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Abstract: The shipping industry is one of the strongest anthropogenic emitters of NOy—a substance
harmful both to human health and the environment. The rapid growth of the industry causes societal
pressure on controlling the emission levels produced by ships. All the methods currently used
for ship emission monitoring are costly and require proximity to a ship, which makes global and
continuous emission monitoring impossible. A promising approach is the application of remote
sensing. Studies showed that some of the NO, plumes from individual ships can visually be
distinguished using the TROPOspheric Monitoring Instrument on board the Copernicus Sentinel 5
Precursor (TROPOMI/S5P). To deploy a remote-sensing-based global emission monitoring system,
an automated procedure for the estimation of NO, emissions from individual ships is needed. The
extremely low signal-to-noise ratio of the available data, as well as the absence of the ground truth
makes the task very challenging. Here, we present a methodology for the automated segmentation of
NO; plumes produced by seagoing ships using supervised machine learning on TROPOMI/S5P data.
We show that the proposed approach leads to more than a 20% increase in the average precision score
in comparison to the methods used in previous studies and results in a high correlation of 0.834 with
the theoretically derived ship emission proxy. This work is a crucial step towards the development of
an automated procedure for global ship emission monitoring using remote sensing data.

Keywords: TROPOMI/S5P satellite; NO,; maritime shipping; supervised learning; remote sensing
application; ship plume segmentation

1. Introduction

The international shipping sector is one of the strongest sources of anthropogenic
emission of NOy—a substance that has a negative impact both on ecology and human
health. The contribution of the shipping industry is estimated to vary from 15% to 35%
worldwide [1,2], which leads to approximately 60,000 premature deaths annually [3]. While
over the last 20 years, the pollution produced by power plants, the industry sector, and cars
has been constantly decreasing, the impact of maritime transport continues to grow [4].
This causes a big societal pressure, resulting in regulations [5] that put restrictions on
emission levels that can be produced by individual ships.

All methods currently used for ship emission monitoring such as in situ [6,7], on-
board [8], and airborne-platform-based [9] have several disadvantages: they all require close
proximity to a ship; they are costly; they do not allow for monitoring on a global scale.
A potential solution to the problem is the application of remote sensing instruments [10].
Studies [11,12] show that NO; traces of some individual ship plumes can be visually distin-
guished on images from the TROPOspheric Monitoring Instrument on board the Copernicus
Sentinel 5 Precursor (TROPOMI/S5P) satellite [13], which was launched in 2018.
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An important next step required for the development of an automated global-scale
monitoring system is an automated interpretable method for the evaluation of NOy emis-
sion produced by individual ships. Among the main challenges for this development
are a low temporal sampling rate and spatial resolution, resulting in an extremely low
signal-to-noise ratio. In addition, there is a high risk of interference of the ship plume
with other NOy sources and a high frequency of occurrence of plume-like objects that
cannot be associated with any ship. Finally, the ground truth for this task is not available.
In this paper, we present a methodology that allows addressing the above-mentioned
challenges. Using machine learning and taking advantage of the spatial characteristics of a
ship plume, the developed method allows automatic segmentation of NO, plumes from the
background, simultaneously assigning the detected signal to a ship-emitter, circumventing
the listed limitations.

We used NOj retrievals from the TROPOMI/S5P as this is the only available remote
sensing instrument that performs NO, measurements with a resolution high enough (The
ground pixel resolution of the TROPOMI/S5P instrument equals 3.5 x 5.5 km? at nadir)
to distinguish plumes from individual ships. To increase the number of potentially distin-
guishable plumes, we enhanced the contrast between the ship plumes and the background.
The used enhancement technique allows for a differentiation between the ship plumes
and random co-occurring concentration peaks in the ships’ neighborhood. The application
of the image enhancement technique also allows for an improvement of the low signal-
to-noise ratio. Then, for each analyzed ship, we performed an automatic generation of
a Region Of Interest (ROI) that we call a ship sector. The purpose of the ship sector is to
focus the area of analysis on the region where the ship plume is expected to be located.
Subsequently, we normalized the ship sector and divided it into sub-regions. This way, we
distinguish the plume of interest from all the other NO, plumes or land-origin outflows
that potentially might be located within the ship sector. Based on the ship sector division, we
created a set of spatial features that characterize the location of the NO; plume within the
ship sector. Due to the absence of other sources of ground truth, each pixel of the ship sectors
we manually labeled as a “plume” or “not a plume”. Trained on the manually labeled data,
a machine learning model enabled us to automatically segment plumes in unseen images.
We studied five robust machine learning models of increasing complexity and compared
their performance with the threshold-based methods used in previous studies. To validate
the developed pipeline, we compared the estimated, based on the segmentation results,
amount of NO; to the theoretically derived ship emission proxy [11].

The rest of this paper is organized as follows: In Section 2, we start with an overview
of the related literature. We then provide a description of the data sources used in this study
and introduce the developed methodology (Section 3). In Section 4, the reader can find the
results of the study, which are followed by the conclusions in Section 5 and discussion in
Section 6.

2. Related Work

For more than a decade, scientists have been trying to use the available satellite data
in order to quantify the NO, emission from the shipping industry as a whole. For instance,
using the measurements from the Global Ozone Monitoring Experiment (GOME) [14]
instrument on board the second European Remote Sensing satellite (ERS-2), the authors
estimated the NO, emission level above the shipping lane between Sri Lanka and In-
donesia [15]. With the images from the SCanning Imaging Absorption spectroMeter for
Atmospheric CartograpHY (SCIAMACHY) [16] on board the ENVIronmental SATellite
(Envisat) mission, traces from the shipping industry over the Red Sea were quantified [17].
Finally, data from the Ozone Monitoring Instrument (OMI) [18] aboard the NASA Aura
spacecraft was used to visualize a ship’s NOy emission inventory for the Baltic Sea [19].
However, due to the significantly lower resolution capabilities of the above-mentioned
predecessors of TROPOMI/S5P (GOME: 40 x 320 km?, SCTAMACHY: 30 x 60 km?, OMI:
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13 x 25 km2, TROPOMI: 3.5 x 5.5 km?), these studies were based on multi-month data av-
eraging, which does not give the possibility to quantify the emission from individual ships.

There are many studies demonstrating the capability of TROPOMI NO, measurements
to pinpoint the emission from urban (e.g., [20-22]) or industrial sources, such as the mining
industry [23] or a gas pipeline [24], as well as showing the possibility of the usage of
TROPOMI data to quantify the positive effects of the COVID-19 lockdowns (e.g., [25]).
Nonetheless, all studied emission sources are stationary (therefore, can be observed over an
extended period of time) and emit much higher quantities of NOy than an individual ship.
Thus, all the above-mentioned problems are arguably less complex than the one discussed
in this paper.

In [11], it was reported that the NO, plumes produced by individual ships can be
visually distinguished in TROPOMI data. However, since the NO; traces of most of the
ships in the area are not sufficiently stronger than the background concentrations, only
plumes of the largest ships were addressed in that study. In addition, the presented
approach requires multiple manual steps, which makes it impossible to apply the method
on a global scale. In [12], we introduced the first attempt of a fully automated pipeline
for the estimation of NO; emission from individual ships. In the study, we showed that
pre-processing of the TROPOMI signal allows a visual distinction of a greater amount of
ship plumes. The plume-background separation itself, however, was based on a locally
optimized threshold, established individually for each of the analyzed ships. Due to the
fact that the threshold was established on the basis of the only variable (NO; concentration),
it was not flexible enough for a good quality of separation of the ship plume from the
background. Finally, the one-feature-based method of thresholding does not allow for
differentiation of the plume produced by the analyzed ship from all the other NO, plumes
that might be located in the ship’s proximity.

Machine learning has proven to be an efficient technique for solving problems in
geosciences and remote sensing [26,27]. Recently emerging studies show the efficiency of
applying machine learning models to the TROPOMI data as well. For instance, in [22],
the authors built a deep convolution neural network to classify images into those that
contain an NO, plume from those that do not. The developed model, however, does not
differentiate the sources of the detected plumes. Moreover, the study does not provide the
attempts of the segmentation of the detected plumes from the background; thus, there is
no possibility to quantify the amount of NO, that was emitted by a given source. Several
studies reported a successful application of various multivariate machine learning models
for the estimation of surface-level emissions. For example, in [28], the authors created a
multivariate machine learning model for the estimation of NO, emission over Germany [28],
while in [29], the O3 concentrations were estimated for California. The areas of analysis
of the above-mentioned studies, however, are restricted to over-land territories. In [30]
was reported the first attempt to extend near-surface concentration predictions to an ocean
region. The authors acknowledged that the performance of emission estimations over the
ocean is significantly more challenging than the equivalent task for the over-land areas,
mainly due to the absence of in situ measurements’ possibilities. In addition, the sources of
the detected emission levels have not been studied in the above-mentioned paper.

In this study, we present a pipeline that, for the first time, allows the application of
multivariate machine learning models for the estimation of NO; emission from seagoing
ships. The developed method uses TROPOMI satellite data, AIS data on ship positions,
as well as ECMWF wind data for the segmentation of NO, plumes from individual ships,
allowing differentiation between the plume produced by the ship of interest from all the
other NO, plumes in the ship neighborhood. In the following section, the data sources
used and the developed methodology are presented in detail.
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3. Materials and Methods
3.1. Data Sources

In this paper, we performed the integration of several data sources: TROPOMI satellite
measurements, wind data, information about the ships’ positions, and information about
the properties of analyzed ships. In this section, the reader can find a general overview
of the data sources that will be utilized throughout the study. We also provide here the
criteria applied for data selection, which set the scope of this study.

3.1.1. TROPOMI Data

TROPOspheric Monitoring Instrument (TROPOMI) [13] is a UV-Visible-Near-Infrared—
Short-Wave Infrared (UV-Vis—-NIR-SWIR) spectrometer on board the Copernicus Sentinel
5 Precursor (S5P) satellite. The satellite was launched in October 2017 and entered its
operational phase in May 2018. It is a Sun-synchronous satellite with a local equatorial
overpass time at 13:30. In 24 h, the satellite performs approximately 14 orbits and, with
these, covers the full globe.

The TROPOMI spectrometer measures spectra of several trace gases including nitrogen
dioxide (NOy). Since NO, gas is the most notable product of photochemical reactions of
NOy emitted by ships, it can be utilized for the ships’ emission monitoring. The maximal
ground pixel resolution of the TROPOMI instrument is equal to 3.5 x 5.5 km? at nadir.
Due to the projection of the satellite images, the real size of the pixel will vary, depending
on the true distance between the satellite and the part of the surface of the Earth being
imaged. To generate images of regular size, we regridded (For the data regridding, the
HARP v.1.13 Python package was used) the original TROPOMI data into a regular-sized
grid of size 0.045° x 0.045°, which for the pixel in the middle of the analyzed area translates
to approximately 4.2 x 5 km?.

The following filtering criteria were applied to the TROPOMI data: ga_value > 0.5,
cloud fraction < 0.5. Previous studies [11,12] showed that such a selection of filtering
values can yield considerably good results for a given task. The detailed description of the
variables can be found in [31].

In this study, 68 days from the period between 1 April 2019 and 31 December 2019
of TROPOMI measurements were analyzed. The analyzed days were mostly sunny—the
distribution of the variable cloud fraction for the scope of this study is provided in Figure 1.
The studied data product was the tropospheric vertical column of nitrogen dioxide [32], data
version: 1.3.0. For the analysis, an area in the Mediterranean Sea, restricted by the Northern
coasts of Libya and Egypt from the south and the south coast of Crete from the north (lon:
[19.5°; 29.5°], lat: [31.5°; 34.2°]) was chosen. This particular region was selected because
of the presence of a busy shipping lane connecting Europe and Asia, the high frequency
of occurrence of sunny days, and relatively low levels of NO, background concentrations,
which are favorable conditions for the analysis. An outline of the area studied is presented in
Figure 2.

Distribution of the variable from the dataset
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Figure 1. Distribution of the variable cloud fraction for the dataset used in this study.
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Figure 2. The NO,; tropospheric column. Visualized day: 14 June 2019. Studied area: the Mediter-
ranean Sea, restricted by the northern coasts of Libya and Egypt from the south and the south coast of
Crete from the north. Black lines indicate ships’ tracks based on information from AIS data. The red
area on the right-hand side of the figure corresponds to the land outflow from the variety of land base
sources of NO,. For the convenience of visualization, the presented data were not regridded—the
native local size of the TROPOMI pixels are presented in the figure.

3.1.2. Wind Data

In this study, we used wind data from the European Center for Medium range Weather
Forecasts (ECMWF). The wind fields (wind speed and wind direction) were taken from the
ECMWEF operational model analyses at a spatial resolution of 0.25° (For the analyzed area,
a spatial resolution of 0.25° x 0.25° translates to ~23.4 x 27.6 km?), a temporal resolution
of 6 h, and an altitude of 10 m. It was shown in [11] that wind data at a 10 m altitude are
an optimal choice for the task of ship—plume matching. Starting from the product version
upgrade from 1.2.2 to 1.3.0, which took place on 27 March 2019, the ECMWF 10 m wind
data for coinciding time are available as a support product in the TROPOMI/S5P data file.

3.1.3. Ship-Related Data

Since 2002, all commercial seagoing vessels are obliged to carry on board an AIS
transponder [33], which transmits information about position, speed, heading (direction),
and a unique identifier (MMSI) and the type of each ship. Thus, another source of data
used in this study is data from Automatic Identification System (AIS) transponders. At
the moment, there is no open-access AIS data available for the region and time period, as
described in Section 3.1.1, as well as the quality required for this study. The data, however,
can be accessed through several commercial providers. For the scope of this study, the
AIS data, as well as information about the dimensions of the ships were provided by the
Netherlands Human Environment and Transport Inspectorate (ILT). This is the Dutch
national designated authority for shipping inspections, has access to commercial databases
for the AIS dataset used in this study, and is participating in this research.

With the aim of the reduction of the number of images where the ship plume cannot
be visually detected, in our study, we only focused on ships with a speed that exceeds 14 kt.
If two ships move in immediate proximity to each other, only the ship with the highest
speed was taken into consideration. From the analysis were also excluded ships that are
not involved in global trade, such as yachts, leisure vessels, or research vessels. In Figure 3,
the information about the dates used for this study, as well as the number of ships per day
studied is depicted. The differences in the number of ships per studied day can be caused
by bad weather conditions on the measurement day.
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Figure 3. A list of days used for the dataset creation and the number of ships per day studied.

3.2. Method

In this subsection, we present the developed methodology. Taking advantage of the
characteristics of the analyzed ship, as well as wind conditions in the studied region, our
approach allows the segmentation of the NO, plume produced by the particular ship of
interest, distinguishing it from all the other concentration peaks in the surrounding area.
The results produced by the proposed approach are easily interpretable and, thus, can be
used as a reliable source of information by ship inspectors.

The method consists of the following steps: an AIS data-based interpolation of the
ship tracks at the moment and just before the satellite overpass (Section 3.2.1), definition
(Section 3.2.2), and enhancement (Section 3.2.3) of a ship plume image, the definition
of a ship sector (Section 3.2.4) that allows the further restriction of the analyzed area,
normalization of the defined ship sector, and splitting of the normalized sector into sub-
regions (Section 3.2.5), which, finally, gives the possibility to retrieve the set of necessary
features. These steps are described below.

3.2.1. Ship Tracks

The first step is to estimate the tracks of the studied ships. Taking into account a
lifetime of NOy equal to a few hours, we studied the track of the ship starting from two
hours before the moment of the satellite overpass. We distinguished two types of ships’
tracks: the ship track, obtained based on resampling and interpolation of the AIS data, and
the wind-shifted ship track. For the calculation of the wind-shifted ship track, we assumed that
the plume emitted by a ship has moved in accordance to the wind direction by a distance
d = v x |At|, where v is the speed at a given location at 10 m above sea level from ECMWF
for 12:00 UTC, and |At| is the time difference between the time of the satellite overpass and
the time of a given AIS ship position. Both wind speed and wind direction are assumed
to be constant for the whole time during which we study the plume. Such an assumption
may create uncertainties in the expected position of the plume of the ship. However, with
the methodology presented further in this section, such uncertainties will not affect the
correctness of the ship-plume allocation.

Summing up, the ship track provides us the information on the position of the ship
from where the studied ship plume was emitted. The wind-shifted ship track indicates
the expected position of the center line of the NO, plume after displacement driven by
local wind conditions. Figure 4a,b give examples of the ship track and its corresponding
wind-shifted ship track, respectively.
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Figure 4. (a) Ship track—estimated, based on AIS data records. The ship track is shown for the
time period starting from 2 h before the satellite overpass until the moment of the satellite overpass.
(b) Wind-shifted ship track—a ship track shifted in accordance with the speed and direction of the
wind. The wind-shifted ship track indicates the expected position of the ship plume. A black arrow
indicates the wind direction. For both presented images, the size of the pixel is equal to 4.2 x 5 km?.

3.2.2. Ship Plume Image

Utilizing the knowledge of a ship’s position summarized in its ship track and wind-
shifted ship track, we are able to focus our attention on the area that lies within immediate
proximity to the analyzed ship. For this, the concept of a ship plume image (see Figure 5a)
is introduced. The area of the ship plume image is determined based on the wind-shifted
ship track as follows: the average coordinate of the studied wind-shifted ship track defines
the center (longitudecentr, latitudecensr) of the ship plume image; the borders of the image
are defined as longitudecentr, latitudecensy == 0.4° (For the area in the Mediterranean Sea, in
horizontal direction 0.4° ~ 37.4 km, in vertical direction 0.4° ~ 44.2 km). This particular
size of a ship plume image was determined in order to allow for optimal plume coverage
for the most typical range of ship speeds (14 kt-20 kt) (kt—knot, a unit of speed equal to a
nautical mile per hour; 14 kt ~ 26 km/h; 20 kt ~ 37 km/h). Given the size of the pixel grid,
such an offset results in an image of a maximal dimension of 18 x 18 pixels.

3.2.3. Pre-Processing of a Ship Plume Image

To improve the quality of the satellite signal, in the data pre-processing step, on each of
the analyzed ship plume images, we applied the local Moran'’s I spatial auto-correlation statis-
tic [34]. In [12], we showed that the application of this technique substantially improves
separability between the ship plume and the background.

The local Moran’s I spatial auto-correlation statistic allows the enhancement of the
intensity of high-value pixels located in a cluster while suppressing isolated concentration
peaks randomly occurring in the background. We characterized a ship plume as a cluster
of pixels adjacent to each other with a concentration higher than the background average.
This way, calculating the spatial auto-correlation of a ship plume image, we combined image
denoising with the enhancement of the relevant part of the image.

An example of a result of an enhanced ship plume image is provided in Figure 5b.

Formally, Moran’s I spatial auto-correlation statistic is defined as follows: for each
pixel i of a ship plume image, the local Moran’s I is calculated as:

N
v
=ik — K Y. wii(xj— ), €y
ey

where x; is the value of the respective pixel, N is the number of analyzed pixels of a ship
plume image (in our case, 18 x 18), p is the mean value of all N pixels, 02 their variance, and
wj; is the value of an element in a binary spatial contiguity weight matrix W at location j
with regard to the analyzed pixel i. The value of an element of the binary spatial contiguity
matrix w;; is 1 for pixels that are considered to be the neighbors of the analyzed pixel i, and
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0 otherwise. For the study, the queen spatial contiguity [35], which is the 3 x 3 8-connected
neighborhood of the analyzed (central) pixel, was applied. The value I; becomes the value
of the corresponding pixel of the resulting enhanced image.

Ship plume image  Enhanced ship plume image Ship track

(b)"* 1 (C)!*}:

H ® Ship track H

Wind-shifted ship track Extreme wind-shifted tracks Ship sector
n n
(d) (e) (H %
. -
+*
&
& L
L ] &
v *y s
\( v
® Ship track v Wind-shifted track
¥ Wind-shifted trackJ + Extreme tracks J + Extreme tracks

Figure 5. Ship sector definition pipeline. (a) Ship plume image—the TROPOMI NO; signal for the area
around the analyzed ship. Two ship plumes can be distinguished, but only one is of interest. (b) The
NO; signal enhanced by Moran’s I spatial auto-correlation statistic. (c) Ship track—estimated, based
on AIS data records. The ship track is shown for the time period starting from 2 h before the satellite
overpass until the moment of the satellite overpass. (d) Wind-shifted ship track—a ship track shifted in
accordance with the speed and direction of the wind. The wind-shifted ship track indicates the expected
position of the ship plume. A black arrow indicates the wind direction. (e) Extreme wind-shifted ship
tracks—calculated, based on wind information with assumed uncertainties; define the borders of the
ship sector. (f) A resulting ship sector—an ROI of an analyzed ship. For all presented images, the size
of the pixel is equal to 4.2 x 5 km?.

From Equation (1), we can imply the weak side of using Moran’s I statistic for ship
plume enhancement: apart from the clusters of high values, the given method enhances
clusters of low-value pixels at the same time. The methodology proposed in this study;,
however, is designed in a way so that this negative impact is minimized.

3.2.4. Ship Sector

A plume produced by a ship at a given moment will be displaced, over time, in the
direction of the wind in the analyzed area. Having the wind information available, we would
like to restrict the analysis to the part of the ship plume image, where the probability to find
the plume of the ship is the highest. We performed the area restriction by defining an ROI of
an analyzed ship, which we call a ship sector. The area of the ship sector is determined on the
basis of information about the ship’s trajectory and the speed/direction of the local wind.

As a starting point of the ship sector’s definition, we used the wind-shifted ship track,
calculated as described in Section 3.2.1. We then calculated the extreme wind-shifted tracks by
adding the margin of wind-related uncertainty to either side of the wind-shifted ship track.
The extreme wind-shifted tracks delineate the borders of the ship sector, showing the extreme
possible positions of the plume, taking the wind measurement uncertainty into account.
The wind’s uncertainty was assumed due to the limited spatial and temporal resolution
of wind data [11], based on reported in several studies’ [36,37] measurement bias, as well
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as assumptions of constant wind mentioned in Section 3.2.1. Illustrations of the extreme
wind-shifted tracks and the resulting ship sector are shown in Figure 5e and 5f, respectively.
As a result of the delineation of the ship sector area, the plume should always lie within the
ship sector boundaries. Only pixels lying within the ship sector were taken into consideration
in further analysis. Parameters related to the ship sector can be found in Table 1.

Table 1. Parameters applied for ship sector definition.

Parameter Value
Trace track duration 2h
Wind speed uncertainty 5m/s
Wind direction uncertainty 40°

3.2.5. Feature Set Construction

In order to obtain a multivariate description of the ship sector pixels, we encoded
the spatial information into a set of generic features. First, we performed a ship sector
normalization to make spatial information in the sector comparable between the different
sectors. We defined a normalized sector by the standardization of the orientation and the
scale of the original ship sector. In this way, the position of the plume within the ship
sector becomes invariant to the heading (direction) and speed of the ship, as well as to the
direction and speed of the wind.

We standardized the orientation of a ship sector by rotating to 320° so that the angle of
the polar coordinate of the corresponding wind-shifted ship track is the same for all ships (see
Figure 6). The particular value of the sector rotation angle was chosen for the convenience
of visualization and has no influence on further modeling. Assuming S is a set of ship
sectors in the dataset, formally, the rotation coordinates of a ship sector are defined in the
following way:

Vs€S, Vies: lon_rotateds; =ry;-cos(as;+ @), lat_rotateds; = ry;-sin(as; +0s), (2)

where lon_rotated; and lat_rotated; are the polar coordinates of the pixel i within the rotated
ship sector, r, ; is the radial distance of the pixel i from the origin of the ship sector s (in our
case, the sector origin corresponds to the position of the ship at the moment of satellite
overpass), & ; is a counterclockwise rotation angle of the pixel i from the axis x (longitude)
of the ship sector s, @s = B — a; is a counterclockwise rotation angle that will be applied for
the orientation change of each pixel i of the ship sectors, a; is a rotation angle of a ship sector
s that corresponds to the counterclockwise rotation angle of the pixel is ;4 With the radial
distance from the origin s yax = max(rs), and p = 320° is a new rotation angle of each ship
sector s after the rotation.

We standardize the ship sector’s scale so that the horizontal and vertical coordinates of
the rotated ship sector are rescaled into the range [0, 1] by applying a min—-max scaler on the
horizontal and vertical coordinates of the pixel:

lon_rotated — min(lon_rotated)

! = '
on_norm max(lon_rotated) — min(lon_rotated)

®)

lat_rotated — min(lat_rotated)

lat =
at_norm max(lat_rotated) — min(lat_rotated)

The second step of the feature construction procedure is the division of the normalized
sector into a set of sub-regions that enable encoding spatial information of the pixels within
the normalized sector. First, we define levels of the normalized sector by splitting it into six
sub-regions on the basis of the radial distance of the pixel from the origin of the sector. Then,
we define sub-sectors by splitting the normalized sector into four sub-regions on the basis of
the pixel’s rotation angle. As a result, the position of each pixel within the normalized sector
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image can be characterized in terms of two values: a level and a sub-sector. An illustration
of the normalized sector divided into a set of levels and sub-sectors is presented in Figure 7.
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Figure 6. Sector normalization. We rotate the ship sectors so that all resulting sectors have the same
orientation equal to 320°, independently of the original direction of the ship’s heading. We then
rescaled the image so that the range of both coordinates is between 0 and 1. The gray area in each
figure indicates a ship sector. The ship sector origin indicator shows the position of the ship at the
moment of the satellite overpass. Two examples of original and rotated sectors are shown: one in the
top row and one in the bottom row.
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Figure 7. Levels and sub-sectors. We perform a feature construction by dividing the normalized sector
into sub-regions: levels and sub-sectors. For the convenience of visualization, data points from one day
of analysis were used for the preparation of the figure.

3.3. Experiment Design

Here, we describe the experimental setup used in this study: first, we describe the
dataset used for the training of the multivariate models, then we explain the models used
for the benchmarking and provide a list of used multivariate classifiers. In addition, in this
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section, the reader can find the description of the methods used for the hyperparameters’
optimization and measures utilized for the performance evaluation.

3.3.1. Dataset Composition

Following the steps provided in the previous subsections, we created 754 images and
cropped them to an area of the ship sector. The ship sector images were enhanced by Moran’s
I operator and manually labeled so that they can be used for training machine learning
models. Not all ship sector images contained a visually identifiable NO, plume. Moreover,
due to the dispersion and chemical transformation of a ship plume, some parts of the plume
will always be under the detection limit of the satellite and, therefore, indistinguishable.
Thus, labeling errors are possible. To minimize the chance of mistakes, the labeler was
supported with several representations of the area of interest: the original not enhanced
NO; tropospheric vertical columns for the area of a ship plume image, the enhanced with
the Moran’s I area of a ship plume image, and NO; tropospheric vertical columns for the
full studied area in Mediterranean Sea with the positions of the neighboring ships. The
descriptive statistics of the resulting dataset are provided in Figure 8. In Table 2, the
information on the data distribution within the two classes of the dataset is shown. All
mentioned numbers correspond to the full dataset before the training/test set division. The
dataset used in this study, along with the code used for the experiments can be found under
the following link: https://github.com/SolaK24 /ShipPlumeSegmentation_Supervised 28
September 2022.

Class-wise data distribution
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Figure 8. Classwise distribution of the two main features of the dataset: NO, and Moran’s I.

Table 2. The number of measurement points per class in the dataset.

No Plume Plume
Number of pixels 68,646 6980
Number of images 208 535

3.3.2. Multivariate Models

To exploit the potential of multivariate modeling, we used several classifiers of in-
creasing complexity: Logistic Regression, Support Vector Machine with a linear kernel [38],
Support Vector Machine with a radial basis kernel [39], Random Forest [40] (All above-
mentioned models were implemented in the Scikit-learn v. 0.24.2 package [41]), and
Extreme Gradient Boosting (XGBoost) [42] (Implemented in the xgboost Python package
v. 1.3.3). All the models are multivariate and, thus, are able to benefit from the set of
prepared features, namely the set of spatial features developed with the method described
in Section 3.2.5, along with ship and wind-related features. All models selected for the
experiment are highly robust. Therefore, the potential mistakes in human labeling, if
present in reasonable amounts, should still allow for the models’ proper training.
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The first feature of the model is enhanced by Moran’s I values of the pixels that
were translated into a one-dimensional feature vector. As mentioned in Section 3.2.3, the
application of Moran’s I may result in the creation of additional high-value pixels resulting
from the enhancement of clusters of low-value pixels. To mitigate the negative impact of
this side effect, apart from Moran'’s I, the feature set was composed of the corresponding
value of NO,. This way, a supervised learning model will be able to differentiate between
high- and low-value enhanced NO; clusters. Other features used by the model are Wind
Speed, Wind Direction (encoded into its sine and cosine components, in order to enable a
continuous feature space for various wind directions), Ship Speed, and Ship Length. Finally,
the position of an analyzed pixel within the normalized sector in terms of levels and sub-sectors
was translated into the feature vectors using one-hot encoding. The resulting feature set
was composed of 17 features in total. For the full feature list, see Figure in Section 4.1. The
used binary label indicates whether the given pixel is a part of the ship plume or not.

3.3.3. Benchmarks

To quantify the performance improvement gained by the usage of multivariate super-
vised models, we performed ship plume segmentation by applying a thresholding method
on a single selected feature. First, we applied a thresholding method on the tropospheric
vertical column of the NO, TROPOMI product regridded in accordance with the descrip-
tion in Section 3.1.1. No image enhancement technique was applied. This simplest way of
plume-background separation was used, among others, in [17] for the quantification of NO,
emission from the international shipping sector. In [11], the separation of pixels related to
NO; plumes from individual ships was also performed based on solely TROPOMI NO,
data. In this paper, we refer to this benchmarking method NO; threshold. Visualization of
the input data for this thresholding technique can be found in Figure 9a.

NO2 threshold Moran's I threshold Moran's I on high NO2
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Figure 9. Input data example for univariate threshold-based benchmarks. (a) Input data for a
benchmark method NO, threshold. (b) Input data for a benchmark method Moran’s I threshold. At the
top of the ship sector, the reader can find an example when a cluster of low-value NO, was mistakenly
enhanced by Moran’s I. (c) Input data for a benchmark method, Moran’s I on high NO,. For all
presented images, the size of the pixel is equal to 4.2 x 5 km?2.

As a second benchmarking method, following the suggestion made in [12], we per-
formed a ship plume segmentation based on images enhanced with Moran’s I statistic.
The satellite image enhancement allows effective separation of a greater amount of NO,
plumes. However, as mentioned in Section 3.2.3, the application of Moran’s [ statistic may
result in the enhancement of low-value clusters that are not a part of a plume. Visualization
of the input data for this benchmarking technique is presented in Figure 9b. In the rest of
the article, we call this method Moran’s I threshold.
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To overcome the problem of the enhancement of low-value clusters by Moran’s I,
we propose to assign zero value to all pixels of the image with intensity lower than the
median of the given ship sector picture and afterward apply the Moran’s I enhancement.
This is the third benchmarking method used in this study. We call it Moran’s I on high NO,.
Visualization of the results of the application of Moran’s I only on high NO, values can
be found in Figure 9c. As presented in Figure 9, for all three benchmarking methods, only
pixels that lie within the ship sector area were taken into account for segmentation.

3.3.4. Segmentation Validation Metrics

For the assessment of classification quality, we used a precision-recall curve, an
Average Precision score (AP), which is defined as the Area Under the Precision-Recall
Curve (PR-AUC), a Receiver Operating Curve (ROC), and, finally, the Area Under the
Receiver Operating Curve (ROC-AUC). All evaluation methods were implemented in the
Scikit-learn v. 0.24.2 package [41].

Precision and recall are respectively defined as follows:

.. TP
Precision = TP L EP (4)
TP
Recall = ———
Ot = TP EN ®)

where TP stands for true positive and corresponds to the pixels that were labeled as a
“plume” and were correctly identified by the classifier. FP—false positive; it corresponds
to the pixels that were not labeled as a “plume”, but were identified as a “plume” by the
classifier. FN stands for false negative and corresponds to the pixels that were not classified
as a “plume” by the classifier, but were labeled as such by the labeler. The ROC curve
visualizes True Positive (T P) scores as a function of False Positive (FP) scores.

3.3.5. Cross-Validation and Parameters’ Optimization

For the model fine-tuning and model performance evaluation, nested cross-
validation [43,44] was used. In the inner loop, we performed a randomized grid-search [45]
with 5-fold cross-validation to optimize the hyperparameters of the used models. The AP
score was used as a target function for optimization. The performance of the best model
identified during the inner loop of cross-validation was evaluated on the “hold-out” test
set, generated during the outer loop of cross-validation. The above-mentioned procedure
was repeated five times, generating five independent training and test sets. An illustration
of the applied cross-validation scheme can be found in Figure 10. The search space of the
hyperparameters for each of the analyzed multivariate models is provided in Appendix A.
The optimal parameters selected for each model by the randomized grid search can be
found in Appendix B.

3.3.6. NO, Validation Metrics

So far, we have been measuring models’ performance based on manually created labels.

To evaluate the uncertainty hidden in human labeling, the reference value is required. Due

to the fact that there are no on-site emission measurements available at the scale of this

analysis, it is, therefore, necessary to use a ship emission proxy to represent the reference

value. Here, we propose to use a theoretically derived NOy emission proxy E; defined
as follows:

Es =113, (6)

where L; is the length of the ship in m and U is its speed in m/s. The details of the
derivation of the given measure can be found in [11], where the proxy was introduced. As
is noted in [11], the advantage of E; in comparison to other ship emission proxies (e.g., [46])
is that it can be calculated based on AIS data only, while other existing emission proxies
require ship information that is not in the AIS data and is not available publicly.
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The ship emission proxy is calculated for each ship of the test sets (see Figure 10). We
compared the obtained values of the emission proxy with the estimated on the basis of
segmentation results amount of produced NO,. We estimated the amount of produced
NO; by summing up NO; concentration within the pixels classified as a “plume” by each
of the studied models. For the comparison between the emission proxy and the estimated
amount of NO,, Pearson linear correlation was used.
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|
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Figure 10. Nested cross-validation—illustration scheme.

4. Results

In this section, we present the results of our study. We begin with the presentation
of the results of the plume segmentation model in Section 4.1. Appropriate segmentation
quality is necessary for a correct estimation of NO, produced by ships. In Section 4.2, we
validate the concept presented in this paper. In the Subsection, we compare the obtained
on the basis of segmentation model results of ship NO; estimation with the theoretical ship
emission proxy.

4.1. Plume Segmentation

In Table 3, we report the results of the pixel classification based on a five-fold cross-
validation for all models and benchmarks studied. Figures 11 and 12 provide the precision—
recall and the ROC curves respectively. Both figures were obtained by averaging the scores
over all cross-validation test sets. In Figure 13, we visualize the model coefficients for the
linear models studied, as well as the impurity-based feature importance coefficients for the
tree-based models (Random Forest and XGBoost). The obtained results can be summarized
as follows:

(i) From Table 3, Figure 11, as well as Figure 12, we can conclude that nonlinear classi-
fiers clearly outperform both linear classifiers and threshold-based univariate benchmarks.
Both used measures: AP score and ROC-AUC resulted in a similar rank of the studied
classifiers. With XGBoost, Random Forest, or RBF SVM models, a very high level of pre-
cision can be achieved. For the task of ship plume segmentation, our biggest interest lies
in the correct segmentation of the most representative pixels of the ship plume. Thus, the
obtained level of recall we consider as reasonably satisfactory. From Table 3, we can also
see that the level of the standard deviation of AP scores for multivariate nonlinear models
is significantly lower than for linear or univariate models. This suggests that the results
obtained with the nonlinear classifiers are more robust.

(ii) From Figure 13, we can see that Linear SVM, Logistic Regression, Random Forest,
and XGBoost multivariate models utilize the spatial information provided by sub-sectors
and levels. The complexity of the RBF SVM model does not allow the direct calculation
of the importance of the utilized features. Even though due to the different nature of the
models, the coefficients’ values depicted in Figure 13 cannot be compared directly, the
relative differences between the models’ features go along with our intuition on where
the plume produced by an analyzed ship should be located within a normalized sector. For
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instance, high negative coefficients for the linear models that correspond to the features
Level 4 and Level 5 suggest that even if a high-value pixel does occur in those regions of the
normalized sector, it was most probably produced by a source other than the analyzed ship.
On the other hand, the high positive coefficients corresponding to a feature Sub-sector 2 tell
us that if a high-value pixel occurs in the middle of the sector, it is most probably a part of
the plume produced by the studied ship.

Table 3. Results on the test set with 5-fold cross-validation. Bold font indicates the best-obtained
result. Under the dashed line: results obtained from univariate threshold-based methods that, in this

study, we considered as benchmarks.

Model AP ROC-AUC
Linear SVM 0.609 + 0.063 0.935 + 0.009
Logistic 0.610 & 0.064 0.936 + 0.010
RBF SVM 0.742 4+ 0.031 0.951 + 0.008
Random Forest 0.743 4+ 0.030 0.952 + 0.008
XGBoost 0.745 £ 0.030 0.953 £+ 0.007
””” NO, threshold =~~~ 0375+0062 0.823+0017
Moran’s I threshold 0.493 4+ 0.063 0.912 + 0.011
Moran’s I on high NO, 0.607 & 0.056 0.922 + 0.010
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Figure 11. Precision-recall curve based on 5-fold cross-validation. Dashed lines indicate the results
obtained from univariate threshold-based methods that, in this study, we considered as benchmarks.
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Figure 12. Receiver Operating Characteristic (ROC) curve based on five-fold cross-validation. Dashed
lines indicate the results obtained from univariate threshold-based methods that, in this study, we
considered as benchmarks.
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Figure 13. Coefficients of the features in the decision function of the linear models and the impurity-
based feature importance values for tree-based models.

4.2. Validation with Emission Proxy

Figure 14 provides the correlation plots of NO, values estimated for a given ship on a
given day based on the segmentation results of a given model and the theoretically derived
NOx ship emission proxy E;. Table 4 gives information on the achieved level of Pearson
correlation and the number of plumes that were segmented by a certain model. Here, our
baseline result is the level of Pearson correlation and the number of plumes that were
identified by manual labeling. We can see that the majority of the models detected more
plumes than the labeler. However, in all cases apart from XGBoost, the higher number of
segmented plumes caused the decrement of the correlation score. The XGBoost model, on
the other hand, was able to detect more plumes than the manual labeler, while achieving the
highest correlation score. Such a result allowed us to form a hypothesis that the developed
machine-learning-based methodology is able to segment plumes better than a human
labeler. An example of a case where the XGBoost classifier identifies a plume better than
the human labeler can be found in Figure 15. More experiments are, however, required in
order to make final conclusions.
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5

Corr: 0.781 — 334 plumes Corr: 0.834 — 371 plumes Corr: 0.775 — 436 plumes
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Figure 14. Pearson correlations between estimated (based on classification results) values of NO,
emitted by each ship on a given day and a theoretical ship emission proxy. Black lines indicate a
fitted linear trend. Grey lines show 30% deviations from the fitted linear trend.
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The highest contrast between the scores of the performance metrics and the correlation
with the emission proxy can be noted for the NO, threshold benchmark model. This is due
to the fact that the ship plumes composed out of one pixel in our dataset were not labeled
as plumes. The substantially high correlation with the emission proxy suggests that the
single-pixel plumes were, nevertheless, identified by the method correctly. An illustration
of such an example is provided in Figure 16.

XGBoost segmentation Manual Labeing
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Figure 15. XGBoost classifier allows for the segmentation of plumes that were not recognized by
the labeler. (a) TROPOMI NO, tropospheric vertical column density. Units: mol/m?. The variable
was a part of the input to machine learning models. The ship plume is difficult to distinguish by the
human eye. (b) TROPOMI NO, image enhanced by Moran’s I. The variable was a part of the input
to machine learning models. After enhancement, the ship plume can be recognized better. At the top
of the ship sector can be found an example when a cluster of low-value NO, was enhanced incorrectly.
(c) Results of the segmentation of the XGBoost model. Black pixels indicate pixels classified by
the model as a “plume”. (d) Human labels. The absence of black pixels means that there were no
pixels within the area labeled as a plume. For all presented images, the size of the pixel is equal to
4.2 x 5 km?. Measurement date: 24 June 2019. Ship type: tanker. Ship length: 230 m. Average speed
within the studied time scope: 14.27 kt.
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Figure 16. NO;-based thresholding allows for distinguishing plumes cumulated within one pixel
of the TROPOMI image. (a) TROPOMI NO, tropospheric vertical column density. Units: mol/ mZ.
(b) TROPOMI NO; image enhanced by Moran’s I. At the top left of the ship sector can be found an
example when a cluster of low-value NO, was enhanced incorrectly. (c) Results of the segmentation
of the NO; threshold method. A black pixel is a pixel that was identified by a model as a plume.
(d) Human labels. The absence of black pixels means that there were no pixels within the area labeled
as a plume. For all presented images, the size of the pixel is equal to 4.2 x 5 km?. Measurement date:
9 June 2019. Ship type: tanker. Ship length: 285 m. Average speed within the studied time scope:
15.4 kt.
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Table 4. Results on the comparison between the estimated amount of NO, and theoretically derived
NOx ship emission proxy. Sorted in accordance with the achieved level of the Pearson correlation.
Italic font indicates baseline results.

Segmentation Method Pearson Correlation Number of Detected Plumes
XGBoost 0.834 371
Manual Labeling 0.781 334
Random Forest 0.775 436
NO, 0.774 334
Logistic 0.766 452
Linear SVM 0.765 452
RBF SVM 0.757 447
Moran’s I on high NO, 0.733 422
Moran’s I 0.681 448

5. Conclusions

In this study, we presented a new supervised-learning-based method for the automatic
evaluation of emission plumes produced by individual ships using satellite data. The
experiments were performed using NO, measurements from the TROPOMI/S5P satellite.
We started with the enhancement of the satellite data in order to increase the contrast
between the ship plume and the background. The applied image pre-processing technique
enhances the intensity of high-value pixels located in a cluster (plume) and suppresses
random concentration peaks in the background. We then automatically assigned a ship sector
to each analyzed ship, which excludes from the analysis parts of the image where the plume
of the studied ship cannot be located based on wind conditions and the speed/direction of
the ship.

As a next step, we presented a feature construction method consisting of the nor-
malization of the ship sector and its division into smaller sub-regions. Each sub-region
has a different probability to contain a plume produced by the ship of interest. This way,
we differentiated the plume produced by the ship of interest from all the other plumes
potentially located within the ship sector. The set of newly created spatial ship-sector-based
features allowed us to perform ship plume segmentation using multivariate machine learn-
ing models. The application of the multivariate models gives the possibility to support the
ship plume segmentation process with a set of additional one-dimensional features such as
ship characteristics and speed.

We integrated several data sources into a multivariate dataset. We manually labeled
the data, so that the problem of individual ship plume segmentation can be addressed with
supervised learning.

We trained a set of robust linear and nonlinear multivariate classifiers and compared
their performance with the segmentation results of thresholding-based univariate bench-
marks. All studied nonlinear classifiers showed superior results in comparison to both
linear models and univariate benchmarks. With the XGBoost model, we were able to
achieve more than a 20% increase in the segmentation average precision in comparison to
the best benchmark univariate model.

We validated the proposed methodology using an independent measure, i.e., a the-
oretically derived NOx ship emission proxy that we used as a reference value. For the
comparison, we estimated the amount of NO; produced by each of the analyzed ships
and calculated the Pearson correlation of the obtained results with the ship emission proxy.
We compared the obtained correlations and the number of plumes segmented by each
of the studied models with the results obtained from manual segmentation. We showed
that, with the XGBoost model, we are able to segment more plumes while achieving a
6.8% higher correlation with the emission proxy than when the plumes were segmented
manually. That might suggest that the proposed method is able to find plumes that are
hardly or not detectable by the human eye.
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6. Discussion

The presented approach opens new perspectives for the application of remote sensing
in the domain of ship emission monitoring. However, there are several points on the
generalization of the results, the methodology, and the TROPOMI detection limit we would
like to address here.

Firstly, we would like to discuss the possibility of the application of the proposed
methodology to other regions. In this study, we presented a general approach that allows
for the application of machine learning models for more efficient, automated segmentation
of plumes from individual ships using TROPOMI data. All steps of feature preparation can
be performed on the data from any region of the globe. Nevertheless, the machine learning
models will have to be retrained on the region-specific datasets.

Secondly, not all regions will be equally suitable for the performance of ship emission
monitoring with remote sensing. In particular, at the moment, there is no scientific evidence
that, under the thick layer of land-based emission outflow, it will still be possible to
differentiate plumes produced by ships. Therefore, areas that lie in close proximity to big
cities, ports, or industrial objects are currently challenging to analyze.

The next point is the validation approaches used in this study. For the training of the
machine learning model, we used human labels. Human labeling is the basis of all machine
learning methods, and this study pioneers ship plume segmentation with more efficient
supervised learning based on human labeling. However, the dispersion and chemical
transformation of a ship plume, as well as its non-rigid structure mean that there are
always some parts of this plume that are at or beyond the visible detection limit of the
combination of the TROPOMI instrument and the retrieval algorithm. This can cause errors
in labeling, as is demonstrated in Figure 15. Such mistakes if present in reasonable amounts
should not affect the performance of the model, but, if the number of labeling errors is
too high, the machine learning model will not be able to learn properly and, thus, the
resulting performance will be very poor. The fact that nonlinear models were able to easily
outperform thresholding-based benchmarks suggests that the models were able to use the
provided labels for training, and thus, the labeling error rate was low. Nevertheless, an
independent measure of the method evaluation is needed. Since the interest of our study
centers on seagoing ships, the in situ measurements cannot be considered as a potential
way of method validation. The option of on-board measurement of fuel samples cannot
be performed at the scale of the study. Therefore, a theoretical measure of ship emission
potential, which is the ship emission proxy, turns out to be the only available option of a
reference value for the results of this study.

The usage of the ship emission proxy, however, has its limitations, namely the used
ship emission proxy does not take into account many factors that influence the expected
level of emission for a given ship. Nonetheless, the used proxy allowed us to rank the
emission potential of the analyzed ships properly.

Following this, we would like to discuss the fact that, even though only fast ships
were taken into consideration in this study, the number of ships for which the plume
was possible to distinguish is higher than the number of ships for which the plume was
invisible for the labeler. This study focused on observing emission sources at the edge of
the detection limits of the TROPOMI instrument. It is, therefore, likely that, under certain
circumstances, ship plumes remain undetected. We can only in part explain under what
circumstances plumes are not visible. With the data presented in Figure 17 and Table 5, we
show that, as expected, smaller and slower ships are more often not detected. Similarly, for
high wind speeds, the detection is more challenging due to the high dilution of the ships’
emissions and, therefore, low concentrations (the evidence can also be found in Figure 17
and Table 5). Regarding the lower detectability at lower wind speeds that can also be
observed in Figure 17, we find some accordance with the findings from [47], where it is
described how the wind speed impacts the reflectivity of the sea surface due to the shape
of the waves, which in turn influences the sensors’ sensitivity. However, this topic needs
further study in the satellite retrieval community.
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Figure 17. Distribution of the dataset features for the images, where there were no visible ship plumes
distinguished, and for the images, where there was a visually distinguishable ship plume.

Table 5. Average and standard deviation for the dataset features for the images, where there were no
visible ship plumes distinguished, and for the images, where there was a visually distinguishable

ship plume.
Variable Name No Plume Image Image with a Plume
Wind speed (m/s) 547 £2.31 527 £2.00
Ship speed (kt) 16.83 +2.01 17.41 + 2.04
Ship length (m) 279.92 £ 86.64 303.99 £ 82.79

To sum up, the method presented in this study is a big step towards automated and
global ship emission monitoring with remote sensing and should not be devalued by the
above-mentioned limitations. Firstly, one can train a machine learning model per region
as commonly done in remote sensing. In addition, the region can serve as a feature of
the model itself to make it invariant to geographic locations. Moreover, adding of such
variables such as month, solar radiation, or temperature will make the model invariant
to the seasonal changes that might be more severe at northern latitudes. Secondly, main
ship routes go through both more and less suitable regions for the satellite observations.
Thus, a selection of the more convenient regions will still allow us to use our approach
for efficient monitoring of the emission levels produced by ships that follow those routes.
Moreover, the obtained good results both in terms of segmentation quality and comparison
with the emission proxy suggest that the labeling was of substantial quality. The proposed
methodology also opens new research directions. For instance, human labeling can be
replaced with chemical plume dispersion models, which will further improve the labeling
quality and make the proposed methodology even more effective. Finally, the problem
of the visibility of ship plumes that have been unrevealed with the presented study, once
solved, will give us a great overview of the capabilities of TROPOMI sensors.
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Abbreviations

The following abbreviations are used in this manuscript:

S5P Copernicus Sentinel 5 Precursor satellite

NO, Nitrogen dioxide

ECMWEF  European Center for Medium-range Weather Forecast

AIS Automatic Identification System

ILT Human Environment and Transport Inspectorate of the Netherlands
ROI Region Of Interest

SVM Support Vector Machine

RBF SVM  Support Vector Machine with Radial Basis Kernel
XGBoost Extreme Gradient Boosting
AP Average Precision

Appendix A. Hyperparameters Settings

Below, the reader can find the hyperparameters’ search space that was used for the
optimization of the multivariate model’s performance, along with the hyperparameters
that were always used for the model training.

e  Linear SVM(random_state = 0)

- C:(2x107%2x1071,2x10% 2 x 10%, 2 x 10?)

e Logistic(solver = ‘saga’, I1_ratio = 0.5, random_state = 0)

- penalty: ('11’,°12’, ‘elasticnet’, ‘none’)

- (C:(0.0001,0.001,0.1, 1)

- max_iter: (100, 120, 150)

e RBF SVM(kernel = ‘rbf’, gamma = ‘scale’, random_state = 0)

- C:(2x1072,05x1071,1x1071,15x1071,2x 107125 x 1071,2 x 10°)
. Random Forest(n_estimators = 500, oob_score = True,

random_state = 0)

- min_samples_leaf: [2; 36]

- max_features: ('sqrt’, 0.4, 0.5)

-  criterion: (‘gini’, "entropy’)

*  XGBoost(objective = ‘binary:logistic’, eval_metric = ‘aucpr’,

n_estimators = 500, booster = ‘gbtree’, random_state = 0)

- gamma: [0.05; 0.5]

- max_depth: (2,3,5,6)

- min_child_weight: (2,4, 6, 8, 10, 12)

- subsample: [0.6; 1.0]

- colsample_bytree: [0.6; 1.0]

- colsample_bylevel: [0.6; 1.0]

- learning_rate: (0.001, 0.01, 0.1, 0.2, 0.3, 0.4)

- reg_alpha: (0,1 x107°,5x1074,1x 1073,1x1072,1 x 1071, 1 x 109
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Appendix B. Hyperparameters Selected by the Optimization Process

Here, we provide the set of the hyperparameters that were identified as optimal
through the performance of the randomized grid search procedure:

e Linear SVM: In every iteration of the cross-validation procedure, the optimal value of
parameter C was: C = 0.02.

¢ Logistic regression: In every iteration of the cross-validation procedure, the optimal
value of parameter C was: C = 0.001.

*  SVM RBE: In every iteration of the cross-validation procedure, the optimal value of
parameter C was: C =0.1.

* Random forest:

-  CVO0: criterion = entropy, max_features = 0.4, min_samples_leaf = 18
- CV1: criterion = entropy, max_features = sqrt, min_samples_leaf = 24
- CV2: criterion = entropy, max_features = 0.4, min_samples_leaf = 24
- CV3: criterion = entropy, max_features = sqrt, min_samples_leaf = 18
- CV4: criterion = entropy, max_features = 0.4, min_samples_leaf = 18

. XGBoost:

- CV0: gamma = 0.2, max_depth = 6, min_child_weight = 10, subsample =
0.6, colsample_bytree = 0.89, colsample_bylevel = 0.79, learning_rate = 0.01,
reg_alpha = 1e — 05

- CVI: gamma = 0.15, max_depth = 5, min_child_weight = 2, subsample =
0.6, colsample_bytree = 0.89, colsample_bylevel = 0.6, learning_rate = 0.01,
reg_alpha = 0.01

- CV2: gamma = 02, max_depth = 6, min_child_weight = 2, subsample =
0.6, colsample_bytree = 0.89, colsample_bylevel = 0.6, learning_rate = 0.01,
reg_alpha = 0.0005

- CV3: gamma = 02, max_depth = 6, min_child_weight = 2, subsample =
0.6, colsample_bytree = 0.89, colsample_bylevel = 0.6, learning_rate = 0.01,
reg_alpha = 0.0005

- CV4: gamma = 0.15, max_depth = 5, min_child_weight = 2, subsample =
0.6, colsample_bytree = 0.89, colsample_bylevel = 0.6, learning_rate = 0.01,
reg_alpha = 0.01
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