaneously extract the texture and structural
features of the ground-based cloud images, and used SVM and KNN to classify the cloud
image. Li et al. [29] characterized the ground-based cloud image by establishing a bag
of micro-structures, and combined SVM to classify the cloud images into five categories.
It can be seen that the traditional machine learning-based cloud recognition method for
ground-based cloud images mainly uses hand-designed features such as texture, structure,
color, and shape, and obtains high-dimensional feature expressions of ground-based cloud
images through a single feature or a combination of multiple descriptors. Most of these
methods start from the point of view of digital signal analysis and mathematical statistical
characteristics in feature description, but ignore the representation and interpretation of
the visual characteristics of the image itself. However, as a result of cloud appearance
variability and diversity, it is extremely challenging to accurately classify cloud types and
the research is still ongoing.

During recent years, deep learning (DL) methods have been widely used in image
recognition, object detection, speech recognition, natural language processing and other
fields, such as instrumentation and measurement [30–35]. The main reason for the suc-
cess of deep learning technology is that through the deep (hierarchical) structure, it can
better perform abstract representation of features and mine invariance in features [36].
With the in-depth integration of artificial intelligence and meteorological data process-
ing technology, deep learning-based solutions continue to heat up in the meteorological
field [37,38]. At present, there are some works that combine deep learning with ground-
based cloud type recognition. The deep models adopted include convolutional neural
networks (CNN) [17,39–42] and graph neural networks (GNN) [4,10,43]. Ye et al. [39]
took the lead in introducing the deep learning model into the cloud type recognition of
ground-based cloud images, and proposed an extraction method of high-level semantic
features of ground cloud images using convolutional neural networks (CNN). On this basis,
they combined Fisher vector (FV) coding and SVM for cloud classification of ground-based
cloud images. Subsequently, the author extended this work and proposed a cloud recogni-
tion method based on multi-layer semantic feature mining using CNN model in [17], which
screened out local patterns with strong discriminative ability from multiple convolutional
layers of CNN model, and encodes local convolutional features in the form of Fisher vectors
to achieve simultaneous extraction of multi-scale and multi-level features of ground-based
cloud images. In [40–42], CNN is also used for ground-based cloud image classification,
and the classical network structure of multi-layer convolution and max-pooling operation
is adopted. Liu et al. [44] combined the multi-modal information (temperature, air pressure,
humidity, wind speed, etc.) with the visual features of the ground-based cloud image
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extracted by CNN, so as to improve the accuracy and robustness of the ground cloud image
cloud classification. Furthermore, Ref. [45] added an attentive network on the basis of [44]
to further explore local visual features of ground-based cloud images.

In addition to the most commonly used CNN model in computer vision, researchers
also introduced other new deep learning models, such as graph neural networks (GNN),
into classification of ground-based cloud images. Liu et al. [10] applied a commonly used
GNN model, graph convolutional networks (GCN), to the feature extraction of ground-
based cloud images; specifically, the visual features extracted by CNN were taken as nodes
of the graph, and the similarity between nodes as edges of the graph, and the network
training was conducted through graph representation learning. In [43], multi-modal in-
formation such as temperature, air pressure, humidity, and wind speed is incorporated
with GCN-based features to further improve the classification accuracy. Ref. [4] proposed a
context graph attention network (GAT) for ground-based remote sending cloud classifi-
cation, where the attention module is introduced to reflect the importance of connected
nodes more precisely.

These deep learning-based efforts have improved the feature extraction ability and
the accuracy of cloud type classification, but face the problem of lack of labeled samples.
The main driving force of deep learning is the amount of available data. However, in the
real ground-based cloud image classification scene, it is often difficult to collect a large
number of labeled samples. For example, the SWIMCAT dataset, which is commonly used
in ground-based cloud image classification research, has a total of 784 images. These images
are divided into five cloud categories, and the minimum category has only 85 images. How
to perform effective learning on “small sample” ground-based cloud image datasets has
become a difficult problem in designing deep learning models.

In recent years, self-supervised learning (SSL) has become a hot research direction of
machine learning. The self-supervised learning method is a special form of unsupervised
learning method. Its main idea is that data itself provides supervised information for
the learning algorithm, which can make full use of a large number of unlabeled data for
feature learning [46,47]. Generally, self-supervised learning is divided into two categories:
generative learning and contrastive learning [47]. Among them, contrastive self-supervised
learning has become a research focus of machine learning in recent two or three years due
to its characteristics of simple model and optimization and strong generalization ability.
Representative works of contrastive learning include SimCLR [48], MoCo [49], SwAV [50],
BYOL [51], etc. Inspired by these works, aiming at the challenge of insufficient labeled
samples faced by the existing ground-based cloud images classification methods based
on deep learning, this paper proposes a new classification method of ground-based cloud
images based on contrastive self-supervised learning (CSSL) to reduce the dependence on
the number of labeled samples, improve the representation ability of ground-based cloud
images, and improve the classification accuracy. The main contributions of this article are
summarized as follows.

• The contrastive self-supervised learning (CSSL) is adopted to learn discriminating
features of ground-based cloud images. To the best of our knowledge, this is the first
work to utilize a self-supervised learning framework for ground-based remote sensing
cloud classification, which provides a new perspective for the better utilization of
cloud measuring instruments.

• The deep model learned from CSSL is transferred and serves as the appropriate initial
parameters of the fine-tuning procedure. The overall approach integrates the advan-
tages of unsupervised and supervised learning to boost the classification performance.

• The proposed method is demonstrated to outperform several state-of-the-art deep
learning-based methods on a real dataset of ground-based cloud images, showing that
CSSL is an effective strategy for exploiting the information of unlabeled cloud images.

The remainder of this paper is organized as follows. Section 2 describes the proposed
CSSL classification method. Section 3 presents the experimental results as well as the details
of the experiments. Finally, this study is concluded in Section 5.
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2. Method

The method proposed in this paper mainly includes data augmentation, network
pre-training based on contrastive self-supervised learning, and fine-tuning of the deep
neural networks (DNN). The flowchart is shown in Figure 2.

 Data Augmentation

 augmentation v'

 augmentation v 

Representations

Fine-tuning of DNN and Classification 

Procedure

z

z' 

Maximize 

Similarity  

Transfer

Classification 

Results

back-propagate loss and fine-tune model

Class 1

Class 2

Labeled Samples

Test Image

Base Encoder Projection 

Head

FC

Pre-Trained 

Encoder

unlabled sample 
u

 Pre-training of DNN Based on Contrastive SSL

Figure 2. Schematic diagram of the proposed method.

The data augmentation methods to be used in the article include image rotation,
flipping, cropping and resizing, color jittering, random noise, image blurring (such as
Gaussian blurring), etc. The augmented cloud image has the same size as the original
image. Among them, rotation includes three rotation forms (90°, 180°, and 270°), and
flipping includes flipping and vertical flipping. Cropping and resizing is to randomly select
an area from the image and resize the area to the size of the original image. Figure 3 shows
examples of the effect of four data augmentation methods: cropping and resizing, rotation,
random noise, and Gaussian blur. By randomly changing the training samples, the model’s
dependence on some attributes can be reduced and the generalization ability of the model
can be improved. For example, the image is cropped in different ways so that the target
of interest appears in different positions, thereby reducing the model’s dependence on
position; random color jittering is performed on the image to reduce the model’s sensitivity
to color.
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Cumulus

Stratus

Crop and ResizeOriginal Rotate Random Noise Gaussian Blur

Figure 3. Examples of data augmentation.

On the basis of data augmentation, contrastive self-supervised learning is used to
learn the feature representation of ground-based cloud images. The main process is shown
in Figure 4. The learning framework mainly includes main encoder, auxiliary encoder,
contrast loss function, memory bank, etc. For the unlabeled sample u, through different
data augmentation methods, its two augmented samples v and v’ are obtained. Then, the
augmented samples v and v’ are, respectively, passed through the main encoder and the
auxiliary encoder to obtain the corresponding embedding vectors, namely z and z’. The
main encoder and the auxiliary encoder use the same network structure, but the update
methods of the two are different. After that, the framework updates the network by using
the contrastive loss function. The memory bank M is mainly used to store negative samples
and form negative sample pairs.

Contrastive Loss 

Function

Memory Bank (M)

unlabled sample 
u

gradient back-propagation

 augmentation v' 

h' 

z

z'

main encoder q

auxiliary encoder k

enqueue dequeue

Negative Sample
Positive Sample

 augmentation v h

Figure 4. Pre-training of DNN using contrastive SSL.

The main encoder consists of two parts: the base encoder and the projection head.
We adopt the classical residual network ResNet-50 [52] as the base encoder. The data v
obtains its feature representation h after passing through the base encoder f, and then it is
input into a projection head network g. The projection head plays a role in mapping the
feature representation onto the space acted on by the contrastive loss function, and reducing
information loss in downstream tasks [48,49]. In this paper, a multilayer perceptron (MLP)
is proposed to be used to construct the projection head. We denote the learnable parameter
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set in the base encoder f and the projection head g by θ and ϕ, then f and g are also denoted
as fθ and gϕ.

The auxiliary encoder has the same topology and hyperparameters as the main en-
coder, and its function is to construct sample pairs required to form the contrastive loss
function. We use f

θ̃
and gϕ̃ to represent the base encoder and the projection head in the

auxiliary encoder, where θ̃ and ϕ̃ are learnable hyperparameters.
As show in Figure 4, the unlabeled sample receives two augmented samples v and

v’ through data augmentation, and then v receives the embedding vector z through fθ

and gϕ of the main encoder, i.e., z = gϕ( fθ(v)); meanwhile, v’ receives the embedding
vector z’ through f

θ̃
and gϕ̃ of the auxiliary encoder, i.e., z’ = gϕ̃( f

θ̃
(v’)). In self-supervised

training, each unlabeled sample is treated as a separate category. z and z’ come from the
same unlabeled sample and form a positive sample pair. For convenience of description, z’
is also written as z+, indicating that z’ is a positive sample of z.

In the process of contrastive learning, besides positive sample pairs, negative sample
pairs are also required. In this paper, negative sample pairs are constructed using the
memory bank. In implementation, the memory bank adopts a “first in first out” queue data
structure. During the learning process, unlabeled data is input in the form of minibatch.
The embedding vector of the sample in a minibatch acquired by the auxiliary encoder
will be saved in the memory bank M through the enqueuing operation, and the earliest
minibatch in M will be removed from the queue. The negative sample pairs are constructed
in such a way that the embedding vector z of the current sample obtained by the main
encoder and the embedding vectors corresponding to all previous minibatches that are still
in the queue stored in the memory bank M form a negative sample pair. Theoretically, the
more negative sample pairs, the better the effect of self supervised learning [49]. Since M
can usually be set very large, the number of negative sample pairs can be increased, and the
learning effect can be improved by introducing the dynamically updated memory bank.

After the positive and negative sample pairs are constructed, a key issue is to design
the contrastive loss function. The goal of this function is to make the sample representation
learned as close as possible to the representation of the positive sample and as far as
possible from the representation of the negative sample. The InfoNCE [53] contrastive loss
function is applied in this paper:

Lpretraining=− log exp(sim(z,z+)/τ)

exp(sim(z,z+)/τ)+∑N
j=1 exp(sim(z,z−j )/τ) (1)

where z+ represents the positive sample and z−j represents the j-th negative sample; N
denotes the total number of negative samples that are stored in the memory bank; tem-
perature coefficient τ is a hyperparameter that controls how uniformly information is
distributed [54]. sim(·, ·) represents the similarity function, which is the cosine similarity in
this paper:

sim(zi, zj) =
zT

i zj
||zi || ||zj ||

(2)

By minimizing the loss function in Equation (1), the augmented images from the same
original source are pulled together in the feature space, while those from different sources
are pushed apart. Thus, the codes of the same type of data tend to be similar, and the
data of different types tend to be far away, which is useful for conducting the downstream
ground-based cloud image categorization task. The loss function is back-propagated to
update the network parameters of the main encoder (i.e., the parameters θ of the base
encoder and and ϕ of the projection head) through the stochastic gradient descent (SGD)
algorithm, as shown by the red dotted line in Figure 4.
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For the sake of consistency, the parameters of θ̃ and ϕ̃ in the auxiliary encoder are not
directly updated with the loss function by back-propagation. Inspired by [49], we update
the auxiliary encoder’s network parameters θ̃ and ϕ̃ with a momentum-based strategy:{

θ̃ ← mθ̃ + (1−m)θ
ϕ̃← mϕ̃ + (1−m)ϕ

(3)

where m represents the momentum coefficient and is in the range of 0 and 1. The value of
m is generally selected to be relatively large (above 0.99) to make the update of the auxiliary
encoder more smooth and stable. The momentum update process is shown by the purple
dashed line in Figure 4.

After pre-training, a supervised fine-tuning process is required for the classification
task. The pre-trained base encoder fθ of the main encoder is transferred for the repre-
sentation learning of labeled training samples. A trainable fully-connected (FC) layer is
connected behind fθ . The parameters in fθ and FC are fine-tuned through back-propagation.

When the architecture and weights of deep model are specified, the fine-tuned model
can be used to classify ground-based cloud images using a forward-propagation step. In
the output layer of FC, the node index corresponding to the largest value is considered to
be the current image’s predicted label.

3. Experiments and Results
3.1. Dataset Description

The experiments in this paper were conducted on the TJNU ground-based cloud
dataset (GCD) [4]. This dataset was collected during 2019 and 2020 in nine Chinese
provinces, including Liaoning, Hebei, Tianjin, Shandong, Gansu, Sichuan, Jiangsu, Anhui,
and Hainan. A total of 19,000 ground-based images of clouds are contained in the dataset.
According to the criteria established by the World Meteorological Organization (WMO)’s
international cloud classification system (https://cloudatlas.wmo.int/, accessed on 26
September 2022) and the similarity in visual appearance, seven types of sky conditions can
be distinguished. It is remarkable that cloud images whose cloudiness is less than 10% are
considered as clear sky. These images are captured using camera sensors and saved with
512 × 512 pixel resolution. Figure 5 shows a few example images included in this data
set. Ground-based cloud researchers and meteorologists collaborate to annotate all cloud
images. We randomly select 70% samples from each class to form the training set, and
the remaining 30% samples are used for testing. The training and test sets do not overlap.
Table 1 presents the details of GCD dataset.

Table 1. Details of GCD dataset.

Cloud Type Number of Samples
Descriptions

ID Name Total Training Test

C1 Cumulus 1525 1068 457 Puffy clouds with sharp outlines, flat bottom and
raised top, white or light-gray

C2 Altocumulus and Cirrocumulus 1475 1033 442 Patch, sheet or layer of clouds, mosaic-like,
white or gray

C3 Cirrus and Cirrostratus 1906 1335 571 Thin clouds, with fibrous (hair-like)
appearance, whitish

C4 Clear Sky 3739 2618 1121 Very few or no clouds, blue

C5 Stratocumulus, Stratus and Altostratus 3636 2546 1090 Cloud sheet or layer of striated or uniform appearance,
cause fog or fine precipitation, gray or whitish

C6 Cumulonimbus and Nimbostratus 5764 4035 1729 Dark, thick clouds, mostly overcast, cause falling rain
or snow, gray

C7 Mixed Clouds 955 669 286 Two or more types of clouds

https://cloudatlas.wmo.int/
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(a) (b) (c) (d) (e) (f) (g)

Figure 5. Example images from 7-class GCD dataset: (a) Cumulus, (b) Altocumulus and Cirrocumu-
lus, (c) Cirrus and Cirrostratus, (d) Clear Sky, (e) Stratocumulus, Stratus and Altostratus, (f) Cumu-
lonimbus and Nimbostratus, (g) Mixed Clouds.

3.2. Evaluation Metrics

In order to analyze the classification results of ground-based images quantitatively, we
use several widely used evaluation methods, including confusion matrix, overall accuracy,
average accuracy, and Kappa coefficient [55]. Confusion matrix, also known as error matrix,
forms the basis for analyzing other metrics, such as overall accuracy and Kappa coefficient.
Assuming M is the confusion matrix, then its element mij represents the count of cloud
images with real label as i and predicted label as j.

Overall accuracy, or OA, is the ratio of correctly classified images divided by all test
images, and it represents the evaluation of the classification results on a global scale. It can
be calculated as

OA =
c
∑

i=1
mii/N (4)

where c is number of cloud types, mii stands for the diagonal element of M, and

N =
c
∑

i=1

c
∑

j=1
mij is the total number of samples that are tested. Average accuracy (AA)

is a measure of accuracy averaged over each class.
The Kappa coefficient [56] is calculated using multiple discrete analysis, which incor-

porates all elements of the confusion matrix. It is generally considered as a more objective
measure. The Kappa coefficient can be expressed as follows:

κ =
N

c
∑

i=1
mii−

c
∑
i
(mi+m+i)

N2−
c
∑
i
(mi+m+i)

(5)

where mi+ denotes the sum of the confusion matrix’s elements in row i and m+i represents
that in column i. A higher Kappa coefficient indicates better classification performance.

To evaluate the classification performance of each cloud category, we also use the
following measure metrics: precision, recall and F1-score. They are computed by adopting
True Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN).
The calculations are as follows:

precision = TP
TP+FP (6)
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recall = TP
TP+FN (7)

The F1-score takes both accuracy and precision into account, and can be defined as the
harmonic average of them [57]:

1
F1 = 1

2 (
1

precision + 1
recall ). (8)

Thus, the F1-score can be computed as

F1 = 2× precision×recall
precision+recall =

2×TP
2×TP+FP+FN . (9)

3.3. Experimental Settings

The proposed CSSL method is trained and tested using the PyTorch framework. All
experiments were performed on a computer with two ten-core 2.4 GHz Intel Xeon Silver
4210R CPUs, NVIDIA GeForce GTX 3090 GPU and 128 GB memory. In the pre-training
procedure, the widely used stochastic gradient descent (SGD) optimizer is applied and
the InfoNCE loss mentioned above is utilized as a loss function. We set the learning rate
to 0.03 and weight decay to 1 × 10−4. The batch size and epoch number are set to 64
and 200, respectively. Following [49], the feature dimension of projection head is 128,
and the max number of negative samples stored in the memory bank is set to be 4096.
The temperature parameter in Equation (1) is set as 0.5, and the momentum coefficient in
Equation (3) is 0.999.

In the fine-tuning procedure, we utilize the cross-entropy loss as loss function. It is
set to 0.01 and 1 × 10−4 for the learning rate and weight decay. The batch size and epoch
number are set to 16 and 200, respectively.

3.4. Experimental Results
3.4.1. Classification Performance

Table 2 shows the performance assessment of the proposed CSSL method using distinct
assessment matrices for each category. As shown in this table, cloud type C4 (clear sky) has
excellent classification performance, with precision of 0.9742, recall of 0.9777, and F1-score
of 0.9760. C5 (stratocumulus, stratus and altostratus) and C7 (mixed clouds) perform
comparatively poorly, with F1-score of 0.7351 and 0.7072, respectively. The remaining cloud
types have F1-scores varying from 0.8346 to 0.9113.

Table 2. Performance evaluation of categories in the GCD dataset with the proposed CSSL method.

Category Precision Recall F1-Score

C1 0.9015 0.9212 0.9113

C2 0.8060 0.9118 0.8556

C3 0.8891 0.7863 0.8346

C4 0.9742 0.9777 0.9760

C5 0.7246 0.7459 0.7351

C6 0.8359 0.8398 0.8379

C7 0.7750 0.6503 0.7072

Figure 6 shows the confusion matrix of prediction results with the GCD test data set.
We can see that only 25 images (2.2%) of cloud type C4 are misclassified, and 36 images
(7.9%) are given wrong labels for cloud type C1. Meanwhile, we notice that 219 images of
C5 are misclassified to C6, and 225 images of C6 are misclassified to C5, showing a notable
confusion between C5 and C6. It is because the cloud types C4 and C1 are clear sky and
cumulus, respectively, which possess low diversity; while C5 (stratocumulus, stratus and
altostratus) and C6 (cumulonimbus and nimbostratus) have great similarity, which are
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relatively difficult to distinguish. Further, Figure 7 gives some examples of misclassified
images on the GCD dataset, where the ground truth is represented by yellow labels, and
predicted cloud categories are indicated by red labels. The interclass misclassification may
be brought about by two reasons. The first one is that illumination and viewpoint changes
may affect the prediction of cloud categories. For example, the image in the middle of the
first row belongs to C2, but it is misjudged as C6, since the illumination makes the cloud
turn dark black and it is similar to C6. Second, because the GCD dataset was collected over
a period of one year across ten provinces in China, it is highly diverse. Some images are
rather difficult to judge, even by experienced experts. Therefore, it is sometimes intractable
to make accurate predictions.

Figure 6. Confusion matrix of the proposed CSSL method.

C2

C3 

C1

C2 

C2

C6 

C3

C5

C3

C1 

C4

C5

C5

C6

C5

C2 

C6

C5 

C7

C2

Figure 7. Misclassified images on the GCD dataset. Ground truth is represented by yellow labels,
and predicted cloud types are indicated by red labels.
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3.4.2. Visualization of Features

To visualize the features captured by different layers of the proposed deep model,
we show the feature maps of different convolution layers in Figure 8. The fist column
contains input cloud images, and it is followed by feature maps in different convolution
modules; for instance, Conv1-4 represents the feature map of channel number 4 in the first
convolution module. As can be seen from this figure, the shallow layers tend to capture
low-level texture information and the shape of clouds is roughly outlined, while the deep
layers reflect more abstract high-level semantic features.

Input image 1 Conv1-4 Conv2-23 Conv3-42 Conv4-32

Input image 2 Conv1-58 Conv2-22 Conv3-93 Conv4-68

Input image 3 Conv1-3 Conv2-216 Conv3-42 Conv4-54

Figure 8. Visualization of feature maps from different convolution layers.

3.4.3. Comparison with Other Methods

To verify the effectiveness of our proposed CSSL method, we compare it with several
state-of-the-art classification algorithms for ground-based images, including BOMS [29],
CloudNet [41], VGG-19 [58], and ResNet-50 [52]. Among these methods, the latter four
are deep learning-based. The results are listed in Table 3, where the overall accuracy
(OA), average accuracy (AA), and Kappa coefficient are reported. Several conclusions
can be made from the table. First, the classification accuracy obtained by BOMs method
is relatively low, and the OA is 61.76%. Second, CloudNet and VGG-19 achieve similar
classification accuracy, with the OA around 75%. Third, with a deeper architecture, ResNet-
50 gets an improvement of over 5% in term of OA compared with CloudNet and VGG-19.
Fourth, the CSSL method achieves the best classification results among these approaches,
obtaining an OA of 84.62%, an AA of 83.33%, and a Kappa coefficient of 0.8093. The reason
behind the superiority of CSSL over ResNet-50 is that, with a self-supervised pre-training
procedure, the deep model is assigned a more appropriate set of initial weights. It is worth
mentioning that, the training of deep models takes longer than that of the BOMS method,
which is a common deficiency of deep models.
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For intuitively evaluating CSSL, Figure 9 illustrates the final features of different deep
models using t-distributed stochastic neighbor embedding (t-SNE) [59], where the feature
visualizations of CloudNet, VGG-19, ResNet-50, and CSSL are shown in Figure 9a–d,
respectively. It can be seen that the same color dots in Figure 9d are more closely spaced.

(a) CloudNet

(b) VGG-19

Figure 9. Cont.
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(c) ResNet-50

(d) CSSL

Figure 9. Visualizations of features based on t-SNE [59], in which each dot represents the final feature
of the ground-based cloud image, and the types of clouds are indicated by their colors. Feature
visualizations of (a) CloudNet, (b) VGG-19, (c) ResNet-50, and (d) CSSL.
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Table 3. Comparisons with other methods.

Method OA(%) AA(%) Kappa

BOMS [29] 61.76 52.91 0.5092

CloudNet [41] 75.58 69.33 0.6930

VGG-19 [58] 75.32 69.44 0.6921

ResNet-50 [52] 81.00 76.59 0.7637

CSSL 84.62 83.33 0.8093

4. Analysis and Discussion
4.1. Effect of the Temperature Parameter

In the loss function, there is an adjustable temperature parameter τ, which has a
range of −1 to 1. It plays the role of scaling the input and increasing the range of cosine
similarity [60]. The classification results can be affected by a suitable adjustment of the
temperature parameter τ. In the experiment, the momentum coefficient is set to 0.999.
Table 4 shows the results of OA when τ is set to various values. It has been found that
when τ is 0.5, the most accurate classification is provided.

Table 4. The OA with different temperature parameter.

τ 0.01 0.05 0.1 0.5 0.8 1.0

OA(%) 82.02 82.53 83.27 84.62 83.58 82.25

4.2. Effect of the Momentum Coefficient

In this experiment, we have set the temperature parameter to 0.5. Table 5 shows the
accuracy of classification with various momentum coefficients, which are used during
pre-training as in Equation (3). It behaves decently when m varies between 0.99 and 0.999,
indicating the benefit of a slowly progressing auxiliary encoder (i.e., one with a large
momentum) [49]. The accuracy has decreased significantly when the value of m is too low
(for example, 0.9).

Table 5. The OA with a different momentum coefficient.

m 0.8 0.9 0.99 0.999 0.9999

OA(%) 80.78 81.34 83.16 84.62 83.97

5. Conclusions

In this paper, we propose a classification method of ground-based cloud images based
on contrastive self-supervised learning (CSSL). Specifically, data augmentation is applied
to the input data at first. Then, contrastive self-supervised learning is used to pre-train the
deep model and learn the feature representation of ground-based cloud images, which uses
a momentum update strategy. Afterwards, a supervised fine-tuning procedure is adopted
to fit the classification mission. Experimental results on the GCD dataset have shown the
effectiveness of the proposed CSSL method.

In future work, we will study the case when the labeled samples are extremely insuffi-
cient to see how much benefit CSSL can bring. Additionally, the deformable convolution
net is considered to be applied as the base encoder in our model, which may be more
capable of capturing the rich diversity of cloud shapes. We will further study the CSSL
method combined with graph neural networks (GNN) to further improve classification
performance of ground-based cloud images.
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