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Abstract: Using multi-source monitoring data to model and predict the displacement behavior of
landslides is of great significance for the judgment and decision-making of future landslide risks.
This research proposes a landslide displacement prediction model that combines Variational Mode
Decomposition (VMD) and the Long and Short-Term Time-Series Network (LSTNet). The bootstrap
algorithm is then used to estimate the Prediction Intervals (PIs) to quantify the uncertainty of the
proposed model. First, the cumulative displacements are decomposed into trend displacement,
periodic displacement, and random displacement using the VMD with the minimum sample entropy
constraint. The feature factors are also decomposed into high-frequency components and low-
frequency components. Second, this study uses an improved polynomial function fitting method
combining the time window and threshold to predict trend displacement and uses feature factors
obtained by grey relational analysis to train the LSTNet networks and predict periodic and random
displacements. Finally, the predicted trend, periodic, and random displacement are summed to the
predicted cumulative displacement, while the bootstrap algorithm is used to evaluate the PIs of the
proposed model at different confidence levels. The proposed model was verified and evaluated by
the case of the Baishuihe landslide in the Three Gorges reservoir area of China. The case results
show that the proposed model has better point prediction accuracy than the three baseline models of
LSSVR, BP, and LSTM, and the reliability and quality of the PIs constructed at 90%, 95%, and 99%
confidence levels are also better than those of the baseline models.

Keywords: landslide displacement prediction; prediction interval estimation; bootstrap; variational
mode decomposition; long and short-term time-series network

1. Introduction

Landslides are the widely distributed and most influential geological disasters in
southern China. According to statistics, a total of 7840 geological disasters occurred in
China in 2020, including 4810 landslide disasters, causing 117 deaths and direct economic
losses of more than 700 million dollars [1]. Landslide disasters can be prevented at a
low cost by conducting all-weather monitoring and early warning of landslides with
potential risks using the Internet of Things (IoT), sensors, Remote Sensing (RS), and other
technologies [2–4]. The development of automatic monitoring technology has led to a
dramatic increase in the amount of monitoring data, which also provides data support
for the prediction of the evolution process of landslide displacement. It has become a
research trend in recent years to fully mine the evolution characteristics of landslides in the
enormous monitoring data and predict the failure process.

Landslide deformation exhibits completely non-linear characteristics and is influenced
by some internal factors, such as geological structure, physical properties of soil, and
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material composition, as well as by external factors, such as rainfall, vibration, temperature,
vegetation cover, and water circulation [5–8]. The internal factors play a decisive role among
the two factors, and the external factors play an induced role. The landslide deformation
will be triggered only when the internal and external factors work together. Many scholars
have also proposed some models that can predict the evolution of landslide displacements
based on the characteristics of these internal and external factors. The prediction based
on the mechanism of landslide internal factors is called “physics-based” prediction [9–11].
However, it is very expensive and difficult to sample and analyze various parameters inside
the landslide, which makes it difficult to achieve near-real-time prediction. The prediction
based on monitoring data from external factors is called “data-based” prediction. In this
way, the data collection cost is relatively low, and the types and volumes of data are very
rich. Therefore, more and more significant studies have used long-term monitoring data
to predict landslide deformation process, especially for landslides affected by rainfall and
reservoir water, which are widely distributed in southern China [12–17].

Modeling research on “data-based” prediction has gone through four stages: empirical
models, statistical models, nonlinear models, and artificial intelligence models [18]. In
the first three stages, the proposed models are limited by the model properties and often
only use cumulative displacements for analysis and prediction. Such models have no way
to consider other features in the landslide deformation process, and thus, have limited
prediction effects. The development of artificial intelligence, especially deep learning
technology, has also provided new ideas for landslide displacement prediction in recent
years. Numerous researchers have suggested a variety of models to completely account for
the multi-source monitoring data connected to the landslide deformation process, and the
prediction effect has significantly improved. These models can be generally classified into
three major categories: machine learning prediction models, Recurrent Neural Network
(RNN) prediction models, and Graph Neural Network (GNN) prediction models.

Machine learning prediction models mainly include Extreme Learning Machines
(ELM) [19–23], Backpropagation (BP) neural networks [24,25], Support Vector Machines
(SVM) [26–29], and their improved models. These models are simple to implement, fast
to compute, and can use multi-source monitoring data as the input to the model, effec-
tively improving the prediction model’s ability to integrate multi-source monitoring data.
However, these machine learning prediction models are often referred to as static models
because they typically only take into account the input state at the current time and ignore
the impact of the past state in the future. Landslide deformation is a continuous and
dynamic process. The past state plays a significant role in the future state evolution of
the landslide and should be considered. The RNN and Long Short-Term Memory (LSTM)
realize the prediction models to “remember” and “forget” the past states by their internal
gate construction to integrate the past state information into the prediction process and
enhance the continuity of the prediction process. Many scholars have already developed
landslide prediction models using RNN, LSTM and their improvements, and some repre-
sentative models include GRU [30], simple LSTM [18], EMD-LSTM [31], LMD-BiLSTM [32],
VMD-Stacked LSTM-TAR [33], VMD-BiLSTM [34], CEEMDAN-AMLSTM [35], and so on.
These models realize the transformation of landslide displacement prediction from static to
dynamic, but there are two problems. First, RNN and LSTM only consider the temporal
correlation in landslide deformation prediction, but not the spatial correlation. Landslide
failures tend to respond on a larger spatial scale, so landslide monitoring also tends to
deploy sensors over a larger area to obtain monitoring data on a larger spatial scale. The
monitoring data from these sensors present a correlation not only in time but also in space,
which helps to improve the perceptive ability and prediction effect of the prediction model
on a large-scale space in the prediction model, considering spatial correlation. Because the
GNN, which has emerged in recent years, can consider the spatial correlation between mul-
tiple nodes via weighted adjacency matrices, it has been used by many scholars in the field
of landslide displacement prediction, and the more representative models are primarily
Attentive-GNN [36], GC-GRU-N [37], T-GCN [38], and so on. However, GNN requires
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high data integrity resulting in high data collection cost. There is a lack of complete public
datasets leading to fewer applications of GNNs. Second, there is a correlation between
multi-source monitoring data from different sensors in the short term before landslides
occur, which cannot be considered by traditional RNN or LSTM. Lai et al. [39] presented
the Long and Short-Term Time-Series Network (LSTNet) as a solution to this problem.
In LSTNet, the RNN and the Convolutional Neural Network (CNN) are combined. The
CNN extracts the correlation features of the input variables, and the extracted features are
then input into the RNN for prediction. Therefore, the LSTNet has good applicability and
prediction effects for multivariate time series prediction problems.

The current studies on landslide displacement prediction mainly focus on deterministic
point prediction, that is, predicting the specific value of landslide displacement at a certain
time in the future. Few studies have explored the uncertainty of such predictions, that
is, how to construct Prediction Intervals (PIs). PIs can not only reflect the deformation
trend of landslide displacement in the future but also get the upper and lower bounds
of predicted displacement. It is helpful for decision-makers to evaluate the uncertainty
of the prediction and make more accurate decisions. Therefore, constructing PIs is more
meaningful than point prediction. Conventional methods for constructing PIs include delta,
Mean-Variance Estimation (MVE), and Bayesian. These methods are ineffective because
they not only require that the data satisfy the Gaussian noise distribution but also that
the inverse of the Hessian matrix will be continually calculated. Additionally, the Lower
Upper Bound Estimation (LUBE) and bootstrap are popular because they do not make
any prior assumptions. At present, there is little research on constructing PIs of landslide
displacement. Lian et al. [40–43] used bootstrap and LUBE to construct PIs of landslide
displacements for various machine learning models, such as ANN, ELM, SVM, and RVFLN,
which were validated in several landslides in the Three Gorges reservoir area. This is the
earliest study on constructing PIs for landslide displacements that can be found. Since then,
Ma et al. [44], Wang et al. [45–47], Ge et al. [48], and Li et al. [49] conducted similar studies
and achieved many valuable and meaningful research results. However, these current
studies are based on static models of machine learning to construct PIs and have not yet
considered the dynamic characteristics of time series and the correlation between input
variables. The generated PIs will perform better if the bootstrap method can be used in
combination with the LSTNet model to predict landslide displacement.

This study suggested a landslide displacement prediction model that combines Varia-
tional Mode Decomposition (VMD) with LSTNet to address the aforementioned problems.
It also used the bootstrap to create PIs to quantify the uncertainty of the proposed model.
The proposed model first decomposes the cumulative displacement into trend displace-
ment, periodic displacement, and random displacement using the VMD algorithm. Then,
an improved polynomial fitting method is employed for trend displacement prediction.
The LSTNet model is employed to predict the periodic and random displacements. By
summing the prediction results from the three displacements, the point prediction results
of the cumulative displacement are obtained. Finally, the bootstrap method is used to
evaluate the uncertainty of point prediction results and construct PIs. In this study, the
Baishuihe landslide in the Three Gorges reservoir area in southern China was selected as
the study case, and the monitoring data from two monitoring stations, ZG118 and XD01,
were predicted using the proposed model. To verify that the proposed model is effective
and competitive, its prediction results were compared to those of three baseline models:
LSSVR, BP, and LSTM.
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2. Methods
2.1. Time Series Decomposition

The cumulative displacements s(t) of landslides are the coupled responses of numer-
ous factors both inside and outside the landslide, and these coupled responses mainly
consist of three parts: trend displacement yT(t), periodic displacement yP(t), and random
displacement ε(t), i.e.,

s(t) = yT(t) + yP(t) + ε(t) (1)

Among them, the trend displacement, which plays a decisive role in the process of
landslide deformation, is the surface displacement response caused by internal factors,
such as rock and soil properties and geological structure inside the landslide. The main
characteristics are that the displacement increases monotonically with time and the time
series complexity is very low. Periodic displacement is caused by external rainfall, reservoir
level, and other factors, which often have seasonal periodicity, so periodic displacement
also has seasonal periodicity. Random displacement is mainly the remaining residual
component, which characterizes the effect of random factors such as human activities and
vibration on landslide displacement.

In this study, the cumulative displacement is decomposed by the VMD algorithm with
minimum sample entropy constraint. The VMD [50] is an adaptive and fully non-recursive
signal processing method that can adaptively match the optimal center frequency and
finite bandwidth of each mode to achieve the effective separation of the Intrinsic Modal
Functions (IMFs) and the division of the signal frequency domain, and then obtain the
effective decomposition components of the signal. The core idea of VMD is to construct and
solve the variational problem. Assuming that the original signal f (t) will be decomposed
into K components, the corresponding constrained variational expressions are:

min{µk}{ωk}

{
K
∑

k=1

∥∥∥∂t

[
(σ(t) + j

πt ) ∗ µk(t)
]
e−jωkt

∥∥∥2
}

s.t.
K
∑

k=1
µk = f (t)

(2)

where {µk} denotes the decomposed components, {ωk} denotes the actual center frequency
of each IMF component, ∂t denotes the Dirac function, * denotes the convolution operation,[
(σ(t) + j

πt ) ∗ µk(t)
]

denotes the analyzed signal of each component, and e−jωkt denotes
the estimated center frequency of each analyzed signal.

The Lagrangian multiplication operator λ is introduced to solve Equation (2), thus,
transforming the constrained variation problem into an unconstrained variation problem.
We have:

L({µk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∂t

[
(σ(t) + j

πt ) ∗ µk(t)
]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑

k=1
µk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑

k=1
µk(t)

〉 (3)

where α is the penalty factor, which can effectively reduce the interference of Gaussian
noise. The alternating direction multiplier iterative algorithm is used to solve it iteratively.
The core equations of the algorithm are as follows:

µ̂n+1
k (ω)←

f̂ (ω)− ∑
i 6=k

µ̂i(ω) + λ̂(ω)/2

1 + 2α(ω−ωk)
2 (4)
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ωn+1
k ←

∫ ∞
0 ω

∣∣∣µ̂n+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣µ̂n+1
k (ω)

∣∣∣2dω

(5)

λ̂n+1(ω)← λ̂n(ω) + γ( f̂ (ω)−∑
k

µ̂n+1
k (ω)) (6)

where γ is the noise tolerance, and µ̂n+1
k (ω), µ̂i(ω), f̂ (ω), and λ̂(ω) correspond to the

Fourier transforms of µn+1
k (ω), µi(ω), f (ω), and λ(ω), respectively. The final µ̂k and ωk

are output when the convergence criterion of the following equation is satisfied by iterating
µ̂k, ωk, and λ̂ through Equations (3)–(6) continuously.

K

∑
k=1

∥∥∥µ̂n+1
k − µ̂n

k

∥∥∥2

2
/‖µ̂n

k ‖
2
2 < ε (7)

where ε > 0 is the accuracy convergence criterion. For the decomposition of the land-
slide cumulative displacement using VMD, three IMFs can be obtained by setting K = 3,
which just corresponds to trend displacement, periodic displacement, and random dis-
placement [51,52].

2.2. LSTNet

For the prediction problem of multivariate time series, Lai et al. [39] proposed the
LSTNet deep learning model, and the structure of this network is shown in Figure 1. For a
multivariate time series, the LSTNet network first uses a sliding window approach to create
the dataset. Then, a CNN layer is used to extract short-term dependence patterns and
local characteristics among the variables, and a recurrent and recurrent-skip layer is used
to capture the long-term dependence patterns. The final prediction results are obtained
by summing the output of the fully connected layer with the output of the traditional
autoregressive model, which can be used to solve the problem of scale insensitivity of
traditional models.
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Figure 1. The schematic of the LSTNet. Figure 1. The schematic of the LSTNet.

2.2.1. Sliding Window and Dataset Processing

Original time series must be organized according to the study purpose because they
cannot be utilized directly as inputs and outputs for deep learning models. At present, the
sliding window approach is the most popular technique. For a time series, the data are
captured at a fixed time interval from the beginning of the time series, and this interval is
called the “window”. This window continuously moves towards the end at a specific time
step and continuously captures the data in the window. This process is called “sliding”.
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Compared with the processing method that only relies on the current moment’s monitoring
data as the input, the sliding window approach fully takes into account the dynamic process
of the previous period and has more sufficient information. After processing by the sliding
window approach, the original time series can be transformed into a dataset for LSTNet
model training and prediction.

For the created deep learning dataset, the training dataset and the test dataset should
be divided according to a certain ratio. Additionally, due to the inconsistency in mag-
nitude between the input features, the training dataset should be normalized with the
following equation:

xnorm =
xi − xmin

xmax − xmin
(8)

where xnorm denotes the normalized data, xi denotes the unnormalized data, xmax denotes
the maximum value, and xmin denotes the minimum value.

All training data are scaled between 0 and 1 after normalization. It should be em-
phasized that data normalization can only be performed on the training dataset after the
dataset has been divided. If normalization is performed on the unsegmented dataset,
the information from the training dataset will leak into the test dataset, and such results
are unreliable.

2.2.2. Convolution Layer

For each sample in the created dataset, LSTNet first uses a convolutional neural
network without pooling to obtain short-term patterns and local dependencies between
variables. The convolution kernel used in the convolution layer is calculated with the input
multidimensional time series according to the following equation:

hk = RELU(Wk ∗ X + bk) (9)

where ∗ represents the convolution operation, Wk denotes the convolution kernel weight
matrix, X denotes the input multidimensional time series feature matrix, bk denotes the bias
weight, hk denotes the output vector, and RELU(x) = max(0, x) is the activation function.

2.2.3. Recurrent and Recurrent-Skip Layer

The recurrent and recurrent-skip layers instantly take the output of the convolutional
component as their input. To better capture the long-term dependence patterns of the time
series, LSTM units are used in the recurrent layer in this study instead of the GRU units
used by Lai et al. [39] In comparison to traditional RNN, the LSTM designs the forget gate,
input gate, output gate, and memory unit to achieve the removal and addition of past
information, thus, resolving the long-term dependency problem of conventional RNN. The
input gate can control which information will be input into the memory cell. The forget
gate can control which information in the memory cell will be deleted for “forget”, and the
output gate can control which information will be passed to the hidden state of the next
LSTM cell. The forward calculation process of the LSTM is as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi ) (10)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(11)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (12)

ot = σ(Wxoxt + Whoht−1 + Wcoct + b0) (13)

ht = ottanh(ct) (14)

where it, ft, ot denote the values of input gate, forget gate and output gate, respectively;
ct denotes the value of memory cell; bi, b f , bc, and b0 denote their corresponding biases,
respectively. Wx denotes the weight between input node and hidden node, Wh denotes the
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weight between hidden layer and memory cell, Wc denotes the weight between memory
cell to output node.

LSTM can capture the dependency patterns of long-term sequences by “memory” and
“forget”. However, as the length of time series increases, the gradient gradually decreases or
even disappears, and the ability of LSTM to capture ultra-long-term dependency patterns
decreases sharply or even disappears. Therefore, Lai et al. [39] proposed increasing the
network’s ability to capture ultra-long-term dependency patterns by adding a recurrent-
skip layer. The update process for the recurrent-skip layer can be expressed as:

it = σ
(
Wxixt + Whiht−p + Wcict−p + bi ) (15)

ft = σ
(

Wx f xt + Wh f ht−p + Wc f ct−p + b f

)
(16)

ct = ftct−p + ittanh
(
Wxcxt + Whcht−p + bc

)
(17)

ot = σ
(
Wxoxt + Whoht−p + Wcoct + b0

)
(18)

ht = ottanh(ct) (19)

where the parameter p is generally equal to the average period length of the time series,
ct−p denotes the value of the memory cell before p time steps, and ht−p denotes the state of
the hidden layer before p time steps. The prediction problems of time series with a steady
period are better suited for this recurrent skip layer. Since most landslides in south China
are influenced by seasonal rainfall and the deformation velocity characteristics are periodic,
LSTNet has strong application.

A fully connected layer is required at the end of LSTNet to integrate the output of
the hidden states of the recurrent and recurrent-skip layers. The calculation formula is
as follows:

hD
t = WRhR

t +
p−1

∑
i=0

WS
i hS

t−i + b (20)

where hR
t denotes the hidden state of the recurrent component. hS

t−i denotes the hidden
state of the recurrent skip component. hD

t denotes the output. WR and WS
i are the weights

to be learned, and b denotes the bias to be learned.

2.2.4. Autoregressive Component

Both CNN and RNN are fully nonlinear deep learning networks with poor scale sensi-
tivity to the input features. To alleviate the scale insensitivity problem, an autoregressive
(AR) path is added to LSTNet. AR can be viewed as a multiple linear regression model.
The forward calculation formula is as follows:

hL
t,i =

qAR−1

∑
k=0

WAR
k yt−k,i + bAR (21)

where hL
t,i denotes the output of the AR component, yt−k,i denotes the input of the AR com-

ponent, WAR
k and bARdenote the autoregressive coefficients and bias of the AR component.

The final output of LSTNet is the sum of the outputs of the AR component, and the
recurrent and recurrent-skip component, which is:

Ŷt = hD
t + hL

t (22)

2.3. Bootstrap and PI

According to Equation (1), the cumulative displacement can be expressed as the sum
of trend, periodic, and random displacements. When the proposed model is used for
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landslide displacement prediction, each displacement component is used with different
characteristics, so Equation (1) can be rewritten as:

si = yT(xTi) + yP(xPi) + ε(xRi) (23)

where si is the output at the i− th moment. yT(xTi) and yP(xPi) are the predictions of the
trend displacement and the periodic displacement at the i− th moment. ε(xRi) denotes the
prediction of the random displacement, which can generally be assumed to obey a standard
normal distribution. xTi, xPiand xRiare the input feature matrixes used to predict the
trend displacement, the periodic displacement, and the random displacement, respectively.
Assuming that the estimated outputs of the prediction models for trend displacement and
periodic displacement are ŷT(xTi) and ŷP(xPi), respectively, the overall prediction error
can be expressed as:

si − [ŷT(xTi) + ŷP(xTi)] = [yT(xTi)− ŷT(xTi)] + [yP(xPi)− ŷP(xPi)] + ε(xRi) (24)

According to Ma et al. [44] and Jiang et al. [53], the errors of the prediction model are
statistically independent; then, the variance σ2

s of the total error of the prediction model
can be expressed as:

σ2
s = σ2

ŷT
(xTi) + σ2

ŷP
(xPi) + σ2

ε (xRi) = σ2
ŷP
(xPi) + σ2

ε (xRi) (25)

where σ2
ŷT
(xTi), σ2

ŷP
(xPi) and σ2

ε (xRi) denote the variance of the errors in the predicted
trend displacement, periodic displacement, and random displacement, respectively. Since
the improved polynomial regression prediction model used for the prediction of trend
displacement is a deterministic prediction model, and the xTi input for each prediction is
also fixed, the σ2

ŷT
(xTi) is 0. For a specific significance level α, the prediction interval Iα

i (ŝi)

with a confidence level of (1− α)× 100% can be expressed as:

Iα
i (ŝi) =

[
Lα

i (ŝi), Uα
i (ŝi)

]
(26)

where Lα
i (ŝi) and Uα

i (ŝi) are the lower and upper bounds of PI, respectively, and the
calculation formula is as follows:

Lα
i (ŝi) = ŝi − Z1−α/2

√
σ2

s (27)

Uα
i (ŝi) = ŝi + Z1−α/2

√
σ2

s (28)

where Z1−α/2 is the critical value of the standard normal distribution.
In this research, the bootstrap method is used to create and evaluate PI, which mainly

includes three parts: pseudo-dataset generation, model training, and PIs construction
(Figure 2). Taking periodic displacement prediction as an example, in the pseudo-dataset
generation part, the original dataset Dp is first normalized and divided into the training
dataset and test dataset. Then, the bootstrap method is used for repeated sampling of
the training dataset, and B pseudo-datasets are generated. In the model training part, B
LSTNet models are first trained separately using B pseudo-datasets. After that, the test
dataset of the original dataset Dp is predicted, and the output of the b− th model is ŷb

P(xPi).
The same method is used for the random displacement data dataset DR and the model
output is denoted as ŷb

ε (xRi). The final mean and variance of the cumulative displacement
predictions for each of the B models can be obtained, respectively, as follows:

ŝ(xi) = ŷT (xTi) + ŷP(xPi) + ŷε(xRi) = ŷT (xTi) +
1
B

B

∑
b=1

ŷb
P(xPi) +

1
B

B

∑
b=1

ŷb
ε (xRi) (29)
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σ2
s = σ2

ŷP
(xPi) + σ2

ε (xRi) =
1

B− 1

B

∑
b=1

[
ŷb

P(xPi)− ŷP(xPi)
]2

+
1

B− 1

B

∑
b=1

[
ŷb

ε (xRi)− ŷε(xRi)
]2

(30)
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By combining Equations (29) and (30) with Equations (27) and (28), the PI under
a specific confidence level can be obtained, where ŝ(xi) can be used as the result of
point prediction.

2.4. Sample Entropy

Sample entropy is an evaluation index to measure the complexity of time series. For a
time series {x(n)} = x(1), x(2), · · · , x(N), the sample entropy can be calculated as follows:

Step 1: Select a window of length m and use the sliding window approach to generate
a set of vector sequences Xm(1), Xm(2), · · · , Xm(N − m + 1) with dimension m, where
Xm(i) = {x(i), x(i + 1), · · · , x(i + m− 1)}.
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Step 2: Define d
[
Xm(i), Xm(j)

]
= max

k=0,1,··· ,m−1
|x(i + k)− (j + k)| as the value with

the largest absolute value of the difference between the corresponding elements of Xm(i)
and Xm(j).

Step 3: Given a minimum distance threshold r, define Bi as the number of elements
satisfying d

[
Xm(i), Xm(j)

]
≤ r, then, we have:

Bm
i (r) =

1
N−m−1 Bi

Bm(r) = 1
N−m

N−m
∑

i=1
Bm

i (r)
(31)

Step 4: Make k = m + 1, repeat Step 1 to Step 3; then, we can get:
Am

i (r) =
1

N−m−1 Ai

Am(r) = 1
N−m

N−m
∑

i=1
Am

i (r)
(32)

Step 5: Calculate the sample entropy using the following equation:

SampEn(m, r) = lim
N→∞

{
− ln

[
Am(r)
Bm(r)

]}
(33)

When N is a finite and deterministic value, it can be estimated by the following equation:

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
(34)

2.5. The Proposed PI Construction Algorithm for Landslide Displacement

Figure 3 shows the specific flow diagram of bootstrap–VMD–LSTNet proposed in this
paper, which mainly includes three parts: data preprocessing, feature engineering, and
training and prediction.

In the data preprocessing part, the original monitoring data, such as cumulative dis-
placement, rainfall, and reservoir level, need to be preprocessed first, mainly including
anomaly detection and rejection, missing data interpolation, and equal time interval pro-
cessing. Then, the processed data are used to construct the feature factor’s database and
displacement target’s database for the subsequent steps.

In the feature engineering part, the cumulative displacement after data preprocessing
is decomposed by the VMD algorithm to obtain trend displacement, periodic displacement,
and random displacement. The feature factors are decomposed into low-frequency com-
ponents and high-frequency components. Then, the grey relational analysis algorithm is
used to calculate the grey relational degree between the low-frequency component and the
periodic displacement and the grey relational degree between the high-frequency compo-
nent and the random displacement, respectively, so as to select the factors with the higher
correlation as the input feature of the LSTNet model.

In the training and prediction part, an improved polynomial function fitting algorithm
is used to predict the trend displacement, and the improved measure is to determine the best
power by combining the sample entropy and threshold. The low-frequency components of
the selected feature factors are employed as input features for the prediction of periodic
displacement. The high-frequency components of the feature factors are employed as the
model’s input features for the prediction of the random displacement. Finally, the predicted
trend displacement, periodic displacement, and random displacement are summed to
the final point prediction result. To assess the uncertainty of such point predictions, the
bootstrap method was used to analyze the mean and variance of the predicted periodic
displacement and random displacement, and then to construct the PIs.
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The monitoring data from the Baishuihe landslide in the Three Gorges reservoir area
are used for predictions in this paper, and the proposed bootstrap–VMD–LSTNet model is
compared with three baseline models, LSSVR, BP, and LSTM, to validate model performance.
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2.6. Model Performance Evaluation

This study mainly consists of two parts: point prediction and interval prediction.
Different evaluation indexes should be used to evaluate the prediction effect. For point
prediction, the three main indexes, RSME, MAE, and R2, are used and calculated as follows:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (35)

MAE =
1
m

m

∑
i=1
|yi − ŷi| (36)
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R2 = 1−

m
∑

i=1
(ŷi − y)2

m
∑

i=1
(yi − y)2

(37)

where yi denotes the measured value, ŷi denotes the predicted value, and y denotes the
average value.

For interval prediction, Prediction Interval Coverage Probability (PICP) and Mean
Prediction Interval Width (MPIW) are mainly used as evaluation indexes. The calculation
formula is as follows:

PICP =
1

Ntest

Ntest

∑
i=1

ci, ci =

{
1 ti ∈

[
Lα

t (xi) Uα
t (xi)

]
0 ti /∈

[
Lα

t (xi) Uα
t (xi)

] (38)

MPIW =
1

Ntest

Ntest

∑
i=1

[Uα
t (xi)− Lα

t (xi)] (39)

where Ntest is the number of samples in the test dataset, and ci is a Boolean-type variable.
The PICP describes the reliability of PI. A higher PICP means a higher reliability of PI. A
lower MPIW value indicates a narrower PI and higher quality. However, when it comes
to the actual application, PICP and MPIW frequently appear to be in conflict, meaning
that increasing one index must occur at the expense of raising the other. The Coverage
Width-Based Criterion (CWC), which was developed to address this issue, is defined
as follows:

CWC = MPIW[1 + γPICPe−η(PICP−µ)] (40)

γ =

{
0 PICP ≥ µ

1 PICP < µ
(41)

where µ = (1 − α) × 100% are generally consistent with the confidence level. When
PICP ≥ µ is taken as 0, the exponential term in CWC is eliminated, and CWC is exactly
equal to MPIW. Conversely, the exponential term is retained, where the penalty parameter
is, to sharply amplify the difference between PICP and CWC, which leads to the rapid
amplification of CWC.

3. Study Area: Baishuihe Landslide
3.1. Geological Conditions

The Baishuihe landslide is located in Shazhenxi Town, Zigui County, Yichang City,
Hubei Province, China (longitude: 110◦32′09”, latitude: 31◦01′34”), in a wide river valley
on the south bank of the Yangtze River, 56 km upstream of the Three Gorges Dam (Figure 4).
The landslide has a north–south length of 600 m, an east–west width of 700 m, an average
thickness of 30 m, and a volume of 1.26 × 107 m3. The terrain of the landslide is shown
in Figure 5, which generally presents a ladder shape of “high in the south and low in the
north”. The trailing edge of the landslide is about 410 m, the leading edge is adjacent to the
Yangtze River, and the slope is about 30◦. The geological profile of the 2-2’ survey line in
Figure 5 is shown in Figure 6, and the landslide belongs to an accumulation landslide and
bedding slope. The upper part of the Baishuihe landslide is mainly Quaternary sediments,
including gravelly soil and silty clay; the lower part is bedrock composed of Jurassic silty
mudstone, silty siltstone, and siltstone, with a bedrock dip of 36◦ and a direction of 15◦; the
interface between the bedrock and the overburden is the sliding surface.
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location of the Three Gorges Reservoir area.
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Figure 6. Geological profile of the 2-2’ survey line of the Baishuihe landslide.

The Baishuihe landslide is an ancient landslide which is frequently revived. The Global
Positioning System (GPS) was used to track the surface displacement of the landslide since
the landslide deformation became obvious following the first impoundment of the Three
Gorges Dam in June 2003. Figure 5 shows the location of the monitoring stations, where
eleven GPS surface displacement monitoring stations are placed on the landslide’s four
monitoring profiles. The GPS monitoring station mainly includes a Tianbao GPS receiver, a
DTU communication module, a battery, and so on. The plane accuracy of displacement
measurement is 5 mm ± 1 ppm. The data collection frequency is once a month. If abnormal
acceleration occurs, the collection frequency will be accelerated. Rainfall monitoring data
for the Baishuihe landslide were obtained from the Zigui County Meteorological Bureau’s
Shazhenxi Station, and the specific location is shown in Figure 4a.

3.2. Deformation Characteristics

According to the crack distribution and monitoring data, the warning area of the
Baishuihe landslide can be delineated as shown in Figures 5 and 6. The deformation of
two monitoring stations, ZG118 and XD01, in the warning area is very representative, and
the data from these two stations are more complete than other monitoring stations during
the monitoring period from January 2007 to December 2012, so the monitoring data from
these two stations are selected for subsequent analysis and prediction studies (Figure 7).
The data were provided by the National Cryosphere Desert Data Center of China. From
Figure 7, it can be found that the deformation process of the Baishuihe landslide has several
distinctive features, as follows:

1. The data curves of displacement, rainfall, and reservoir level of the Baishuihe landslide
show strong temporal correlation with each other. The displacement curves of the two
monitoring stations are relatively similar in shape; not only do they show a step-like
characteristic, but also the change in deformation rate shows synchronization. Each
of the accelerated deformation processes at both monitoring stations occurred during
the rainy season from May to September each year, while the landslide deformation
was slow or even non-deformed during the dry season from October to April of the
next year. This indicates that the stability of the landslide is closely related to rainfall
infiltration. Spatially, the displacement of monitoring station ZD01 is significantly
larger than that of monitoring station ZG118, indicating that the deformation of the
landslide is spatially heterogeneous, and the degree of deformation on the east side is
larger than that on the west side.

2. The reservoir level fluctuated between 145 m and 155 m until August 2008, during
which the cumulative displacement of the landslide was nearly 1 m. After August
2008, the reservoir level increased sharply and remained between 145 m and 175 m.
The landslide also underwent a series of accelerated displacement processes. In terms
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of time, each accelerated deformation occurred after the reservoir water level dropped,
presumably because the rise and fall of the water table inside the landslide lagged
behind the reservoir water level change, and an outward hydrodynamic pressure
was formed inside the landslide after each reservoir water level drop, resulting in a
decrease in landslide stability.
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Based on the comprehensive analysis of the above two characteristics, it can be consid-
ered that the external inducing factors of the Baishuihe landslide deformation are mainly
rainfall infiltration and the change in reservoir water level.

4. Results
4.1. Feature Engineering
4.1.1. Constructing Feature Factors Database

In order to get better prediction results, it is necessary to select features with more
significant relevance to the prediction targets to build the feature factor database, i.e., fea-
ture engineering. The purpose of this study is to predict the cumulative displacement of a
landslide using multi-source monitoring data. The cumulative displacement of landslides
is the coupled response of trend displacement caused by internal factors, periodic displace-
ment caused by external factors, and random displacement caused by random factors. The
targeted enhancement of each displacement prediction can improve the overall cumulative
displacement prediction.

By analyzing the deformation characteristics of the Baishuihe landslide, the external
factors inducing the deformation of the Baishuihe landslide are rainfall infiltration and
the change in reservoir water level. Rainfall infiltration is a continuous and slow process.
The intensity and duration of rainfall and even historical rainfall events will affect the
deformation of landslides. In this study, the four characteristics of cumulative rainfall for
the current month (R1), maximum daily rainfall for the current month (R2), maximum
continuous effective rainfall for the month (R3), and cumulative rainfall for two months (R4)
were selected as the characteristic factors representing rainfall. For the reservoir water level
factors, the change in water level has a more significant impact on landslide deformation
than the water level itself. Therefore, the change in water level in the current month (W1),
the change in maximum daily water level in the current month (W2), and the change in
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average water level in the current month compared with the previous month (W3) were
selected to represent the feature factors of reservoir water level in this study.

The internal state of a landslide is the determining factor for landslide deformation.
However, it is very difficult to collect monitoring data for various parameters inside the
landslide. The multi-physics field theory of landslides suggests that the deformation field
of a landslide is the external expression of the coupling action of multiple physical fields in
the structural field of the geological body [54]. The size and distribution of the deformation
field and its changes reflect the degree and effects of the coupling action between the
structural field of the geological body and various physical fields, so the deformation field
already contains the internal state information of the landslide. It has also been shown that
when a landslide is in a stable state, extremely large external excitation may not have any
effect [51,52]. However, when the landslide is in an unstable state, a very small external
excitation may initiate the deformation process of the landslide. Therefore, the deformation
field data of the landslide in the past period can be used as the feature factors of the internal
state. In this study, three deformation field features of the current month’s displacement
increment (D1), two-month displacement increment (D2), and three-month displacement
increment (D3) are selected to represent the internal state of the landslide.

4.1.2. Decomposition of Cumulative Displacement

The landslide cumulative displacement is the comprehensive response of the cou-
pling effect of internal and external factors, and better prediction results can be obtained
by predicting the response generated by both separately. According to Liu et al. [51],
Guo et al. [52], it is necessary to decompose the monitoring data before splitting the dataset
to prevent information from the training dataset leaking into the test dataset. For the
cumulative displacements of ZG118 and XD01, the monitoring data of the first 60 months
(January 2007–December 2011) were used as training samples, and the monitoring data
of the last 12 months (January 2012–December 2012) were used as test samples. In this
study, VMD is used to decompose the cumulative displacement into three components:
trend displacement, periodic displacement, and random displacement. The trend dis-
placement reflects the internal state of the landslide, the periodic displacement reflects the
action of external factors, and the random displacement is the remaining decomposition
component. In order to accurately obtain the three IMFs to match the three displacement
components obtained from the decomposition, the parameter K in the VMD algorithm is set
as 3. The trend displacement represents the long-term evolutionary trend of the landslide,
and the complexity of its time series should be the lowest, that is, its sample entropy
should be the smallest. Therefore, the best penalty parameter α can be determined by the
optimization algorithm. In this study, α was determined to be 1.20 for ZG118 and 1.25 for
XD01 by the violent trial calculation. Other parameters refer to the study by Liu et al. [51]
and Guo et al. [52]. The time step is set as 0.1, the central frequency is initially set as 0,
the termination condition is set as 10−6, and all the omegas are started in a uniformly
distributed manner.

The decomposition results of the cumulative displacements of ZG118 and XD01 are
shown in Figure 8. It can be found that the trend displacement characterized by the overall
deformation trend of the landslide shows obvious monotonicity and low complexity of the
time series. The periodic displacement shows an obvious and stable fluctuation period, with
the peak in the rainy season and the trough in the dry season, indicating the contribution
of external hydrological factors to the landslide displacement. The random displacement
has no stable period and shows an obvious randomness.
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4.1.3. Decomposition of the Triggering Factors

According to Liu et al. [51] and Guo et al. [52], the proposed model’s prediction
can be improved by using the high-frequency component and low-frequency component
obtained from the decomposition of the feature factors in place of the total value of the
feature factors as the input features. In this study, the VMD algorithm is still used to
decompose the feature factors, and the number of IMFs is set as two. The penalty factor
α is determined optimally using a violent trial calculation, and the objective function of
the trial calculation is to minimize the sample entropy of the low-frequency components
obtained by the decomposition. Other parameters are the same as in the previous section.
The decomposition results of the rainfall factors and reservoir factors are shown in Figure 9.
It can be found that the period and amplitude of the low-frequency component curves
obtained from the decomposition of the feature factors are more stable and have some
similarity with the curves of the periodic displacements, so the low-frequency components
of the feature factors can be used as the input features of the periodic displacements. The
curves of the high-frequency components fluctuate drastically without obvious periods
and have some similarity with the curves of the random displacements, so the high-
frequency components of the feature factors can be used as the input features of the
random displacements.
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Figure 9. Comparison of decomposition components of the feature factors with displacement compo-
nents. (a) Low-frequency components of rainfall factors versus periodic displacements. (b) High-
frequency components of rainfall factors versus random displacements. (c) Low-frequency compo-
nents of water level factors versus periodic displacements. (d) Low-frequency components of water
level factors versus random displacements.

4.1.4. Grey Relational Analysis

In deep learning, different features of the same dataset have different effects on the
model. Before making deep learning predictions, it is necessary to select the features that
are very important for the prediction results, and this process is called feature selection.
Feature selection is an important part of feature engineering, which directly determines
the prediction results. For each feature in the feature factors database, grey relational
analysis was used to calculate the GRDs between the decomposition components of the
feature factors and the displacement components, respectively, and the calculation results
are shown in Table 1. Factors with GRD greater than 0.6 are usually considered as input
features for deep learning models. From Table 1, it can be found that all factors have GRD
greater than 0.6, so all these factors can be used as input features for the proposed model.

Table 1. The GRDs between the decomposition components of the feature factors and the displace-
ment components.

Feature

GRD of ZG118 GRD of XD01

Periodic
Displacement

Random
Displacement

Periodic
Displacement

Random
Displacement

R1 0.72049 0.88975 0.74553 0.89384
R2 0.72048 0.88166 0.74551 0.89544
R3 0.72049 0.89852 0.74553 0.91514
R4 0.72054 0.90643 0.74563 0.92285
W1 0.72533 0.84617 0.75308 0.85007
W2 0.72089 0.90505 0.74612 0.92103
W3 0.72491 0.70956 0.75218 0.71196
D1 0.72050 0.90050 0.74559 0.91567
D2 0.72059 0.89950 0.74568 0.91578
D3 0.72066 0.90151 0.74577 0.91814
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4.2. Predicted Prediction Results
4.2.1. Prediction of Trend Displacement

A landslide’s internal geological condition mostly determines its trend displacement,
which has a smooth curve, low time series complexity, and small sample entropy. As a
result, the least squares fitting polynomials have been used for prediction in a variety of
studies [18,51–53]. However, the Runge phenomenon often occurs in polynomial function
fitting, that is, as the power of the interpolation polynomial increases, the fitting error at the
edge of the interpolation interval will become larger and larger. An improved algorithm
combining time window and threshold is proposed in this study to solve this problem. The
main goal of the algorithm is to make the difference between the coefficients of the highest
power term of the polynomial to be solved and the coefficients of the next highest power
term less than a certain threshold to avoid the presence of high-power terms, thus, avoiding
the Runge phenomenon as much as possible. The algorithm’s specific flow is as follows:

Step 1: Given a time window tw, the last tw time steps of the training dataset are used
as the training data Dtrend to make the prediction more focused on the recent landslide
deformation state. The initial highest power α is set as 1, and the threshold τ is set as 0.1.

Step 2: Construct a polynomial function with the highest power α, fit the training
data Dtrend by the least squares method, and calculate the coefficients of each item in
the polynomial.

Step 3: Calculate the absolute value dα of the difference between the coefficient of the
highest power term and the coefficient of the second-highest power term. If dα is less than
the set threshold τ, the calculation is stopped; otherwise, the highest power α is increased
by 1, and Step 2 and Step 3 are repeated.

Step 4: Using the polynomial obtained in Step 3 to predict the test dataset, we can
obtain the prediction results of trend displacement.

The polynomial functions fitted to the trend displacements of ZG118 and XD01 by the
improved algorithm are Equations (42) and (43), respectively, and the prediction results
for the test dataset are shown in Figure 10. Although we cannot quantitatively evaluate
the prediction results because we cannot get the test data of the decomposition component
in the strict mode, it can be found from Figure 10 that the prediction results of the two
monitoring stations have well continued the monotonically increasing characteristics of
trend displacement, which is in line with reality.

STrend,ZG118 = −0.0002025t4 + 0.0407t3 − 3.035t2 + 111.6t + 268.7 (42)

STrend,XD01 = −5.23× 10−5t4 + 0.01779t3 − 1.938t2 + 104.4t + 454.3 (43)

4.2.2. Prediction of Periodic Displacement

The low-frequency components of the feature factor decomposition can be used as the
input features of the periodic displacement prediction model. In this section, we construct
the LSTNet prediction model based on Section 2.3, and then use a random search algorithm
to determine the best hyperparameters for the model:

ZG118: The time step is set as 35, the number of the recurrent layers is set as 190, the
parameter p of the recurrent-skip layers is set as 11, the number of recurrent-skip layers is
set as 142, the number of convolutional layers is set as 119, and the convolutional kernel is
set as 5.

XD01: The time step is set as 35, the number of the recurrent layers is set as 69, the
parameter p of recurrent-skip layers is set as 13, the number of recurrent-skip layers is set
as 65, the number of convolutional layers is set as 147, and the convolutional kernel is set
as 9.

The loss function is set as MSELoss. The epochs are set as 5000, the learning rate is
dynamically adjusted during the training process, the initial learning rate is 0.001, and the
learning rate is changed to half of the original rate every 1000 epochs.
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To evaluate the uncertainty of the trained prediction models, 200 pseudo-training sets
were first generated using the bootstrap method with put-back sampling of the training set.
These 200 pseudo-training sets were then used to train 200 models, each of which made
predictions on the test set. Finally, the prediction results at each time step are analyzed and
PIs are calculated (Figure 11).
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According to Figure 11, the predicted values for ZG118 and XD01 are clustered close to
the mean at each time step, and the predicted results furthest from the mean have a smaller
probability of occurring, showing a better normal distribution. Taking the mean value as
the point prediction result, it can be found that the predicted periodic displacement shows
a good periodic characteristic. The peaks of the predicted periodic displacement curves are
mainly distributed in the rainy season and the troughs are mainly distributed in the dry
season, which is also consistent with the actual situation. Compared with the traditional
point prediction, the interval prediction provides an uncertainty description of the point
prediction results, which enhances the reliability of the prediction results.

4.2.3. Prediction of Random Displacement

The high-frequency components obtained from the feature factors can be used as input
features for the random displacement prediction model. In this section, the random search
algorithm is also used to determine the best hyperparameters of the prediction model:

ZG118: The time step is set as 35, the number of the recurrent layers is set as 88, the
parameter p of recurrent-skip layers is set as 14, the number of recurrent-skip layers is set
as 137, the number of convolutional layers is set as 73, and the convolutional kernel is set
as 3.

XD01: The time step is set as 35, the number of the recurrent layers is set as 58, the
parameter p of recurrent-skip layers is set as 17, the number of recurrent-skip layers is set
as 130, the number of convolutional layers is set as 62, and the convolutional kernel is set
as 10.

The loss function is set as MSELoss. The epochs are set as 5000. The learning rate is
dynamically adjusted during the training process. The initial learning rate is 0.001, and the
learning rate is changed to half of the original rate every 1000 epochs.

The bootstrap was also used for point prediction and uncertainty analysis of random
displacements, and the results are shown in Figure 12. It can be found from Figure 12 that
the prediction results of random displacements of ZG118 and XD01 at different time steps
also show normal distribution characteristics. From the upper and lower bounds of the box
plots, the distribution range of ZG118 is mainly ±10, and that of XD01 is mainly ±15. On
the whole, it presents the random feature with 0 as the mean, which represents the error
distribution of the decomposition residual components.
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4.2.4. Prediction of Cumulative Displacement

The point prediction and interval prediction results of ZG118 and XD01 can be ob-
tained according to Section 2.5. The statistical results of the predicted cumulative displace-
ments on the test dataset are shown in Figure 13, and the calculated evaluation indexes
of the point prediction and interval prediction for the two monitoring stations are shown
in Table 2. According to Figure 13 and Table 2, in terms of point prediction, the RMSE,
MAE, and R2 of the prediction model proposed in this study on ZG118 are 12.90, 11.03,
and 0.95, respectively, and those on XD01 are 23.09, 17.76, and 0.96, respectively. It shows
that the model proposed in this paper can well predict the specific value of cumulative
displacement. In addition, the point prediction results can well reflect the accelerated
deformation process of the landslide in the rainy season from May to September, and the
prediction results are consistent with the actual situation.
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In terms of interval prediction, the PICP of PIs of the two monitoring stations is 100% at
95% and 99% confidence levels. At a 90% confidence level, the PICP of ZG118 is also 100%,
while XD01 also reaches 91.7%. Figure 13b shows that the predicted value not included in
the PI is the predicted displacement value of July 2012, but it does not exceed the PI too
much. These indicate that the PIs obtained by the model proposed in this study are very
reliable. The MPIW of both monitoring stations showed a certain degree of increase with
the increase in the confidence level. However, even at the 99% confidence level, the MPIW
of ZG118 did not exceed 100 mm, and that of XD01 was only about 150 mm, indicating that
the quality of PIs was also very good.

4.3. Comparison with the Other Prediction Models

To further validate the performance of the proposed models, the three baseline models
of LSSVR, BP, and LSTM were trained and predicted using the same method for the
same dataset. The hyperparameters of the three baseline models were still determined
using the random search method, and the prediction results are shown in Figure 14,
and the evaluation indexes are shown in Table 2. From Figure 14, it can be found that
although the three baseline models can also basically realize the point prediction and
interval prediction of landslide displacements, they have advantages and disadvantages in
different evaluation indexes.
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Table 2. Evaluation indexes of point prediction and interval prediction for all models for ZG118 and XD01.

Models Monitoring
Stations

Point Prediction Results Interval Prediction Results

RMSE MAE R2
Confidence Level of 90% Confidence Level of 95% Confidence Level of 99%

PICP/% MPIW/mm CWC/mm PICP/% MPIW/mm CWC/mm PICP/% MPIW/mm CWC/mm

LSSVR
ZG118 36.28 27.08 0.57 100.0% 162.27 162.27 100.0% 193.35 193.35 100.0% 254.11 254.11
XD01 49.26 37.87 0.82 83.3% 160.69 4665.19 91.7% 191.48 1205.26 100.0% 251.65 251.65

BP
ZG118 23.54 19.98 0.82 25.0% 28.01 3.65 × 1015 33.3% 33.38 8.21 × 1014 58.3% 43.86 2.97 × 1010

XD01 33.32 30.17 0.92 25.0% 45.40 5.91 × 1015 58.3% 54.10 4.96 × 109 75.0% 71.09 1.16 × 107

LSTM
ZG118 14.74 12.31 0.93 100.0% 69.10 69.10 100.0% 80.91 80.91 100.0% 103.98 103.98
XD01 34.29 27.85 0.91 83.3% 112.63 3269.95 91.7% 134.21 844.80 100.0% 176.38 176.38

Ours
ZG118 12.90 11.03 0.95 100.0% 60.65 60.65 100.0% 72.27 72.27 100.0% 94.98 94.98
XD01 23.09 17.76 0.96 91.7% 97.70 97.70 100.0% 116.41 116.41 100.0% 152.99 152.99
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Figure 14. Point prediction and interval prediction results of the baseline models for the cumulative
displacements of the two monitoring stations. (a) Cumulative displacement prediction results
of ZG118 using LSSVR. (b) Cumulative displacement prediction results of XD01 using LSSVR
(c) Cumulative displacement prediction results of ZG118 using BP. (d) Cumulative displacement
prediction results of XD01 using BP. (e) Cumulative displacement prediction results of ZG118 using
LSTM. (f) Cumulative displacement prediction results of XD01 using LSTM.

In terms of point prediction, although LSTNet, LSTM, BP, and LSSVR can all predict
the cumulative displacement of ZG118 and XD01 with good intuitive effect, the prediction
effect of LSTNet is significantly better than the other three baseline models from the
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perspective of objective evaluation indicators such as RMSE, MAE, and R2. The prediction
effect of LSTM is slightly better than BP, and the prediction effect of LSSVR is the worst.

In terms of interval prediction, when the confidence level is 90%, 95%, and 99%,
the PICP of LSTNet outperforms the other three baseline models. The PICP of LSTM
is the same as that of LSSVR, while the PICP of BP is the worst, indicating that the PI’s
reliability obtained by LSTNet is the highest, followed by LSTM and LSSVR. BP has the
worst reliability. In terms of MPIW and CWC indicators, although the MPIW of BP is the
smallest at 90%, 95%, and 99% confidence levels, the lower PICP leads to a sharp increase
in CWC, and the comprehensive performance is not as good as other models. The MPIW
of LSTNet is smaller than that of LSTM and LSSVR, and the comprehensive performance
of CWC is the best because of the higher PICP, indicating that the PIs obtained by LSTNet
have not only a higher reliability but also a higher quality. In addition, the MPIW of LSTM
is smaller than that of LSSVR, indicating that it is necessary for the prediction process
to consider the continuity of time steps. In summary, LSTNet performs better than the
baseline model in both point prediction and interval prediction.

5. Discussion

With the continuous development of landslide monitoring technology in the direction
of automation, low-cost, and innovation, landslide monitoring data in the future will
certainly become more multi-source, massive, and complex. It is an inevitable develop-
ment direction in the future to use deep learning technology to fully mine massive and
multi-source monitoring data and realize the future evolution prediction of landslides.
Current research mainly focuses on the point prediction of landslide displacement, that
is, predicting the specific value of cumulative displacements in the future period, but the
point prediction does not consider the uncertainty of the prediction process. Compared
with point prediction, interval prediction can provide richer and more reliable information
to decision-makers. However, the current research on interval prediction mainly focuses on
static models based on machine learning, which do not consider the dynamic characteristics
of time series and the correlation between multivariate variables.

In this study, a landslide displacement prediction model based on VMD and LSTNet
was proposed, and the PIs of cumulative landslide displacement were constructed by the
bootstrap method. The cumulative displacement prediction results of ZG118 and XD01 of
the Baishuihe landslide in the Three Gorges reservoir area show that the proposed model is
not only better than the LSSVR, BP, and LSTM baseline models in point prediction, but also
better than other baseline models in the reliability and quality of PIs constructed.

The core of the model proposed in this study is LSTNet. Compared with LSSVR, BP,
and LSTM, the advantages of LSTNet are mainly reflected in four aspects: First, compared
with LSSVR and BP, LSTNet improves its learning ability for time series continuity features
through the internal recurrent and recurrent-skip layers. Second, compared with LSTM,
LSTNet adds a recurrent-skip component to improve its ability to capture the long-term
dependence of time series. Third, LSTNet extracts the short-term, local dependencies
between the input variables through the convolutional layer, which enhances its learning
ability for the short-term, local features of the time series. Fourth, the presence of the
autoregressive layer makes LSTNet sensitive to the input feature scales.

In addition to the use of LSTNet, the proposed model has been optimized in several
aspects in order to obtain higher accuracy and more reliable predictions. First, the VMD
algorithm is used to decompose the cumulative displacement into trend displacement,
periodic displacement, and random displacement. This processing method decomposes the
coupled, complex prediction targets into multiple prediction targets with different physical
meanings, thus, improving the cumulative displacement prediction effect by enhancing
the prediction effect of each target. Second, the VMD algorithm using the minimum
sample entropy constraint also decomposes the feature factors into low-frequency and high-
frequency components as well, while using grey relational analysis to filter out features
that are more relevant to the prediction targets, which has a positive effect on improving
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the prediction ability of the model. Finally, for the prediction of trend displacement, an
improved algorithm combining time window and threshold is used to determine the best
power to avoid the Runge phenomenon in polynomial fitting prediction.

Although the point prediction and interval prediction abilities and effectiveness are
enhanced by the proposed model for landslide cumulative displacement prediction in
this study using a variety of optimization techniques, further research is still required in
three areas. First, the recurrent-skip layer requires a good periodicity for prediction targets,
and the determination of the period p has a significant impact on the prediction results.
Relying on subjective experience to determine p is not universal, and the introduction
of the attention mechanism in this part can be considered in the future to determine the
period p adaptively by learning. Second, the proposed model is suitable for the medium-
and long-term displacement prediction of landslides affected by rainfall and reservoir
levels, and the short-term prediction effect of daily-scale or hourly scale monitoring data
lacks verification because of the lack of actual measurement data. In the future, sufficient
time is needed to collect data to carry out validation work on prediction effects and to
optimize for sample imbalance in the monitoring dataset. Finally, the bootstrap method
used in the construction of PIs for the prediction model proposed in this study requires the
training of many models, which is computationally intensive and very time-consuming.
Targeted optimization is needed in the future to ensure the high quality and reliability of
the constructed PIs while improving computational efficiency.

6. Conclusions

Aiming at the problem of point prediction and interval prediction of landslide displace-
ment, this study proposed a prediction model combining VMD and LSTNet for cumulative
landslide displacement, and used the bootstrap algorithm for interval prediction to quantify
the uncertainty of the proposed model. The proposed model used the monitoring data of
ZG118 and XD01 of the Baishuihe landslide in the Three Gorges reservoir area to verify
the performance of point prediction and interval prediction, and the following conclusions
were obtained:

The cumulative displacement of the Baishuihe landslide is the result of the joint
response of its internal geological structure and external factors such as rainfall, water
level, etc. The VMD algorithm can decompose the displacement generated by these two
responses and obtain three displacement components with different characteristics: trend
displacement, periodic displacement, and random displacement. After the prediction is
carried out for each displacement component, the prediction results of each component are
added up to the final prediction, which can effectively improve the prediction effect of the
cumulative displacement.

The proposed model not only enhances its ability to capture the long-term dependence
patterns, short-term dependence patterns, and local correlations of input feature variables
for periodic and random displacements on time series through LSTNet, but also reduces
the influence of the Runge phenomenon in trend displacement prediction by combining
the polynomial best power determination method with time windows and thresholds.

The point prediction results of the proposed model in the Baishuihe landslide are better
than those of the LSSVR, BP, and LSTM baseline models in the three evaluation indexes of
RMSE, MAE, and R2. In terms of interval prediction, the comprehensive performance of
each evaluation index of PIs constructed by the proposed model at the three confidence
levels of 90%, 95%, and 99% is also better than that of the LSSVR, BP, and LSTM baseline
models. The proposed model has great application potential in the prediction of landslide
displacement induced by rainfall and reservoir levels.

The proposed model can predict landslide displacements affected by rainfall and
water levels in the medium and long term. Further research is needed in the future for
short-term predictions using daily-scale monitoring data or even hourly scale monitoring
data, the adaptive determination of period parameters of recurrent-skip components, and
the improvement of computational efficiency.
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