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Abstract: Using unmanned aerial vehicle (UAV) real-time remote sensing to monitor diseased plants
or abnormal areas of orchards from a low altitude perspective can greatly improve the efficiency and
response speed of the patrol in smart orchards. The purpose of this paper is to realize the intelligence
of the UAV terminal and make the UAV patrol orchard in real-time. The existing lightweight object
detection algorithms are usually difficult to consider both detection accuracy and processing speed.
In this study, a new lightweight model named Swin-T YOLOX, which consists of the advanced
detection network YOLOX and the strong backbone Swin Transformer, was proposed. Model layer
pruning technology was adopted to prune the multi-layer stacked structure of the Swin Transformer.
A variety of data enhancement strategies were conducted to expand the dataset in the model training
stage. The lightweight Swin-T YOLOX model was deployed to the embedded platform Jetson Xavier
NX to evaluate its detection capability and real-time performance of the UAV patrol mission in
the orchard. The research results show that, with the help of TensorRT optimization, the proposed
lightweight Swin-T YOLOX network achieved 94.0% accuracy and achieved a detection speed of
40 fps on the embedded platform (Jetson Xavier NX) for patrol orchard missions. Compared to the
original YOLOX network, the model accuracy has increased by 1.9%. Compared to the original
Swin-T YOLOX, the size of the proposed lightweight Swin-T YOLOX has been reduced to two-thirds,
while the model accuracy has slightly increased by 0.7%. At the same time, the detection speed of the
model has reached 40 fps, which can be applied to the real-time UAV patrol in the orchard.

Keywords: model lightweight; real-time UAV patrol orchard; layer pruning; deployment model

1. Introduction

The fruit industry accounts for a large proportion of the Chinese agricultural economy.
Traditional orchards are mainly human-managed, requiring lots of human resources to take
care of them and wasting considerable agricultural resources due to the uneven application
of pesticides and fertilizers or failure detection diseases and pests in time by the manual
patrol. Therefore, the smart orchard will be the development direction in the future; it
can achieve efficient management and the sustainable development of orchards through
accurate sensor technology and continuously advanced intelligent technology [1].

To explore the smart orchard, some studies investigated orchard systems to realize
remote temperature and humidity detection, water drip irrigation, intelligent fertilization,
insect and pest monitoring, supplement and intelligent illumination and control, among
others, which can effectively help the growers to plant fruit trees with the main management
problems, thus improving the intelligent management level of the smart orchard [2].

Currently, the remote sensing technology of the crop mainly includes satellite, UAV
and ground remote sensing technology, which has been widely used in precision agriculture.
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Compared to satellite remote sensing and ground observation, UAV remote sensing has
become an important new technology because it can collect the crop growth conditions of
real-time data in a large area, visually monitor the growth of crops and conduct precise
management immediately [3]. UAV patrol has the advantages of high efficiency, time
saving and energy saving. Some UAV remote sensing systems or equipment have been
developed in recent years. For example, Zhang Kexin et al. designed a quadrotor with
the function of orchard autonomous patrol detection for the collection and transmission of
orchard information [4]. Gao Xu et al. used the quadrotor UAV as the carrier and it was
equipped with a video acquisition device to conduct aerial patrol, searching and collecting
video image data of citrus park, and completing the orchard inspection task [5]. Nikolaos
Stefas et al. proposed an autonomous aerial system that can safely navigate within the
orchard row [6].

Deep learning has made great progress in machine vision tasks, such as image clas-
sification and object detection [7]. Combing deep learning and UAV remote sensing in
real-time for an orchard can understand the overall situation of the orchard faster and
more efficiently. Shi et al. [8] combined the deep learning training model and UAV remote
sensing data to identify flos lonicerae. Deng et al. [9] used UAV technology and optimized
ResNet101 network for pine wood nematode disease trees to achieve high accuracy and
large-scale detection. Jiawei et al. [10] used the YOLACT instance segmentation algorithm
to segment the litchi canopy in low-altitude remote sensing, and the AP reached 96.25% on
the test set, which laid the foundation for the precise management of litchi plants. However,
the application of the deep learning real-time detection algorithm to UAV patrol orchard
task is seldom reported.

The deep learning-based object detection algorithms are generally divided into two cat-
egories: The two-stage method and one-stage method. In 2014, R.Gerishick et al. proposed
a two-stage detection algorithm RCNN [11], which was the first to apply a convolutional
neural network (CNN) to the target detection task, using the selective search algorithm [12]
to generate candidate regions. Subsequently, two-stage detection algorithms, such as Fast
RCNN [13] and Faster RCNN [14], appeared. However, due to the large number of predic-
tion boxes, these two-stage methods are computation-intensive and slow in detection speed,
which are not suitable for real-time detection tasks and embedded platforms. In 2015, J. Red-
mon et al. proposed a single-stage detection algorithm, YOLO (You Only Look Once) [15],
regarding object detection as a regression problem and directly obtaining category and
bounding box information. Then, YOLOv2 [16], YOLOv3 [17], SSD [18], YOLOX [19] and
other one-stage detection networks were proposed, which greatly improve the detection
speed and meet the requirements of real-time detection. In particular, the YOLOX algorithm
proposed by Zheng Ge et al. further improves the detection accuracy while retaining the
advantages of YOLO series algorithms, and it is one of the most powerful target detection
algorithms at present.

However, the one-stage CNN model still has typical problems, such as the lack of the
ability and low accuracy to extract remote features from global information. Inspired by
the use of self-attention in the Transformer [20], many computer vision tasks propose to
use the self-attention mechanism to effectively overcome the limitations of CNN in order
to mine remote correlation dependencies in the text. The self-attention mechanism can
obtain the relationship between global elements more quickly, focus on different areas of
the image and integrate information of the whole image. Vision Transformers (ViT) [21] is
a representative and state-of-the-art (SOTA) work in the field of image recognition. It only
uses a self-attention mechanism, which makes the image recognition rate much higher than
the CNN-based model.

However, ViT is still not suitable for the mission of real-time UAV patrol orchard,
because ViT generates a single low-resolution patch feature map, and its computational
complexity is quadratic to the input image size due to the calculation of global self-attention.
Moreover, ViT focuses too much on the overall semantic information and ignores the local
structural features. The Swin Transformer [22] proposed by Liu solves these problems by



Remote Sens. 2022, 14, 5806 3 of 15

introducing some CNN features and constructing hierarchical feature maps by merging
image blocks. In addition, the Swin Transformer has linear computational complexity
related to the input image size. Therefore, the Swin Transformer is regarded as suitable for
the feature extraction network for the lightweight object detection algorithm in this study.

In order to satisfy the demand of the high real-time performance of UAV patrol or-
chard task, we must reduce the number of parameters and computing operations. The
model pruning techniques are popular because of their simplicity in practice and promis-
ing compression rate and have achieved great success in the field of convolution neural
networks (CNNs) for many vision tasks [23–25]. However, many works using model
pruning techniques have also been proposed to compress the Transformer [26–28]. MAO
et al. proposed Block-wise Structured Sparsity Learning (BSSL) to analyze the Transformer
model property. Then, based on the characters derived from BSSL, we apply Structured
Hoyer Square (SHS) to derive the final pruned models, named TPrune [29]. The model can
achieve 1.16×–1.92× speedup on mobile devices.

In this study, the Swin-T YOLOX lightweight network was proposed and can meet the
need of high accuracy and high real-time performance of UAV patrol orchard task. Based on
the active learning strategy, the dataset from low-altitude images of citrus groves collected
by UAVs was first annotated and constructed. A variety of advanced data enhancement
methods are used to expand the dataset to enhance the robustness and generalization
ability of the model. The model layer pruning technology was used to reduce the parameter
quantity of the Swin Transformer in the backbone network as much as possible without
losing the model accuracy. Finally, the lightweight Swin-T YOLOX model was deployed
on the embedded GPU module (NVIDIA Jetson Xavier NX) for practical application. The
overall flow chart of the study is shown in Figure 1.
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2. Materials and Methods
2.1. Data Acquisition and Preprocessing
2.1.1. UAV Remote Sensing Image Acquisition

The test of UAV patrol orchard was conducted in a citrus orchard in Boluo County
(23◦29′56.74”N–114◦28′4.11”E), Huizhou City, Guangdong Province, China. There were
324 citrus trees in the orchard. The DJI PHANTOM 4 UAV, as shown in Figure 2, equipped
with a 1/2.3” complementary metal-oxide semiconductor (CMOS) with 12.4 million effec-
tive pixels, was used to collect RGB images of the above orchard. The flying altitude was
set to 20 m, and the pictures were taken at 4000 × 3000 pixels. An example of the UAV
image is shown in Figure 3. Each image taken by UAV was cut into multiple 640× 640 pixel
images. The task of the orchard patrol is to detect the anomaly in orchard, including two
types of abnormal targets, one is yellowing plants suspected of disease in the citrus canopy,
and the other is uneven planting or felled areas in the orchard (as shown in Figure 3). The
original dataset consists of 1007 cropped and filtered images. The open source software
LabelImg was used to label images, which generates an XML file containing labels and
location information. The labeled dataset was randomly allocated to train set, valid set
and test set according to 8:1:1, corresponding to 806, 101 and 100 images. In addition, the
program was executed to convert the PASCALL-VOC format to the COCO 2017 format.
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2.1.2. UAV Remote Sensing Image Data Enhancement

Data augmentation increases the size and diversity of the training dataset, helps to
solve overfitting problems, and improves the robustness and generalization ability of the
model. Standard data enhancement techniques create new samples by applying simple
geometric transformations (such as rotation, scaling, cropping, shifting, and flipping) and
color space application transformations (such as adjusting the brightness, contrast, or color
saturation of an image), or use a combination of them. More sophisticated techniques based
on random erasing and image-mixing have been introduced to generate more challenging
samples for the model, such as the Cutout [30] and Mixup [31] techniques. In Cutout,
a random fixed-size region of the image is intentionally replaced with black pixels or ran-
dom noise. Mixup combines two images with their class labels through linear interpolation
to create a new training instance.

In this study, the dataset used a hybrid data enhancement method, that is, randomly
select one of three enhancement techniques (standard, Cutout and Mixup) for each batch in
the training stage. The standard data enhancement used vertical and horizontal flipping
and randomly adjusted the brightness and color of the image. For the Cutout technique,
the number of holes was set to 15 and the cutout region size was set to 10 × 10 pixels.
The proportion of the enhancement training set in the Mixup technology was set to 0.5.
After data enhancement, the dataset consists of 3725 images, including 3222 images in the
train set, 402 images in the valid set, and 101 images in the test set. In order to verify the
recognition accuracy of the model on the actual orchard scene, data enhancement is not
used in the test set.

2.2. Proposed Swin-T YOLOX Lightweight Network
2.2.1. Swin-T YOLOX Algorithm

YOLOX was proposed by Ge Z et al. in 2021, surpassing all YOLOv3 to YOLOv5 at
that time. Compared to YOLOv3, YOLOX improved 3%AP on COCO dataset. Compared
to YOLOv5, YOLOX-L has a 1.8%AP improvement on COCO dataset. YOLOX -tiny and



Remote Sens. 2022, 14, 5806 5 of 15

YOLOX -Nano have a 10% and 1.8%AP improvement compared to YOLOV4-Tiny and
NanoDet, respectively. It also provides version deployments supporting ONNX, TensorRT,
NCNN, and Openvino. In YOLOX, the anchor free detector replaces the anchor mechanism
and the darkNet53 of YOLOv3 is used as the baseline of YOLOX. The overall model of
YOLOX is mainly composed of three key parts: Backbone, neck and YOLO Head.

Backbone was used for feature extraction of the YOLOX, which uses the CNN-based
CSPDarknet backbone network to capture local feature information through a convolution
kernel, often ignoring the relationship with global feature information. Unlike CNN,
the Transformer has a strong ability to focus on global information modeling. The Swin
Transformer model is an improved version based on the Transformer recently proposed
by Microsoft. It not only has the ability of the Transformer to focus on global information
modeling, but also uses the method of moving windows to realize the cross window
connection, so that the model can focus on the relevant information of other adjacent
windows. Cross window feature interaction extends the acceptance domain to a certain
extent, which brings higher efficiency. The overall structure of the Swin transformer is
shown in Figure 4.
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Compared to ViT and CNN, the Swin Transformer can extract better remote sensing
image features. Therefore, in this study, the Swin Transformer was used to replace Dark-
net53 as the backbone network of YOLOX. This model was named Swin-T YOLOX and
was constructed as follows: Three feature layers were obtained from the Swin Transformer
and were fused in the neck part, respectively. YOLO Head is divided into classifiers and
regressors to judge the feature points and to determine whether there is a corresponding
object, the overall structure of the Swin-T YOLOX is shown in Figure 5.

2.2.2. Lightweight of Swin-T YOLOX Model

Transformer is a deep architecture with millions of parameters, hundreds of attention
heads, and multiple layers. In general, models with large architectures tend to produce
better results. However, the enormous computational complexity and the huge memory
requirement associated with these models make them impractical for deployment and
prone to overfitting. Therefore, to meet the needs of orchard UAV real-time patrol, Swin-T
YOLOX needs to be lightweight.

The Swin transformer block is the core part of the Swin transformer algorithm. The
detailed structure is shown in Figure 6. The block is composed of window multi-head self-
attention (W-MSA), shifted windows multi-head self-attention (SW-MSA) and multilayer
perceptron (MLP). A layernorm (LN) layer is inserted in the middle to make the training
more stable and a residual connection is used after each module. This part can be expressed
as Equation (1).
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ẑl = W −MSA
(

LN(ẑl−1)
)
+ ẑl−1,

zl = MLP
(

LN(ẑl)
)
+ ẑl ,

ẑl+1 = SW −MSA
(

LN(ẑl)
)
+ ẑl ,

zl+1 = MLP
(

LN(ẑl+1)
)
+ ẑl+1,

(1)

where ẑl and zl represent the outputs of (S)W-MSA and multilayer perception (MLP) on
block l. Each input in the formula is normalized by the layer norm (LN).
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Different versions of Swin Transformer differ in the number of Swin Transformer block
layers, the size of hidden dimensions, the number of attention heads used by the W-MSA
and SW-MSA layers, and the size of the MLP classifier. As shown in Table 1, the “Swin-T”
model has 12 Swin Transformer block layers, with hidden size 768, and uses 24 attention
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heads in the attention layer. Other versions use deeper network layers, attention heads,
hidden dimensions, and a larger number of model parameters.

Table 1. Parameter statistics of tiny, small, base and large versions of the Swin Transformer.

Model Number of Layers Hidden
Dimensions

Number of
Attention Heads

Model
Parameters

Swin-T 12 768 24 29 M
Swin-S 24 768 24 50 M
Swin-B 24 1024 32 88 M
Swin-L 24 1536 48 197 M

According to the overall structure of the Swin Transformer, the feature maps corre-
sponding to the four stages are down sampled by 4 times, 8 times and 16 times. Different
multiples can obtain the extraction effect of feature maps of different scales, which makes
the backbone network not only applicable for image classification, but also for object de-
tection and image segmentation. From the hierarchical feature map constructed by the
Swin Transformer (Figure 7), it can also be seen that, with the increase in down-sampling
times, the granularity of its feature extraction is constantly increasing. From the shallow
layer to deep layer, its receptive field is also gradually expanding. However, in this study,
the target detected by UAV remote sensing only accounts for a small part of the image, as
shown in Figure 3. The expansion of the receptive field cannot improve the accuracy of
target recognition, but the deep Swin Transformer block layers adds many parameters to
the model.
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Model compression techniques are aimed at producing a lighter version of the model
without reducing the original accuracy. Knowledge distillation and model pruning are
commonly used as compression approaches [32,33]. In order to remove the redundancy of
multiple layers and multiple attention heads in the Swin Transformer, this study proposes
a model compression method based on pruning the Swin Transformer block layers, that
is, extracting smaller models with different depths from full-size models. The aim is
to explore the tradeoff between model performance and model depth to determine the
extreme compression architecture that provides the best accuracy.

Based on the Swin-T version, the model was first trained with the maximum number
of layers (i.e., 12 layers), and the role of each layer was analyzed from the perspective of
quantitative analysis. In order to better understand the network behavior and the area
of attention of each layer’s attention head, the output representation of each layer of the
backbone network Swin Transformer was extracted and the attention map of each layer
was visualized, as shown in Figure 8. Then, the same parameters were set to train the
Swin-T YOLOX model, twelve groups of experiments were conducted, each group pruned
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one layer of the Swin Transformer without repetition, and the model accuracy and number
of parameters after pruning were counted.
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the Swin Transformer. The three images in the first column are sample images.

Figure 8 shows the output examples of four different Swin Transformer layers (layers
1, 4, 8, and 12). As can be seen, the network gradually learns to focus on the regions with
the most representative of the two taxonomic groups. For category 2—citrus yellowing
suspected disease plants—the network only pays attention to the area with obvious yellow
leaves in the first layer, while the heat concentration of all the yellow leaves in the fourth
layer increases significantly. The distribution of heat concentration is clear in the eighth and
twelfth layers, even matching the area of the objective tree crown. For category 1—uneven
planting or felled areas—the change in attention heat map also has a similar response. The
network pays attention to the dead leaves on the ground in the first layer, but also focus on
some unrelated areas such as the edge near the tree crown in image C. These problems are
gradually improved in subsequent layers. In the fourth and eighth layers, compared to the
first layer, it is obvious that the heat concentration increases in the areas of bare and dead
leaves. This means that attention will increase as the Swin Transformer layer deepens. In
addition, the attention map provided by layer 8 has more visual similarities to the attention
map provided by the last layer, with a slight increase in attention compared to the last layer.

Figure 9 shows the model accuracy and the number of model parameters obtained by
pruning different layers of the Swin Transformer network. For the bar chart of accuracy,
from layer 3 to layer 8, the pruning of each layer has an impact on the model accuracy close
to 2%. However, pruning the shallow and deep layer of the Swin Transformer will not
seriously reduce the model accuracy because the granularity of the feature extraction in
shallow layers is too small, and the attention mechanism does not focus on the target object,
so pruning the shallow layers will not seriously affect the model accuracy. However, the
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granularity of the feature extraction in deep layers is too large, and the features extracted in
the previous layers are enough to recognize the target object. Therefore, pruning the deep
layer will not reduce the model accuracy. It is worth noting that pruning layer 10 can even
improve the accuracy of the model. Moreover, from the analysis of model parameters, as
the number of pruning layers becomes deeper, the number of model parameters decreases
faster. This means that pruning the deep layers of the model is a reasonable choice from
the perspective of model identification performance. Through a layer-by-layer comparison,
the scheme of pruning the last three layers of the Swin Transformer network was adopted
to realize the lightweight model.
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2.2.3. Deployment Based on Swin-T YOLOX Lightweight Model

The Jetson Xavier NX platform, which is based on the ARM architecture, was used
for edge computing. The platform is approximately 70 × 45 mm in size and feature
computing resources, such as 6-core Carmel ARM cpus and 384 NVIDIA CUDA® Cores,
providing up to 21 TOPS computing power, its low power consumption, high perfor-
mance, large memory bandwidth and other characteristics make it very suitable for air-
borne image data processing. TensorRT built into the Jetson edge computing platform is
a high-performance deep learning Inference optimizer, which can provide low-latency
and high-throughput deployment detection and is widely used in embedded platforms
or autonomous driving platforms. TensorRT mainly optimizes the trained model for the
acceleration of the detection phase.

In this work, the trained Swin-T YOLOX lightweight model was converted into the
ONNX format, and the ONNX parser in TensorRT was used to parse the model and build
TensorRT engine with the TRT format. As lower data accuracy leads to lower memory
footprint and latency, even a smaller model size, the model calculation accuracy was set
to a 16-bit floating-point when the detection engine was built (it is usually set to a 32-bit
floating-point when training). Experimental results show that the model of the Swin-T
YOLOX lightweight model optimized by TensorRT can effectively reduce the floating point
arithmetic and improve the detection speed of the algorithm while ensuring the accuracy.

3. Experiments and Result
3.1. Model Evaluation Metrics

In this study, the size of the model, the speed of reasoning and the detection accuracy
were all adopted as the lightweight model evaluation metrics. Detection speed Frame
Per Second (FPS) is used to evaluate the detection frame rate of the model, that is, the
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number of images that can be detected in a second. The recognition accuracy is calculated
by Equation (2).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP means true positive, FP means false positive, TN means true negative and FN
means false negative. If the IoU between the detection box and the true box is greater
than the threshold (it was set to 0.5 in our experiments), the detection box is marked as TP.
Otherwise, it is marked as FP, and if there is no detection box matching in the true box, it is
marked as FN. The performance of the model can usually be evaluated by precision (Pr)
and recall (Re), which are calculated by Equations (3) and (4).

Pr =
TP

FP + TP
(3)

Re =
TP

FN + TP
(4)

In order to combine the two metrics, average precision (AP) is introduced to measure
the detection accuracy, as defined in Equation (5).

AP =
∫ 1

0
Pr(Re)dRe (5)

The value of AP is equal to the area under the precision-recall curve, and the higher
the AP value, the higher the accuracy of the network. In the task of multi-class targets
detection, the detection accuracy of the model is evaluated by calculating the average value
of all types of AP (mAP), which is defined in Equation (6).

mAP =
1
C

C

∑
c=1

AP(c) (6)

where C is the number of target categories. In this study, mAP was adopted to evaluate the
detection accuracy of the model.

3.2. Performance of UAV Patrol Orchard Anomaly Detection

In order to test the comparative performance, the same software and hardware plat-
forms were used for the experiment in this study. The hardware platform was equipped
with Intel(R) Core(TM) I7-10700 CPU@2.90 GHz (32G RAM) and NVIDIA GeForce RTX
3090 graphics processor (24G RAM). The software environment was CUDA 11.1, CUDNN
8.0, and Python 3.8. The model was optimized by the SGD (stochastic gradient descent)
method. Training epochs was set to 300 and batch size was set to 16. The initial learning rate
was set to 0.001 and SGD momentum was set to 0.9. Each model configuration was trained
5 times and the mAP@0.5 and the mAP@ [0.5:0.95] of all configurations were recorded.

The original YOLOX models, such as YOLOX-M and YOLOX-Large DarkNet53 as
the backbone network, were compared with Swin-T YOLOX. In terms of model depth,
YOLOX-M (25.3 M) has a similar number of parameters as Swin-T and YOLOX-L (54.3 M)
has a larger number of parameters. The performance comparison of the UAV patrol orchard
anomaly detection is shown in Table 2.

The results in Table 2 show that the performance of Swin-T YOLOX is significantly
better than DarkNet53 in the task of anomaly detection of the UAV patrol. Compared to the
YOLOX-L model, Swin-T YOLOX has fewer parameters, but higher mAP@0.5 and mAP@
[0.5:0.95]. Compared to YOLOX-M, Swin-T YOLOX has a significant advantage in detection
accuracy. The reason is that the Swin Transformer can capture the relationship between
global feature information better than DarkNet53, showing that the Swin Transformer is
more suitable for the real-time UAV patrol orchard task in this study.
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Table 2. Performance comparison of the YOLOX models of different backbone networks in the UAV
patrol orchard anomaly detection.

Model Model Parameters mAP@0.5 mAP@ [0.5:0.95]

DarkNet53 + YOLOX-M 25.3 M 92.1% 66.3%
DarkNet53 + YOLOX-L 54.3 M 93.0% 69.9%

Swin-T YOLOX(proposed) 29.0 M 93.3% 73.6%

3.3. Performance Comparison of Model Pruning Schemes

Table 3 shows the overall performance of the Swin-T YOLOX model after multi-layer
pruning of the Swin Transformer network. It can be seen from the table that the recognition
performance of the model does not decrease or even improve when the 10th, 11th and
12th layers are pruned, but the number of parameters and calculation amounts are only
about two-thirds of that of the original Swin-T YOLOX model. However, starting from
the 9th layer, the more the shallows of the Swin Transformer are pruned, the recognition
accuracy not only gradually decreases, but the number of parameters and calculation
amount also decrease slightly. The experimental results show that the best solution can be
obtained by pruning the last three layers of the Swin Transformer network, namely the
10th, 11th and 12th layers.

Table 3. Accuracy, model parameters and calculation of the Swin-T YOLOX model for multi-layer
pruning of the Swin Transformer network.

The Number of Pruning Layers mAP@0.5 Model Parameters (M) Calculation (G)

None 93.3% 45.89 209.70
12 layer 93.3% 38.81 182.80

11~12 layer 94.1% 31.72 155.90
10~12 layer 94.0% 29.95 146.35
9~12 layer 92.4% 28.18 136.79

3.4. Comparison of Model Deployment Schemes

In order to realize real-time UAV patrol orchard, the model transplantation to the
embedded platform deployment is essential. In this paper, the Swin-T YOLOX model and
the pruned Swin-T YOLOX model were deployed on different hardware platforms, and
50 sample images in the test set are randomly selected to form the test library. Table 4 is the
performance comparison of the average detection speed and average recognition accuracy
of the test set. The deployment on Jetson included two schemes: One is to run the detection
program directly on Jetson without using the TensorRT optimizer; the other is to deploy
the detection program using the TensorRT optimizer.

Table 4. Overall performance comparison of the Swin-T YOLOX model deployed using different
deployment platforms.

Platform Model Speed (fps) Accuracy

GPU server Swin-T YOLOX 22 93.3%
GPU server Lightweigh Swin-T YOLOX 48 94.0%

Jetson Swin-T YOLOX 10 93.4%
Jetson Lightweigh Swin-T YOLOX 20 93.9%

Jetson + TensorRT Swin-T YOLOX 24 93.2%
Jetson + TensorRT Lightweigh Swin-T YOLOX 40 94.0%

As shown in Table 4, the detection speed of the lightweigh Swin-T YOLOX model
is greatly improved compared to the original model. In the GPU server environment,
the detection speed reaches 48 fps, and the accuracy reaches 94%. After layer pruning
and TensorRT optimization, the Swin-T YOLOX reaches 40fps on the Jetson Xavier NX,
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and the recognition rate is still high. The accuracy does not decrease while pruning, but
slightly increases. The experimental results show that the proposed model, Swin-T YOLOX,
after pruning and optimization, can effectively compress the model size and floating point
arithmetic, thus guaranteeing the accuracy while improving the detection speed of the
algorithm. The visualization of the orchard UAV patrol is shown in Figure 10.
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4. Discussion
4.1. Data Process

The UAV remote sensing panoramic image in this study is too large, which is not
conducive to real-time analysis, so the image processing was carried out by cutting the
image. One of the tasks of the real-time UAV patrol orchard is to detect uneven planting or
cutting areas where there is bare land among the trees planted in rows. However, pictures
taken from the perspective of UAV tend to block such target areas in the edge area. As
shown in Figure 11, there were no citrus trees in the original three locations in the red box,
but most of the area was obscured by the adjacent tree crowns. In order to improve the
recognition accuracy, it is necessary to cut out the edge area of the picture, that is, the area
where the UAV cannot observe the ground vertically and keep the area in the blue box, as
shown in Figure 11. Therefore, it is necessary to increase the overlap rate of view coverage
when the UAV plans the path so as to ensure that the UAV can patrol the whole orchard.
While this processing can improve the recognition accuracy, it increases the flight distance
and time of the UAV.

4.2. Method of Model Lightweight

In order to meet the requirements of embedded terminal deployment on UAVs, most
people will choose to train small models and optimize them through some tools. However,
this paper chooses the method of layer pruning for the large model to compress the size
of the model, because the performance of the model after training a large model then
compressing it into a small model is better than that of directly training a small model.
Moreover, the large model has the advantages of lower sensitivity and easier compression,
which is the experimental conclusion proposed by Li et al. [34]. The experimental results
show that the large model has high accuracy and robustness after compression. Through
the compression of the model, the speed of the pre-trained large model is faster than that of
the small model in the inference stage.
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4.3. Application and Future Work Directions

The main contributions of this paper are as follows:

(1) A lightweight network Swin-T YOLOX is proposed to be used for real-time UAV patrol
orchard task. In this algorithm, the Swin Transformer is used to replace Darknet53 as the
backbone network of YOLOX, which can significantly improve the model accuracy;

(2) Layer pruning technology is used to reduce the number of parameters and calculation
amount of the Swin-T YOLOX;

(3) Deploy the Swin-T YOLOX model to the Jetson Xavier NX edge computing platform
using the TensorRt optimizer, and test the detection performance of the algorithm on
the embedded platform.

However, there is still an obvious shortage in this paper. In the UAV patrol orchard
anomaly detection task in this study, only yellow plants can be detected from RGB remote
sensing images, it is hard to confirm whether they are diseased plants. Sickness, nitrogen
deficiency, potassium, magnesium and other nutrients, root damage or improper fertiliza-
tion will lead to the yellowing of canopy leaves. It is difficult to judge the specific situation
of citrus trees only from the UAV RGB images, ground diagnosis is required. However,
the real-time UAV patrol orchard mode can quickly locate suspicious plants and abnormal
areas in the whole orchard, accurately record the location information of abnormal plants
or areas and greatly improve the patrol efficiency.

In the future, this research will continue to be conducted in the following two direc-
tions. First, in addition to the vertical angle adopted in this paper, a variety of shooting
angles can be explored in the future, and the detailed diagnosis of abnormal areas can be
explored through a variety of sensing methods. Second, since the multi-spectrum is widely
used to analyze the nutritional status and insect pests of citrus trees, the Swin-T YOLOX
lightweight model will be explored to the field of a UAV multispectral real-time remote
sensing agricultural situation in the future.

5. Conclusions

This paper introduces a lightweight object detection model, Swin-T YOLOX, for UAV
patrol orchard anomaly detection by replacing the original YOLOX backbone network
with the Swin Transformer and applying layer pruning to cut the last three layers of the
Swin Transformer network to form a lightweight model. After replacing the backbone,
the accuracy of the Swin-T YOLOX achieved an accuracy improvement of 1.9% compared
to the YOLOX model. After pruning, the number of parameters is two-thirds of that of
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the original Swin-T YOLOX, and the recognition performance is improved by 0.7%. The
lightweight Swin-T YOLOX model can be deployed on the Jetson Xavier NX by TensorRT.
Working as a mobile terminal, the detection speed reaches 40 fps and the accuracy rate
is maintained at 94.0%, which well completes the goal of the lightweight target detection
algorithm that takes into account both detection accuracy and processing speed. The model
can be applied to the mission of the real-time UAV patrol orchard.
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