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Abstract: Recent developments in remote sensing technology have allowed us to observe the Earth
with very high-resolution (VHR) images. VHR imagery scene classification is a challenging problem
in the field of remote sensing. Vision transformer (ViT) models have achieved breakthrough results
in image recognition tasks. However, transformer–encoder layers encode different levels of features,
where the latest layer represents semantic information, in contrast to the earliest layers, which contain
more detailed data but ignore the semantic information of an image scene. In this paper, a new deep
framework is proposed for VHR scene understanding by exploring the strengths of ViT features in
a simple and effective way. First, pre-trained ViT models are used to extract informative features
from the original VHR image scene, where the transformer–encoder layers are used to generate the
feature descriptors of the input images. Second, we merged the obtained features as one signal data
set. Third, some extracted ViT features do not describe well the image scenes, such as agriculture,
meadows, and beaches, which could negatively affect the performance of the classification model. To
deal with this challenge, we propose a new algorithm for feature- and image selection. Indeed, this
gives us the possibility of eliminating the less important features and images, as well as those that are
abnormal; based on the similarity of preserving the whole data set, we selected the most informative
features and important images by dropping the irrelevant images that degraded the classification
accuracy. The proposed method was tested on three VHR benchmarks. The experimental results
demonstrate that the proposed method outperforms other state-of-the-art methods.

Keywords: very high-resolution images (VHRI); vision transformer (ViT); image scene classification;
deep features

1. Introduction

The high-speed development of remote sensing instruments and technologies has
provided us with the ability to capture high and very high-resolution (VHR) images. This
raises challenging problems concerning appropriate and efficient methods for image scene
understanding and classification. The classification of VHR images into the corresponding
and adequate classes of the same semantics (according to the image scene) is critical. In
the last decade, several methods have been proposed for VHR image scene understanding.
The existing scene classification methods are distinguished by three categories, which
depend on the pixel-/object-level image representation, in which the VHR image scene
classification techniques directly depend on the holistic representation of the image scene
as demonstrated in [1]. These kinds of methods represent the VHR image scenes with
handcrafted features, which are also called low-level features, such as texture descriptors [2],
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color histogram (CH) [3], the scale-invariant feature transform (SIFT) [4], and the histogram
of the oriented gradient (HOG) [5].

Several works based on low-level features have been developed for VHR image scene
classification. Yang and Newsam [6] compared Gabor texture features and SIFT features
for the IKONOS remote sensing image classification, and Dos-Santos et al. [2] evaluated
the CH descriptor and local binary patterns (LBP) for remote sensing image retrieval and
classification [7]. As demonstrated in [6–8], image scene classification based on a single
kind of low-level feature achieved high accuracy.

Unfortunately, in real applications, one single feature is not able to well represent the
entire information of the image scene, so scene information is usually described by a set of
descriptors, which better improves the results than singular features [9,10]. Lou et al. [11]
combined the Gabor filters, SIFT features, simple radiometric features, Gaussian wavelet
features [12], gray level co-occurrence matrix (GLCM), and shape features [13], with the aim
to form a global features representation for remote sensing image indexing. Avramovic and
Risojevic [14] proposed combining SIFT with GIST features for aerial scene classification. In
addition, other approaches were developed to select a subset of low-level features for aerial
image classification [15]. Although the combination of low-level features can often improve
the results, how to effectively combine different types of features is a challenging problem.
Moreover, handcrafted features are not capable of accurately representing the entire content
of the image scene, especially when the scene images become more challenging. To alleviate
this concern, other techniques have been developed for image scene descriptions based on
mid-level features.

Mid-level approaches [16–18] often represent the image scene by coding low-level
feature descriptors. To describe the entire image scene, they build blocks to construct the
global image features, such as the bag of visual words (BOVW) [19], which is the most
popular encoding model for remote sensing image scene descriptions [20–23], and the HOG
feature-based models [24].

Approaches based on low-level and mid-level features require a considerable amount
of engineering skills and domain expertise for the VHR image scene understanding. To
overcome this limit, deep learning-based methods were introduced to classify remote
sensing images, which learned features from input data using a general-purpose learning
procedure via the deep architecture of neural networks. The main advantage of deep
learning methods is the ability to learn more informative and powerful features to describe
the input data with several levels of abstraction [25].

Convolutional neural networks (CNNs) and their variants are popular deep learning
models that have proven their effectiveness for image scene classifications as demonstrated
with ImageNet large-scale visual recognition competition (ILSVRC) [26]. CNNs can learn
the image scene by leveraging a hierarchical representation that describes the content of
an image. Recently, CNNs have become widely applied in remote sensing image analyses,
thus becoming more suitable for scene classification and retrieval from VHR images [25].

Based on the combination of various deep neural networks for VHR image scene
interpretations, Zhang et al. [27] introduced a novel framework that achieved specifiable
results when applied to the UC Merced data set [28]. The small sizes of remote sensing
data sets make it extremely hard to train new a CNN model [29]. However, pre-trained
CNN models have achieved acceptable results for VHR remote sensing image scene clas-
sification [30]. In this context, Othman et al. [30] leveraged pre-trained CNN models to
generate the preliminary representation features from an image scene; they applied a sparse
autoencoder that learned the final feature description of the target image. In the same vein,
Hu et al. [25] employed pre-trained CNNs for scene classification in two different ways. In
the fist way, they used two fully connected layers as final feature descriptors of the target
images. In the second step, they applied convolutional layers as initial feature descriptors
of the target image scenes with different scale sizes, then they took advantage of popular
coding approaches, such as BOVW, to encode the dense convolutional features into a global
features descriptor.
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In recent years, transformers have revolutionized the field of deep learning. Trans-
formers have achieved extraordinary results in different challenges of natural language
processing (NLP) [31,32]. Encouraged by the success of transformer models in the NLP
area, there have been important advances in transformers in computer vision tasks. ViT
models achieved great results in various challenges of computer vision, such as image
classification [33]. As mentioned in [34], deep feature fusion is an efficient technique for
understanding remote sensing images. In this study, we explored the use of the vision
transformer for VHR image scene classification. We focused on using pre-trained ViT
models to extract feature descriptors from VHR images in order to generate global image
description vectors for image scene representation. In summary, the contributions of this
paper are three-fold:

1. We explore the performance of the vision transformer method based on the pre-trained
ViT model. The transformer–encoder layer is considered a feature descriptor, where a
discriminative image scene representation is generated from the transformer–encoder
layer.

2. Second, we present a new approach that consists of selecting the most important
features and images and detecting unwanted and noisy images. Indeed, these images
can have negative impacts on the accuracy of the final model. By doing so, we
obtained a good data set without noise, which allowed us to have good accuracy and,
consequently, reduce the learning time.

3. Another challenging problem in understanding a VHR image scene involves the
classification strategy. To this end, we used the support vector machine (SVM) to
classify the extracted ViT features corresponding to the selected encoder layers.

The rest of the paper is organized as follows. Section 2 introduces the proposed
framework and the processing pipelines to extract the feature descriptor for VHR image
scene classification. Firstly, we introduce the pre-trained ViT model to automatically extract
features from the VHR images. Second, we present the proposed approach, which consists
of selecting the most important features and images. The sub-selection allows for achieving
good accuracy and reduces the learning time. Finally, we present the last block of our
framework in which we learn a classification model from the data set obtained by the co-
selection step. The experimental results from various databases are presented in Section 3.
Finally, we conclude the paper in Section 4.

2. Proposed Framework

In this section, we describe the three blocks that are the bases of our VHR Image
classification framework.

The idea of the framework is to transform the input images with four ViT models and
merge the features obtained to obtain a single raw data set containing all features (Figure 1).
However, such a data set can have redundant and highly correlated features. Therefore,
a feature selection step is required. In addition, some images in VHR data sets may be
abnormal, which can degrade the quality of the classifier during the training phase. That is
why we propose selecting both features and images in order to have the best data set for the
learning step (unlike other frameworks that focus only on feature selection or reduction).
Then, we create a classification model on top of the obtained data set.
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Figure 1. Overall architecture of the proposed method.

2.1. ViT Model and Feature Fusion

In order to represent the image scene, we put the VHR images into four different
models, i.e., ViT8b, ViT16b, ViT8s, and ViT16s, where the transformer–encoder layer is
considered a final feature descriptor of the image scene. The four models encode the input
image scenes with different dimensions as shown in the following Table 1:

Table 1. Dimensions of the four ViT models.

ViT8b ViT16b ViT8s ViT16s

Dimension 768 768 384 384

Let X be the set of n input images, and Φm(.) the map function that transforms each
image xi to a feature vector vi according to the model m, such that m is one of the four ViT
models, m ∈ {ViT8b, ViT16b, ViT8s, ViT16s}.

We denote by Vm the matrix that contains all vectors vi generated from the images X
by the model m:

Φm(.) : X −→ Vm ∈Rn×dm

where dm is the number of features extracted by model m.
We represent by V̂ ∈ Rn×p the concatenation of all features generated by the four

models:

V̂ =
4⋃

m=1

Φm(X) (1)

where

p =
4

∑
m=1

dm

is the number of all features.

2.2. Co-Selection of Features and Images

We select the most important ViT features based on the similarity-preservation of the
input images; we also select the most important images and drop the irrelevant ones. In fact,
these anomalous images can degrade the quality of the classifier. Unlike other approaches
that focus only on feature selection or reduction, we select the most important images
(instances) and drop anomalous images that can degrade the quality of the classifier. We
will describe how we perform this co-selection before describing the different components
of our proposed framework.
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First, in order to select the most important features, we rely on the similarity preserving
technique that consists of finding a projection matrix Q, which transforms the data set
V̂ to a low-dimensional one V̂Q in order to preserve the similarity of V̂ with V̂Q by
minimizing the difference between the similar structure in the original space and the
low-dimensional one:

min
Q
‖ V̂QQTV̂T −A ‖2

F +λ ‖ Q ‖2,1 (2)

where

• Q is a projection matrix to be estimated. It is of dimension (p× h) where h < p and h
denote the sizes of the new feature set.

• A is a binary matrix, which is derived from the label information Y = [yi, . . ., yn] as
follows:

Aij =

{
1 if yi = yj

0 if yi 6= yj
(3)

• λ is a regularization hyperparameter used to control the sparsity of the projection
matrix Q.

• ‖ . ‖2,1 is the `2,1-norm. If P is (n×m) matrix, then its `2,1-norm is defined by:

‖ P ‖2,1=
m

∑
i=1
‖ Pi ‖2=

m

∑
i=1

√√√√ n

∑
j=1

P2
ij (4)

• ‖ . ‖F is the Frobenius norm (`2,2) defined by:

‖ P ‖F=

(
m

∑
i=1
‖ Pi ‖2

2

)
=

(
m

∑
i=1

(
n

∑
j=1

P2
ij

))1/2

(5)

However, the above optimization problem is NP-hard and cannot be solved as shown
in [35]. This leads to a reformulation of the problem as follows:

min
Q
‖ V̂Q−K ‖2

F +λ ‖ Q ‖2,1 (6)

where K ∈ Rn×h can be obtained by an eigendecomposition of the binary matrix A,
such that:

A = KKT

Once the projection matrix Q is fitted, the features can be ranked according to the
`2,1-norms of the rows of the matrix Q. In fact, each row in Q corresponds to a feature
importance and a large `2,1-norm of the ith row of Q indicates that the ith feature of V̂
is important.

Second, in order to drop the irrelevant images and select the most representative
ones for the classification task, we propose modifying the objective function in (6) by
adding a residual matrix R ∈ Rh×n to weigh the images [36]. We define this matrix by
QTV̂T −KT −Θ, where Θ is a random matrix, usually assumed to be a multi-dimensional
normal distribution [37]. Exploiting the R matrix is a good way to detect and identify
anomalies in a data set. Each column of R corresponds to an image and a large norm of
R(:, i) shows a significant deviation of the ith image, which is more likely to be an irrelevant
image. Thus, we propose detecting both irrelevant features and images by solving the
following problem:

min
Q,R
‖ V̂Q−RT −K ‖2

F +λ ‖ Q ‖2,1 +β ‖ R ‖2,1 (7)

where:
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• β is a regularization hyperparameter used to control the sparsity of the residual
matrix R.

The first term in Equation (7) exploits the data structure by preserving the pairwise
sample similarities of the images. The second and third terms are used to perform feature
selection and image selection, respectively.

2.3. Optimization

To solve the problem in Equation (7), we adopt an alternating optimization over Q
and R by solving two reduced minimization problems:

Problem 1:
Minimizing Equation (7) by fixing R to find the solution for Q (for the feature selection).

To solve this problem, we consider the Lagrangian of Equation (7):

LQ = trace(QTV̂TV̂Q− 2QTV̂T
(RT + K)) + λ ‖ Q ‖2,1 . (8)

Then, we calculate the derivative of LQ w.r.t Q:

∂LW
∂Q

= 2V̂TV̂Q− 2V̂T
(RT + K) + 2λDQQ. (9)

where DQ is a (p× p) diagonal matrix with the ith element equal to 1
2‖Q(i,:)‖2

.
Subsequently, we set the derivative to zero to update Q by the following formula:

Q = (V̂TV̂ + λDQ)
−1V̂T

(RT + K) (10)

Problem 2: Minimizing Equation (7) by fixing Q to find the solution for R (for image
selection). To solve this problem, we consider the Lagrangian of Equation (7):

LR = trace(RTR− 2RT(V̂Q−K)) + β ‖ R ‖2,1 . (11)

Then, we calculate the derivative of LR w.r.t R:

∂LR
∂R

= 2RT − 2(V̂Q−K) + 2βDRRT . (12)

where DR is a (n× n) diagonal matrix with the ith element equal to 1
2‖RT(i,:)‖2

.
Subsequently, we set the derivative to zero to update R by the following formula:

R = (V̂Q−K)T((I + βDR)
−1)T (13)

where I is an (n× n) identity matrix. We summarize all of the above mathematical develop-
ments on Algorithm 1.
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Algorithm 1 The Proposed Framework
Input: Data set X of n images and the label information Y; the map function Φm(.) of the
deep model m; the hyperparameters: λ, β and h.
Output: the fitted Q and R.

1: Transform the images X by the four ViT models according to Equation (1) to obtain V̂.
2: Randomly split the data set (V̂, Y) into train and test sets (V̂train, V̂test, Ytrain, Ytest).
3: Calculate A according to Equation (3) over Ytrain.
4: Eigen-decompose A such as A = KKT .
5: Set DQ and DR as identity matrices and R to zero-matrix.
6: repeat
7: Update Q according to Equation (10) over V̂train.
8: Update R according to Equation (13) over V̂train.
9: Update DR and DQ.

10: until Convergence
11: Rank the features according to ‖ Q(j, :) ‖2 in descending order (j = 1 . . . p) and the

images according to ‖ R(:, i) ‖2 in ascending order (i = 1 . . . n).
12: Remove the irrelevant features and images from over V̂train and over V̂test.
13: Learn a classification model by SVM on the new data set (V̂train_new, V̂test_new,

Ytrain_new, Ytest_new).

3. Experimental Results and Setup

The proposed method was evaluated on three different–public–very high spatial
resolution data sets (UC Merced, AID, and NWPU-RESISC45). First, the data sets used are
described in the flowing subsection, where we also analyze the parameters of the proposed
approach. The results of the scene classification for each data set are then discussed.

3.1. Data Sets

The UC Merced data set was selected as the first data set to evaluate the proposed
method. As shown in Figure 2. the UC Merced data set contains 2100 images divided into
21 challenging categories with 100 images for each category. Each image under the data set
contains 256× 256× 3 pixels and 1 ft/pixel.

Figure 2. Example images associated with 21 land use categories in the UC Merced data set.

The UC Merced data set (constructed by aerial orthoimagery) is the most popular
data set in the field of VHR image scene classification. It can be downloaded from the U.S
Geological Survey (USGS) national map [28]. This data set has a high overlap between
categories, such as sparse residential, medium residential, and dense residential, which
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mainly differ in the densities of the structures. Due to the small-scale scene categories and
the sample numbers, there were sutured results in the UC Merced data set [38]. In order to
alleviate these limitations, two large data sets were constructed (AID and NWPU-RESISC45)
and were tested in this study as the second and third data sets, respectively.

The second data set (AID) was created in [39] with the aim of renewing the VHR image
scene classification challenges. This data set was constructed from a large Google Earth
satellite, which has 10,000 samples distributed into 30 challenging categories: bare land,
center, industrial, forest, school, mountain, church, square, stadium, farmland, airport,
park, pond, baseball field, beach, river, bridge, meadow, commercial, sparse residential,
dense residential, storage tanks, medium residential, railway station, playground, desert,
port, resort, parking, and viaduct, as shown in Figure 3. Each image in this data set contains
600× 600 pixels with a spatial resolution varying from 8 m to 0.5 m.

The third data set is named NWPU-RESISC45 [40]. This is the largest data set in
the field of VHR image scene classification. This data set was constructed via Google
Earth by experts and researchers in the field of remote sensing image understanding. It
contains 31,500 images distributed into 45 classes as shown in Figure 4, where each class
is composed of 700 images, and each image contains 256× 256× 3 pixels with a spatial
resolution varying from 30 to 0.2 m per pixel.

Figure 3. Example images associated with 30 land use classes in the AID data set.

3.2. Experimental

To evaluate and analyze the performance of the proposed method, we tested it on the
three different data sets described above. We selected the transformer–encoder layers by
applying the ViT model to extract the descriptive features from each image scene, where we
considered the encoder layers (as deep high-level feature descriptors) as the final feature
representations of the input images. Then, we applied the co-selection method to compute
the important features and the images. In fact, in the training set, some images were not
useful (abnormal); this could negatively affect the performance of the learning algorithm.
The instance selection task is an efficient pre-processing step; it involves removing abnormal
training instances (images) and reducing the overall dimensionality of a data set. In the
classification task, we used the LIBSVM library [41] to separately classify each feature
set, then used a probability fusion model established to compute the final accuracy. The
classification performance was measured by A = Nc

Nt
, where Nc denotes the number of

correctly classified samples in the tested samples and Nt denotes the total number of testing
samples. We evaluated the final classification performance with the average accuracy Ā
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over 10 runs for each data set, where, in each run, we randomly selected the training and
testing samples.

Figure 4. Example images associated with 45 land use categories in the NWPU RESISC45 data set.

3.3. UC Merced Data Set

In order to assess the scene classification performance of the proposed approach on the
UC Merced data set, we selected 80 images per class for the training task and the remaining
20 for evaluation using the same experimental setup as cited in [42]. In terms of classification
performance, we compared the results achieved from different feature descriptors extracted
with four pre-trained ViT models, and the final performance computed by the fusion of
these features, as shown in Table 2.

In order to study the sensitivity of important features, we varied their values over
a wide range, from 10% to 100%, as shown in Figures 5 and 6. The number of important
features (50%) achieved the highest accuracy based on the fusion of all ViT features.

Figure 5. Rate of important feature effects on the classification accuracy of the UC Merced data set
with 50% of randomly selected images per class.



Remote Sens. 2022, 14, 5817 10 of 19

Figure 6. Rate of important feature effects on the classification accuracy of the UC Merced data set
with 80% of randomly selected images per class.

Table 2. Comparison with different ViT features on the UC Merced data set.

Models
Accuracy

50% Training Ratio 80% Training Ratio

ViT8b 97.41± 0.00158 97.59± 0.00067
ViT16b 96.91± 0.0029 98.78± 0.00076
ViT8s 96.62± 0.0014 98.08± 0.00383
ViT16s 95.81± 0.00065 98.07± 0.00296
Fusion 97.7 ± 0.00113 99.49 ± 0.001

The confusion matrix performance for each category of the UC Merced data set; each
data set with a different convolutional bag is shown in Figures 7 and 8.

Figure 7. Confusion matrix of our method under the 80% training ratio and 50% of important features
on the UC Merced data set.
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Figure 8. Confusion matrix of our method under the 50% training ratio and 50% of important features
on the UC Merced data set.

We compared the proposed framework with state-of-the-art VHR image scene classifi-
cation works based on deep learning approaches on the UC Merced data set as shown in
Table 3. Including the method described in [43], the fine-tuned GoogLeNet was followed
by linear SVM introduced in [29], VHR scene classification based on multiscale convo-
lutional neural network [44], multilayer stacked covariance pooling for remote sensing
scene classification [45], multiple fisher vector feature aggregation-based methods [46],
multilayer feature fusion method for VHR images classification [47], two-stream deep
fusion framework for high-resolution aerial scene classification [48], scene classification
with recurrent attention of VHR remote sensing images [49], a multi-level convolution
pyramid semantic fusion framework for high-resolution remote sensing image scene classi-
fication and annotation [50], and multilevel feature fusion networks with adaptive channel
dimensionality reduction for remote sensing scene classification [51]. In terms of overall
classification accuracy, the results in Table 3 clearly show that the co-selection of vision
transformer features and images outperforms all the other methods.

Table 3. Overall accuracy and standard deviation of the proposed method and comparison ap-
proaches on the UC Merced data set.

Methods 80% Train 50% Train

TEX-Net-LF [43] 96.62± 0.49 95.89± 0.37
Fine-tuned GoogLeNet [29] 97.78± 0.97 -

MCNN [44] 96.66± 0.90 -
MSCP [45] 98.36± 0.58 -
ADFF [46] 98.81± 0.51 -

MLFF_WWA [47] 98.46 -
Two-Stream Fusion [48] 98.02± 1.03 96.97± 0.75

ARCNet-VGG16 [49] 99.12± 0.40 96.81± 0.14
ACR _MLFF [51] 99.37± 0.15 97.99± 0.26

LCPP [50] 97.54± 1.02 -
PROPOSED 99.49 ± 0.001 97.90 ± 0.00113

3.4. AID Data Set

The sutured VHR scene classification performance on the UC Merced data set encour-
ages researchers to construct more challenging data sets to advance aerial scene classifica-
tion problems. The AID data set created by Xia et al. [39] is illustrated above. To evaluate
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the classification results of this study on the AID data set, we selected 50% of the labeled
images from each class for training and the remaining second half for testing the same
using a setup in [39]. In terms of overall accuracy, we compared the different features
computed from ViT8b, ViT16b, ViT8s, and ViT16s, with the final overall accuracy achieved
by the fusion of these features as noted in Table 4.

Table 4. Comparison with different ViT features on the AID data set.

Models
Accuracy

20% Training Ratio 50% Training Ratio

ViT8b 93.28± 0.00050 95.88± 0.00
ViT16b 92.60± 0.00 95.25± 0.00018
ViT8s 92.13± 0.00048 94.35± 0.00375
ViT16s 90.63± 0.00044 93.62± 0.00139
Fusion 94.54 ± 0.00071 96.75 ± 0.00104

In order to study the sensitivity of important features on the AID data set, we varied
their values over a wide range, from 10% to 100%, as shown in Figures 9 and 10. The
number of important features (80%) achieved the highest accuracy based on the fusion of
all ViT features.

The confusion matrix performances for each category of the AID data set are shown in
Figure 11, for which the training ratio was set to 50%, and in Figure 12 with the training
ratio is equal to 20%.

Figure 9. The rate of important feature effects on the classification accuracy of the AID data set with
20% of randomly selected images per class.

Figure 10. Rate of important feature effects on the classification accuracy of the AID data set with
50% of randomly selected images per class.
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Figure 11. Confusion matrix of our method under the 50% training ratio and 90% of important
features on the AID data set.

Figure 12. Confusion matrix of our method under the 20% training ratio and 90% of important
features on the AID data set.

Table 5 lists the performance comparisons of the proposed method on the AID data
set, for several methods, including the original paper of this benchmark [39], which repre-
sent the image scenes with high-level feature descriptors using pre-trained CNN models,
CaffeNet, VGG-VD-16, and GoogLeNet, deep feature fusion for remote sensing image
classification [34], two-stage deep feature fusion for scene classification [48], multilevel
feature fusion network with adaptive channel dimensionality reduction for remote sens-
ing scene classification [51], scene classification with attention recurrent convolutional
network [49], efficient end-to-end local–global fusion feature extraction (LGFFE) for VHR
image classification [52], and a multi-level convolution pyramid semantic fusion framework
for high-resolution remote sensing image scene classification and annotation [50]. The
experimental results shown in Table 6 clearly demonstrate that our method performed well.
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Table 5. Overall accuracy and standard deviation of the proposed method and comparison ap-
proaches on the AID data set.

Methods 50% Train 20% Train

VGG-VD-16 [39] 89.64± 0.36 -
DCA fusion [34] 91.87± 0.36 -

Two Stream Fusion [48] 94.57± 0.25 92.32± 0.41
ACR _MLFF [51] 95.06± 0.33 92.73± 0.12

ARCNet-VGG16 [49] 93.10± 0.55 88.75± 0.40
LGFFE [52] 90± 0.01 90.83± 0.5511
LCPP [50] 93.12± 0.28 90.96± 0.33

PROPOSED 96.932 ± 0.00024 94.625 ± 0.0001

3.5. NWPU-RESISC45 Data Set

In order to evaluate the classification accuracy of the NWPU-RESISC45 data set, we
followed the same method as the experiments cited in [40], where we selected 10 samples
per category for training (70 training images from each class) and 90 samples for testing
tasks (630 images per class). Similar to the experiments described above for three data sets,
we compared the performances between the different ViT features extracted from different
models: ViT8b, ViT16b, ViT8s, and ViT16b, and the final overall accuracies achieved by the
fusion of these features, as noted in Table 6.

Table 6. Comparison with different ViT features on the NWPU-RESISC45 data set.

Models
Accuracy

10% Training Ratio 20% Training Ratio

ViT8b 87.53± 0.00052 90.26± 0.00005
ViT16b 87.19± 0.00002 89.82± 0.0
ViT8s 85.30± 0.00103 88.14± 0.00039
ViT16s 84.23± 0.00002 87.53± 0.00009
Fusion 90.89 ± 0.0011 92.23 ± 0.0005

To study the sensitivity of important features on the NWPU-RESISC45 data set, we
varied their values over a wide range from 10% to 100%, as shown in Figures 13 and 14.
The number of important features (80%) achieved the highest accuracy based on the fusion
of all ViT features.

Figure 13. Rate of important feature effects on the classification accuracy of the NWPU-RESISC45
data set with 10% randomly selected images per class.
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Figure 14. Rate of important feature effects on the classification accuracy of the NWPU-RESISC45
data set with 20 randomly selected images per class.

The confusion matrix performances for each category of the NWPU-RESISC45 data
set are shown in Figure 15, for which the training ratio was set to 10%, and in Figure 16,
with the training ratio equal to 20%.

Table 7 presents the overall accuracy comparisons of the proposed method on the
NWPU-RESISC45 data set with several aerial image scene classification approaches, includ-
ing the original work of this data set [40], where the image scene is described with different
feature descriptors (low-level, mid-level, and high-level) features. In this study, we only
compared the achieved performances with high-level features, which used pre-trained
CNN models, AlexNet, VGG-VD-16, GoogLeNet, and remote sensing image scenes based
on attention residual network classification [53]. The experimental results shown in Table 7
demonstrate that our method performed well.

Figure 15. Confusion matrix of our method under the10% training ratio and 90% of features on the
NWPU data set.
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Figure 16. Confusion matrix of our method under the 20% training ratio 90% of features on the
NWPU data set.

Table 7. Overall accuracy and standard deviatio of the proposed method and comparison approaches
on the NWPU-RESISC45 data set.

Methods
Training Ratios

10 % Train 20% Train

AlexNet [40] 76.69± 0.21 79.85± 0.13
RAN [53] 88.79± 0.53 91.40± 0.30

GLANet [54] 89.50± 0.26 91.50± 0.17
ACR _MLFF [51] 90.01± 0.33 92.45 ± 0.20

T_CNN [55] 90.25± 0.55 93.05 ± 0.12
PROPOSED 90.89 ± 0.00011 92.23± 0.00051

3.6. Ablation Study

In this subsection, an ablation study on the proposed method is conducted with
co-selection and without co-selection. We evaluate the co-selection of vision transformer
features by considering all feature and sample parts, i.e., we disable features and instance
selections. Then, we consider the feature and image selection parts. The ablation results
over the three data sets in terms of accuracy are shown in Table 8.

Table 8. Ablation study of the proposed method on the three data sets.

AID NWPU UC Merced

With Co-Selection 94.63 89.70 97.70
Without Co-Selection 94.02 88.45 96.92

4. Conclusions

In this paper, a new method for aerial image scene classification was developed. The
proposed study is based on the pre-trained VIT model as a deep feature extractor. In order
to generate global features for image scene representation, the extracted features from four
different VIT models were fused. Based on the similarity of preserving the whole VHR
image data set, we dropped anomalous features and images that degraded the classification
accuracy. In fact, in the training set, some images were not useful, as they could have
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negatively affected the performance of the learning algorithms. The instance selection task
is an efficient pre-processing step that involves removing unnecessary training instances
(images) and reducing the overall dimensionality of a data set. Our approach allows us to
select the most important features and images to facilitate the classification step. For this,
our algorithm sorts the features/images according to their weights calculated during the
algorithm through the R and Q matrices. At the end of the proposed algorithm, the user
can sort the features and images according to the weights and take only the most important.
The experimental results from different remote sensing image scenes demonstrate that the
pre-trained ViT model can provide useful features for VHR image scene classification.
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9. Avramović, A.; Risojević, V. Block-based semantic classification of high-resolution multispectral aerial images. Signal Image Video
Process. 2016, 10, 75–84. [CrossRef]

10. Chen, X.; Fang, T.; Huo, H.; Li, D. Measuring the effectiveness of various features for thematic information extraction from very
high resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4837–4851. [CrossRef]

11. Luo, B.; Jiang, S.; Zhang, L. Indexing of remote sensing images with different resolutions by multiple features. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2013, 6, 1899–1912. [CrossRef]

12. Luo, B.; Aujol, J.F.; Gousseau, Y.; Ladjal, S. Indexing of satellite images with different resolutions by wavelet features. IEEE Trans.
Image Process. 2008, 17, 1465–1472.

13. Luo, B.; Aujol, J.F.; Gousseau, Y. Local scale measure from the topographic map and application to remote sensing images.
Multiscale Model. Simul. 2009, 8, 1–29. [CrossRef]

14. Qi, K.; Wu, H.; Shen, C.; Gong, J. Land-use scene classification in high-resolution remote sensing images using improved
correlatons. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2403–2407.

15. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on
collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [CrossRef]
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