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Abstract: Ozone (O3) pollution has negative impacts on human health and property. The Guangdong–
Hong Kong–Macao Greater Bay Area (GBA) is facing severe O3 pollution problems due to rapid
economic development. In this paper, we used sensitivity experiments and GeoDetector to analyze
the effects of meteorological factors, anthropogenic emissions, and landscape patterns on O3 concen-
trations as well as the contributions of NOx and NMVOC (non-methane volatile organic compounds)
to the variation of O3 concentrations and the causes of sectoral emissions in the GBA in 2017. The
results revealed that, in GBA, the contribution of meteorology to the variation of O3 concentration
was dominant both in terms of region and extent, and the contribution of emissions was relatively
weak. The contribution of meteorology and emissions to O3 production was mainly contributory.
Meteorology contributed significantly to O3, and its non-linear interaction with anthropogenic emis-
sions and surface landscape affected O3 concentration changes. The degree of contribution of NOx

and NMVOC varied widely among seasons, and the variation of their relative contribution areas
was related to residential sector emissions and agricultural sector emissions. This article enriches
the exploration of the O3 formation mechanism in the GBA and provides theoretical support for the
implementation of differentiated regional and seasonal mitigation strategies for O3 concentration.

Keywords: meteorology; anthropogenic emissions; landscape pattern; sensitivity experiments;
ozone concentration

1. Introduction

Tropospheric ozone (O3) is a component of photochemical smog. Long-term or short-
term exposure to O3 will have an impact on pulmonary function and the cardiovascular
and nervous systems [1,2], resulting in premature death, the reduction of crop productivity,
and economic losses [3–6]. During 2015–2019, sulfur dioxide (SO2), nitrogen dioxide (NO2),
PM (particulate matter), and carbon monoxide (CO) mean annual concentrations in Chinese
urban environments showed a downward trend, while the mean annual concentration
of O3 increased by 4.7% [7–10]. Surface O3 pollution has become a major air pollution
problem in many cities in developing China [11]. Elucidating the O3 spatial mechanism of
generation and dispersion is important for developing effective strategies.

Meteorology is a major aspect driving O3 production [12,13], where temperature, total
precipitation, relative humidity, surface pressure, and wind speed are important variables
affecting its concentration [14–18]. Surface O3 is formed by complex photochemical reac-
tions involving atmospheric nitrogen oxides (NOx), volatile organic compounds (VOCs),
and methane [19]. Due to the complex response of O3 to meteorology and precursor
emissions, the influence of these variables (and their interactions) on surface O3 varies

Remote Sens. 2022, 14, 5796. https://doi.org/10.3390/rs14225796 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225796
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1925-6765
https://doi.org/10.3390/rs14225796
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225796?type=check_update&version=2


Remote Sens. 2022, 14, 5796 2 of 21

significantly with season and region [16,20]. In addition, land use, which reflects the inten-
sity of human activities, also alters the production and cycling characteristics of O3 [14].
However, most current studies on the role of land use on air pollution focus on the effects
on particulate matter (PM2.5, PM10) concentrations [21–24], and there are fewer studies on
the effects of land use landscape patterns on O3.

Sensitivity experiments are often used in air pollutant analyses, which are simulated
by chemical transport models (e.g., the GEOS Chem, WRF-CMAQ model) [12,25–28]. On
the basis of emission inventory and meteorological data, the contribution of factors can be
obtained by simulating pollutant concentration values in two or more periods. The neural
network is a statistical model prediction method and an effective tool used to describe
variation in nonlinear phenomena [29], which is characterized by simple calculations, low
data requirements, and high accuracy [30]. Using this method to predict and simulate air
pollutants, it is possible to obtain a nonlinear prediction and simulation within a short
period, without needing a large amount of meteorological and anthropogenic emission
data. Moreover, most of the studies conducted sensitivity experiments over many years or
the same period of two years, and there is less seasonal analysis within one year.

Currently, the methods adopted to explore the impact of environmental conditions
on the variation of O3 concentration include multiple linear regression [31–33], quantile
regression [31,33], principal component analysis [32], Kolmogorov–Zurbenko (KZ) filter-
ing [34], and convergence cross-mapping [35]. The GeoDetector method has been widely
used to study the interaction among air pollution factors, which could overcome collinear-
ity and quantify the influence of single factors and their interactions [16]. O3 formation
involves photochemical reactions and nonlinear responses between most meteorological
variables [36,37], primary pollutants such as NOx and VOC [38], and aerosols and O3 [39].
Coupled with the fact that high urban temperature can have direct or indirect effects on O3
and VOC concentrations [40], it becomes increasingly important to investigate the effects
of urban O3 concentrations using nonlinear models.

As an important leading region for China’s economic growth, the Guangdong–Hong
Kong–Macao Greater Bay Area (GBA) has seen rapid urban development in recent years,
followed by increasing ground-level O3 pollution [41]. This paper investigates the seasonal
dominant factors affecting the ground O3 in the GBA and explores the effects of meteo-
rological variables, anthropogenic emissions variables, and landscape patterns on the O3
concentration. In this paper, we first designed four sets of sensitivity experiments based
on the back propagation (BP) neural network to identify the dominant factors in different
seasons and explored the sensitivity zoning of NOx and NMVOC affecting O3. Then, the
GeoDetector model was used to quantify the contribution of anthropogenic emissions,
meteorological variables, and landscape patterns (and their interactions) to surface O3 con-
centrations. The contribution of sectoral emissions affecting NOx and NMVOC sensitivity
was also explored.

2. Materials and Methods
2.1. Study Area

The GBA is a metropolitan district located in southern coastal China (Figure 1), which
consists of 11 cities including 4 international megacities, namely Guangzhou, Shenzhen,
Hong Kong, and Macau. The GBA measures approximately 56,000 km2 and has a perma-
nent population of more than 70 million (http://www.cnbayarea.org.cn, accessed on 21 July
2022). According to the “Guangdong–Hong Kong–Macao Pearl River Delta Regional Air
Monitoring Network 2019 Monitoring Results Report”, air pollutants, e.g., SO2, NO2, PM10,
CO, and PM2.5, showed a downward trend from 2015 to 2019, while the annual mean O3
concentration increased by 28%. Prevention and control of O3 pollution have become one
of the major environmental challenges facing the GBA.

http://www.cnbayarea.org.cn
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Figure 1. Spatial distribution of the monitoring sites in the study area.

2.2. Data

A fishing net with a resolution of 0.25◦ × 0.25◦ was generated in ArcGIS 10.4 (Devel-
oped by ESRI, Inc. from Redlands, CA, USA.) as a basic research unit for data aggregation.
Then, the O3 concentration level, the values of anthropogenic emission, and meteorological
variables were separately counted in each fishing net for the 118 grids covering GBA.
The land cover of each grid was intercepted and calculated in Fragstats 4 to obtain the
corresponding landscape metrics.

2.2.1. Ground-Level O3

The O3 hourly concentration monitoring data for mainland China were obtained
from the Urban Air Pollution Monitoring Network (https://quotsoft.net/air/, accessed on
10 November 2021) established by the China National Environmental Monitoring Center.
Additionally, the monthly O3 concentration data for stations in Hong Kong and Macau were
derived from the regional air monitoring network of Guangdong, Hong Kong, and Macao
in the Pearl River Delta. The daily average O3 concentration was obtained by averaging
the 24 h O3 concentrations. Since there are different degrees of missing O3 h in each month,
the days with less than 12 h of missing concentration were excluded, and the daily average
O3 concentrations of the remaining effective days were averaged to obtain the monthly
average O3 concentration. The distribution of the 61 monitoring stations in the GBA is
shown in Figure 1.

The Chinese high-resolution air pollution reanalysis dataset [42] was provided by the
Institute of Atmospheric Physics. The dataset had a high temporal and spatial resolution,
the latter reaching 15 km [43]. In this study, we used the monthly O3 data derived from the
atmospheric reanalysis dataset for the period between January and December 2017. The
data were processed and displayed in ArcGIS with a spatial resolution of 0.17◦ (approxi-
mately 20 km), which met other data resolution sizes in this paper. To obtain O3 data with
spatial continuity and high accuracy, we used monitoring data to fuse the data. The details
for the method can be found in Section 2.3.1.

https://quotsoft.net/air/
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2.2.2. Emission Inventory Data

The anthropogenic emission variables were obtained from the Chinese Multi-scale
Emission Inventory Model (MEIC, http://meicmodel.org/, accessed on 10 November 2021)
developed at Tsinghua University. The resolution of the inventory data is 0.25◦ × 0.25◦.
In this study, the 2017 emission inventory was selected, which included 10 emissions
from 5 sectors, including NMVOC, SO2, PM2.5, PM10, organic carbon (OC), NOx, NH3,
CO2, CO, black carbon (BC), etc., from transportation, residential, electricity, industry,
and agriculture.

2.2.3. Atmospheric Reanalysis Dataset

In this study, the ERA-5 assimilation analysis dataset, of the European Center for
Medium-Range Weather Forecast (ECMWF, https://www.ecmwf.int/en/forecasts/datasets,
accessed on 10 November 2021), was selected, with a resolution of 0.25◦ × 0.25◦.

The temperature at 2 m (T, ◦C), wind speed at 10 m (WS, m s−1), relative humidity
(RH, %), ground pressure (PS, hPa), and total precipitation (TP, mm) were selected as the
meteorological variables. Since the dataset showed that the number of sunshine hours
in the study area was the same, the index of sunshine hours was excluded. As ERA-5
does not include relative humidity data, this parameter was calculated using Equation (1),
on the basis of the provided dew point and surface temperature values at 2 m above the
surface [44]:

RH =
e

17.625×Tdc
(243.04+Tdc)

e
17.625×Tc
(243.04+Tc)

× 100% (1)

where Tdc is the dew point temperature (◦C), Tc is the actual temperature (◦C), and RH is
the relative humidity (%).

2.2.4. Land Cover

The land cover data were obtained from the 2017 global land cover dataset (FROM-
GLC30) collected by Tsinghua University, with a resolution of 30 m. After strict verification,
the data accuracy was estimated at 72.35% [45]. The land cover types that characterize the
GBA include cropland, forest, grassland, shrubland, wetland, water, impervious surface,
and bare land. The detail is shown in Figure 2.
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2.3. Methods

The flow chart of the study is shown in Figure 3. Firstly, the data was pre-processed.
Secondly, sensitivity experiments on the basis of the BP network were performed to calcu-
late the spatial distribution of the contribution of meteorological and emission factors to
O3, and then the GeoDetector model was used to refine the contribution of meteorology,
emission, and landscape variables to regional O3.
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2.3.1. Data Fusion

Since the monitoring stations of air pollution reanalysis data did not include some
areas of Hong Kong and Macao [43], the data of monitoring stations were used to cor-
rect the air pollution data for the GBA. The specific steps are as follows [46]. First, the
monthly monitoring station data values were subtracted from the O3 reanalysis data val-
ues to calculate the monthly concentration residuals at the monitoring locations, then
ordinary kriging interpolation was performed on the concentration residuals to generate
a 0.17◦ × 0.17◦ monthly concentration residual map. Finally, the monthly residual inter-
polation values were added to the reanalysis data grid to obtain the corrected monthly
concentrations for each grid. The calculation equation is as follows.

ri = mi − ai (2)

Ĉj = aj − r̂j (3)

where ri is the monthly concentration residual of monitoring point i, mi is the monthly
monitoring data of monitoring point i, ai is the monthly O3 reanalysis value on the grid
corresponding to monitoring point i, aj represents the monthly O3 reanalysis value on grid
j, r̂j is the monthly residual after interpolation on grid j, and Ĉj represents the monthly
corrected O3 on grid j.

2.3.2. Landscape Metrics

Landscape metrics highly condense the information on landscape patterns, effectively
reflecting the composition and spatial configuration of the landscape structure. In this
study, several landscape metrics were selected to quantify the landscape pattern in the
GBA. Table 1 describes in detail the selected landscape indicators, which were: landscape
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area (LPI), landscape shape (LSI, SHAPE_MN), landscape diversity (SHDI, CONTAG), and
landscape agglomeration (AI).

Table 1. Ecological meanings of the selected landscape metrics.

Index Properties Indicators Ecological Meaning

Area and Margin Largest Plaque Area (LPI)
Indicates the influence degree of the
largest patch on the entire land cover

type or landscape.

Shape

Landscape Shape Index (LSI)

Represents the total length of the
boundary (multiplied by the square
correction constant) divided by the

square root of the total landscape area;
the larger the value, the more complex

the type.

Mean Shape Index (SHAPE_MN)

The patch perimeter is divided by the
smallest possible perimeter of the most

compact patch, reflecting the complexity
of the shape of a single patch.

Heterogeneity Contagion Index (CONTAG)
Describes the non-randomness, or degree
of agglomeration, of different patch types

in the landscape.

Shannon Diversity Index (SHDI)
Reflects the diversity of the landscape;

the higher the value, the richer the
diversity of the landscape.

Aggregation Aggregation Index (AI) Indicates the degree of aggregation of
the landscape.

2.3.3. Sensitivity Analysis of Contribution

1. BP neural network model

A two-layer BP neural network was used for the simulations. The number ratio of the
input layer, hidden layer, and output layer was 1:1:1. The tangent log sigmoid function
was selected as the transfer function of the hidden layer, and the linear function was the
transfer function of the output layer.

The input layer neurons were meteorological variables, emission variables, and land-
scape pattern variables. The number of neurons in the hidden layer was tested with
19 hidden layers and 5 neurons. The learning rate was set to 0.05 and the target error to
0.0001 for simulation. The BP network was trained using 119 rasters corresponding to
January to December 2017 data from the study area (1428 in total). The model performance
was evaluated using a tenfold cross-test, which divides all data into ten sub-samples, re-
taining one sub-sample each time as validation data, and the remaining nine sub-samples
were used for model training. The process was repeated ten times to obtain R2 and root
mean square error (RSME) as indicators for evaluating model performance.

2. Experimental design and analysis

Four experiments (Table 2) were designed to simulate O3 concentration at specific x
(base time) and y (aim time) times [28]. The contributions of meteorology (NOx) (EXPy,x)
and emission (NMVOC) (EXPx,y) to O3 concentration were quantified using the O3 con-
centration simulated by different combinations of the same variables at x and y times. The
simulated concentrations of x and y time were compared through a linear relationship to
evaluate the contribution of meteorology (NOx) and emission (NMVOC) to the change
in O3 concentration. The normalization contribution was then calculated. The formulas
adopted are shown in Equations (4)–(7).

Con(Met/NOx) =
O3EXPx,x − O3EXPy,x

O3EXPx,x − O3EXPy,y
(4)
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Con(Emi/NMVOC) =
O3EXPx,x − O3EXPx,y

O3EXPx,x − O3EXPy,y
(5)

NCon(Met/NOx) =
Con(Met/NOx)

Con(Met/NOx) + Con(Emi/NMVOC)
(6)

NCon(Emi/NMVOC) =
Con(Emi/NMVOC)

Con(Met/NOx) + Con(Emi/NMVOC)
(7)

Table 2. BP network model used in the sensitivity contribution experiments.

Experiments Description

EXPx,x
Model run with meteorology (NOx) at x time

and emissions (NMVOC) at x time

EXPy,x
Model run with meteorology (NOx) at y time

and emissions (NMVOC) at x time

EXPx,y
Model run with meteorology (NOx) at x time

and emissions (NMVOC) at y time

EXPy,y
Model run with meteorology (NOx) at y time

and emissions (NMVOC) at y time

O3EXPx,x ,, O3EXPy,y, O3EXPy,x and O3EXPx,y, respectively, represent the O3 concen-
trations simulated by EXPx,x, EXPy,y, EXPy,x, and EXPx,y; Con(Met/NOx) and
Con(Emi/NMVOC) represent the contributions of meteorology and emission (NOx and
NMVOC), respectively; and NCon(Met/NOx) and NCon(Emi/NMVOC) represent the
normalized contributions of meteorology and emission (NOx and NMVOC), respectively.

3. Analysis of sensitivity results and selection of base time

Four cases exist for the results obtained from Con(Met) and Con(Emi) calculated by
Equations (4) and (5), respectively (Table 3).

Table 3. Sensitivity contribution results and corresponding meteorological conditions.

Result Value Corresponding Range Corresponding Results

I. Con(Met) > 1 EXPy,y > EXPy,x
Compared with the baseline, emission

promotes a decrease in O3 .

II. Con(Met) < 1 EXPy,y < EXPy,x or EXPx,x < EXPy,x
Compared with the baseline, emission

promotes an increase in O3 .

III. Con(Emi) > 1 EXPy,y > EXPx,y
Compared with the baseline, meteorology

promotes a decrease in O3 .

IV. Con(Emi) < 1 EXPy,y < EXPx,y or EXPx,x < EXPx,y
Compared with the baseline, meteorology

promotes an increase in O3 .

After statistical analyses, the grids with the lowest monthly O3 concentration were
selected as the base time y input models to make comparisons with other seasons.

2.3.4. Geode Ector

The GeoDetector software comprises a set of statistical methods that can detect spatial
differentiation and reveal potential driving forces. Models can be performed to assess
nonlinear relationships between potential factors and target geographic phenomena. The
core idea at the base of the model assumption is that if an independent variable has an
important influence on a dependent variable, then the spatial distribution of the two
variables should be similar [47].
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The spatial correlation of X (e.g., meteorological variables, anthropogenic emission
variables, and landscape pattern variables) and Y (e.g., ground-level O3 concentration) can
be measured by q statistics, which are defined as:

q = 1 − ∑L
h=1 Nhσh

Nσh
= 1 − SSW

SST
(8)

SSW = ∑L
h=1 Nhσh (9)

SST = Nσh (10)

where h = 1, . . . , L is the category of factor X, and Nh and N are the h category and sample
size of the entire study area, respectively. SSW and SST are the sum of variance and total
variance, respectively, of the h category and the entire study area. The value of q is [0, 1].
The greater the value of q, the higher the correlation with O3. The effect of the interaction
between two X variables on O3 can also be quantified by q statistics.

3. Results
3.1. O3 Concentration Temporal and Spatial Differentiation Characteristics

The corrected O3 concentration value was verified by the monitoring data (Appendix A).
The mean annual and seasonal O3 distribution in the GBA for the year 2017 is shown in
Figure 4. Based on the mean annual data, the areas with high O3 concentrations were in
the southeast of the GBA, specifically, southeast of Huizhou. The low-concentration areas
were located in the northwest cities, such as Zhaoqing, Foshan, and part of Guangzhou,
Jiangmen, and Hong Kong. Based on the mean seasonal data (a–d), O3 concentration
was the lowest in summer (mean 44.6 µg/m3), followed by winter (mean 60 µg/m3),
spring (mean 60.2 µg/m3), and was the highest in autumn (mean 62.8 µg/m3). The spatial
distribution of O3 in the GBA was different between seasons: it was similar in spring,
autumn, and winter when O3 concentration was low in the northwest and high in the
southeast, while it was different in summer, with low O3 concentrations in the southeast,
and high concentrations in the central areas.
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3.2. Sensitivity Experiments Results
3.2.1. Model Accuracy Verification

The BP network training results are shown in Table 4. The model reached the training
goal after being trained 20 times, obtaining a total simulated decision coefficient (R2) of
0.89. The coefficient of determination of seasons ranged from 0.4 to 0.8, and the simulation
accuracy was poor in summer and winter. The decadal crossover results showed R2

CV of
0.67 and RMSE of 7.53, and the model simulation accuracy was good.

Table 4. RSME of the BP network model.

Year Spring Summer Autumn Winter CV

R2 0.89 0.81 0.51 0.78 0.40 0.63
RSME 8.31 6.64 4.86 5.27 7.06 0.79

3.2.2. Relative Contribution of Seasonal Meteorology and Emissions to O3 Variation

Figure 5 shows the normalized contributions of meteorological factors and emissions for
the four seasons obtained from the neural network simulation. The GBA was dominated by
meteorological factors, the emission contribution was weak, and the distribution of normal-
ized contribution size varied among the four seasons. The normalized contributions in spring,
summer, and winter were similar, and the overall contribution of meteorological conditions
to O3 accounted for more than 60%. O3 was most influenced by meteorological conditions
in autumn. In summer, O3 in the GBA was controlled mainly by meteorological conditions,
and the meteorological factors normalized contribution decreased relative to other seasons,
while the contribution of emissions was relatively higher. In spring, Jiangmen, Zhuhai, Zhong-
shan, Dongguan, Shenzhen, and Macao were relatively strongly controlled by meteorological
factors, with the normalized contribution reaching more than 80%, while Zhaoqing, Foshan,
Guangzhou, and Huizhou were relatively weakly controlled by meteorology, with the contri-
bution of emissions ranging from 0 to 60%. In summer, Zhongshan and Foshan were subject
to relatively high intensity of meteorological factors control, while Huizhou, Shenzhen, Hong
Kong, Zhuhai, and Guangzhou were subject to relatively low intensity of meteorological
factors control, with normalized contributions ranging from 0% to 60%. In the autumn, the
overall contribution of meteorological factors to O3 in the GBA reached more than 80%. In
winter, except for central Huizhou, part of Guangzhou, Zhaoqing, Shenzhen, and other areas
suffered from the role of emissions of 20% to 60%, and other areas suffered from the role of
meteorological factors of more than 80%.

Figure 6 shows the contributions of meteorological factors and emissions obtained
from sensitivity experimental simulations, and the direction of the meteorological, and
emission contributions to O3 can be inferred from the corresponding range of values
(whether greater than 1) in Table 3. Regarding the meteorological factors, the meteorological
factors in the GBA mainly show a facilitative effect on the production or accumulation
of O3 (Con(Emi) range was dominated by less than 1, corresponding to IV in Table 3).
Regarding the emission factors, the four seasonal distributions of emission directions
of action were relatively stable in the GBA. Compared with the baseline conditions, the
emission conditions in Foshan, central Jiangmen, southern Zhaoqing, northern Guangzhou,
and central Huizhou were unfavorable for the generation of O3. Emission conditions in
Zhongshan, southern Guangzhou, Zhuhai, central Zhaoqing, western Dongguan, and
Jiangmen, except for the central part of the region, promoted the generation of O3 (Con(Met)
range is greater than 1 is dominant, corresponding to II in Table 3). The emission conditions
in Shenzhen and Macau were not conducive to O3 generation in spring, autumn, and
winter, and showed a promotional effect in summer.



Remote Sens. 2022, 14, 5796 10 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

The BP network training results are shown in Table 4. The model reached the training 
goal after being trained 20 times, obtaining a total simulated decision coefficient (R ) of 
0.89. The coefficient of determination of seasons ranged from 0.4 to 0.8, and the simulation 
accuracy was poor in summer and winter. The decadal crossover results showed R  of 
0.67 and RMSE of 7.53, and the model simulation accuracy was good. 

Table 4. RSME of the BP network model. 

 Year Spring Summer Autumn Winter CV 
R2 0.89 0.81 0.51 0.78 0.40 0.63 

RSME 8.31 6.64 4.86 5.27 7.06 0.79 

3.2.2. Relative Contribution of Seasonal Meteorology and Emissions to O3 Variation 
Figure 5 shows the normalized contributions of meteorological factors and emissions 

for the four seasons obtained from the neural network simulation. The GBA was domi-
nated by meteorological factors, the emission contribution was weak, and the distribution 
of normalized contribution size varied among the four seasons. The normalized contribu-
tions in spring, summer, and winter were similar, and the overall contribution of meteor-
ological conditions to O3 accounted for more than 60%. O3 was most influenced by mete-
orological conditions in autumn. In summer, O3 in the GBA was controlled mainly by 
meteorological conditions, and the meteorological factors normalized contribution de-
creased relative to other seasons, while the contribution of emissions was relatively 
higher. In spring, Jiangmen, Zhuhai, Zhongshan, Dongguan, Shenzhen, and Macao were 
relatively strongly controlled by meteorological factors, with the normalized contribution 
reaching more than 80%, while Zhaoqing, Foshan, Guangzhou, and Huizhou were rela-
tively weakly controlled by meteorology, with the contribution of emissions ranging from 
0 to 60%. In summer, Zhongshan and Foshan were subject to relatively high intensity of 
meteorological factors control, while Huizhou, Shenzhen, Hong Kong, Zhuhai, and 
Guangzhou were subject to relatively low intensity of meteorological factors control, with 
normalized contributions ranging from 0% to 60%. In the autumn, the overall contribution 
of meteorological factors to O3 in the GBA reached more than 80%. In winter, except for 
central Huizhou, part of Guangzhou, Zhaoqing, Shenzhen, and other areas suffered from 
the role of emissions of 20% to 60%, and other areas suffered from the role of meteorolog-
ical factors of more than 80%. 

 
Figure 5. Distribution of the normalized contribution of seasonal meteorology and emission in the 
GBA. (a–d) for normalized meteorological contributions and (e–h) for normalized emission contri-
butions). 

Figure 5. Distribution of the normalized contribution of seasonal meteorology and emission in
the GBA. (a–d) for normalized meteorological contributions and (e–h) for normalized emission
contributions).

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

Figure 6 shows the contributions of meteorological factors and emissions obtained 
from sensitivity experimental simulations, and the direction of the meteorological, and 
emission contributions to O3 can be inferred from the corresponding range of values 
(whether greater than 1) in Table 3. Regarding the meteorological factors, the meteorolog-
ical factors in the GBA mainly show a facilitative effect on the production or accumulation 
of O3 (Con(Emi) range was dominated by less than 1, corresponding to IV in Table 3). 
Regarding the emission factors, the four seasonal distributions of emission directions of 
action were relatively stable in the GBA. Compared with the baseline conditions, the emis-
sion conditions in Foshan, central Jiangmen, southern Zhaoqing, northern Guangzhou, 
and central Huizhou were unfavorable for the generation of O3. Emission conditions in 
Zhongshan, southern Guangzhou, Zhuhai, central Zhaoqing, western Dongguan, and 
Jiangmen, except for the central part of the region, promoted the generation of O3 
(Con(Met) range is greater than 1 is dominant, corresponding to II in Table 3). The emis-
sion conditions in Shenzhen and Macau were not conducive to O3 generation in spring, 
autumn, and winter, and showed a promotional effect in summer. 

 
Figure 6. Distribution of the contribution degrees of seasonal meteorology and emission in the GBA. 
(a–d) for meteorological contribution and (e–h) for emission contribution). 

3.2.3. Relative Contribution of Seasonal NOx and NMVOC to O3 Variation 
The sensitivity simulation results of NOx and NMVOC show (Figure 7) that the de-

gree of contribution of NOx and NMVOC varied greatly in different seasons. In terms of 
the relative contribution of NOx and NMVOC, the overall O3 concentration in the GBA in 
spring was influenced by NMVOC, with the NCon(NMVOC) reaching more than 60% in 
southern Zhaoqing, southern Foshan, Dongguan, northern Jiangmen, and south-central 
Huizhou, and more than 60% in coastal areas such as eastern Huizhou, Zhuhai, Macao, 
and Hong Kong. The impact of NOx emissions on O3 concentrations in the GBA was 
greater in summer, with Zhaoqing, Huizhou, Macau, Hong Kong, western Jiangmen, 
northern Guangzhou, southern Zhongshan, western Foshan, Shenzhen, and eastern 
Dongguan having more than 60% of NCon(NOx), while Zhuhai was influenced mainly by 
NMVOC. In autumn, O3 generation in the Greater Bay Area was influenced by NMVOC, 
and NCon (NMVOC) reached more than 60% in most areas of Zhaoqing, Foshan, Hui-
zhou, Zhongshan, central Jiangmen, and eastern Dongguan. O3 in the northern end of 
Zhaoqing, eastern Foshan, and eastern Jiangmen were influenced mainly by NOx emis-
sions, and the relative contribution of NOx and NMVOC in the rest of the region was not 
significant. In winter, the southeastern part of the GBA O3 was affected mainly by NOx 
emissions, with Zhuhai, Dongguan, Shenzhen, Hong Kong, Macau, Guangzhou, southern 

Figure 6. Distribution of the contribution degrees of seasonal meteorology and emission in the GBA.
(a–d) for meteorological contribution and (e–h) for emission contribution).

3.2.3. Relative Contribution of Seasonal NOx and NMVOC to O3 Variation

The sensitivity simulation results of NOx and NMVOC show (Figure 7) that the degree
of contribution of NOx and NMVOC varied greatly in different seasons. In terms of the
relative contribution of NOx and NMVOC, the overall O3 concentration in the GBA in
spring was influenced by NMVOC, with the NCon(NMVOC) reaching more than 60% in
southern Zhaoqing, southern Foshan, Dongguan, northern Jiangmen, and south-central
Huizhou, and more than 60% in coastal areas such as eastern Huizhou, Zhuhai, Macao, and
Hong Kong. The impact of NOx emissions on O3 concentrations in the GBA was greater
in summer, with Zhaoqing, Huizhou, Macau, Hong Kong, western Jiangmen, northern
Guangzhou, southern Zhongshan, western Foshan, Shenzhen, and eastern Dongguan
having more than 60% of NCon(NOx), while Zhuhai was influenced mainly by NMVOC.
In autumn, O3 generation in the Greater Bay Area was influenced by NMVOC, and NCon
(NMVOC) reached more than 60% in most areas of Zhaoqing, Foshan, Huizhou, Zhongshan,
central Jiangmen, and eastern Dongguan. O3 in the northern end of Zhaoqing, eastern
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Foshan, and eastern Jiangmen were influenced mainly by NOx emissions, and the relative
contribution of NOx and NMVOC in the rest of the region was not significant. In winter,
the southeastern part of the GBA O3 was affected mainly by NOx emissions, with Zhuhai,
Dongguan, Shenzhen, Hong Kong, Macau, Guangzhou, southern and northern Huizhou,
and central Foshan being more obvious, while the northwestern was affected mainly by
NMVOC, with Zhaoqing as the representative.
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3.3. GeoDetector Results
3.3.1. Analysis of the Factors Driving O3 Concentration

Factor detectors were used to detect the contribution of 2017 and four-season drivers
to O3 concentrations (Table 5). The significant effects on O3 were due almost solely to the
meteorological factors, and the significant effect of meteorological factors on O3 varied
from season to season. Throughout the year, the most significant contributions to O3 were
T and TP, with q values of 0.35 and 0.31, respectively, followed by RH and WS, with q
values of 0.18 and 0.12, respectively, and SP, with the least contribution of 0.06. In spring,
the meteorological effects on O3 were reflected mainly in T (q = 0.62), WS (q = 0.35), and
TP (q = 0.17), and their p-values were also less than 0.01. The related directions of action
showed that high temperature, low wind speed, and more precipitation in spring were the
main reasons for promoting O3 formation. In summer, the meteorological effect on O3 was
reflected mainly in TP (q = 0.41) and RH (q = 0.21), which also showed an opposite effect
with O3 concentration, indicating that more precipitation and higher humidity in summer
were the reasons for inhibiting O3 formation. In addition, LSI also showed a significant
effect at the 0.05 level (q = 0.11), showing that the more complex the landscape type, the
more it suppressed the concentration of summer O3. In autumn, the meteorological factors,
which were mainly in T (q = 0.68), had a more significant effect on O3 concentration, and
showed a homogeneous effect with O3 concentration, indicating that the higher temperature
in autumn in the GBA was responsible for the formation of O3. In winter, O3 concentration
was controlled mainly by RH (q = 0.14) and SP (q = 0.17), suggesting that higher humidity
and lower air pressure in winter were not conducive to ozone production. In addition,
the landscape pattern factor CONTAG (q = 0.09) was also related to O3 concentration,
showing that the aggregation of different types of patches was not conducive to higher O3
concentration in winter.

Table 5. The q statistics and correlation direction of the factors driving O3 concentration in the GBA.
Positive and negative signs in parentheses represent the direction of the correlation.

Factors 2017 Spring Summer Autumn Winter

WS (+)0.12 ** (−)0.35 ** (−)0.11 (+)0.12 (+)0.11
SP (+)0.06 ** (+)0.04 (−)0.17 (−)0.01 (+)0.17 *
T (−)0.35 ** (+)0.62 ** (+)0.04 (+)0.68 ** (+)0.15

RH (−)0.180 ** (−)0.08 (−)0.21 * (−)0.20 ** (−)0.14 **
TP (+)0.31 ** (+)0.17 ** (−)0.41 ** (+)0.09 (+)0.10
BC (+)0.01 (+)0.05 (−)0.04 (+)0.01 (+)0.08
CO (−)0.01 (+)0.06 (−)0.05 (+)0.01 (+)0.11
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Table 5. Cont.

Factors 2017 Spring Summer Autumn Winter

CO2 (+)0.01 (+)0.06 (−)0.05 (+)0.01 (+)0.11
NH3 (−)0.02 (+)0.08 (−)0.04 (−)0.01 (+)0.06
NOx (+)0.01 (+)0.07 (−)0.05 (+)0.01 (+)0.10
OC (+)0.01 (+)0.04 (−)0.03 (+)0.01 (+)0.05

PM2.5 (+)0.01 (+)0.06 (−)0.04 (+)0.01 (+)0.07
PMcoarse (+)0.01 (+)0.05 (−)0.04 (+)0.01 (+)0.07

SO2 (+)0.01 (+)0.05 (−)0.04 (+)0.01 (+)0.08
NMVOC (+)0.01 (+)0.06 (−)0.04 (+)0.02 (+)0.08

LPI (−)0.01 (−)0.02 (+)0.07 (−)0.01 (−)0.08
LSI (+)0.01 (+)0.05 (−)0.11 * (+)0.01 (+)0.14

SHAPE_MN (+)0.01 (+)0.03 (−)0.09 (+)0.01 (+)0.10
CONTAG (−)0.01 (−)0.03 (+)0.08 (−)0.01 (−)0.09 *

SHDI (+)0.01 (+)0.03 (−)0.09 (+)0.01 (+)0.09
AI (−)0.01 (−)0.03 (+)0.08 (−)0.01 (−)0.11

**. Significantly correlated at the 0.01 level (bilaterally). *. Significantly correlated at the 0.05 level (bilaterally).

3.3.2. Interaction of Factors Affecting O3 Concentration

The ecological detector shows whether the two factors interacted with each other
on the variation of O3 concentration. The results showed that the meteorological factors
WS, T, RH, and TP interacted with anthropogenic emissions and landscape patterns to
influence the O3 concentration (Table A1). The interaction detector shows the strength of
the interaction between the two factors on the O3 concentration (Figure 8). It was evident
that most of the factors showed a non-linear enhancement of O3 concentration between the
two, i.e., the interaction between the two factors had a greater effect on the O3 concentration
than the sum of the effects of the two factors alone. The interactions between meteorological
factors and emission factors and landscape pattern factors were strong, with the strongest
influence of the interaction between T and other factors, followed by TP and RH, and the
least influence of the interaction between WS and SP and other factors.

Landscape patterns can alter local microclimate conditions. Combining Table 5 and
Figure 8, it can be seen that the correlation direction of landscape pattern factors with O3
and with T were the same, and the correlation direction of T with O3 were also the same,
while the correlation direction of landscape pattern factors O3 and with RH were opposite,
and the correlation direction of RH with O3 was also opposite. It could be shown that the
smaller the area of individual patches within the landscape pattern, the more complex
the individual patch types, the lower the degree of aggregation of different patch types,
and the higher the complexity and lower the aggregation of the overall landscape pattern
formed, and there would be a non-linear interaction with the meteorological conditions of
high temperature, high pressure, and low humidity, thus promoting the generation of O3.
LSI and SHAPE MN in landscape patterns interacted in different directions with TP and
WS and with O3.
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3.3.3. Detection of Emission Factors Affecting Seasonal NOx and NMVOC Contributions

Factor detection of pollutant emission sector factors affecting the formation of NOx and
NMVOC contributing areas in different seasons was carried out (Table 6). The change in
contribution was most sensitive mainly to the residential sector, followed by NH3 emissions
from the agricultural sector. The normalized contributions of NOx and NMVOC in spring
were influenced mainly by BC (q = 0.38), CO (q = 0.34), CO2 (q = 0.27), NH3 (q = 0.39), NOx
(q = 0.34), OC (q = 0.34), PM2.5 (q = 0.34), PM10 (q = 0.33), and NMVOC (q = 0.3) emissions
from the residential sector and also by CO2 (q = 0.23) in the residential sector and NH3
(q = 0.3) emissions in the agricultural sector. Only the q value of OC passed the significance
test for the sectoral anthropogenic emission contribution partition in summer. In autumn,
it was affected mainly by NOx (q = 0.2), OC (q = 0.34), PM2.5 (q = 0.34), PM10 (q = 0.33),
and NMVOC (q = 0.3) in the residential sector. The NOx and NMVOC contribution zoning
affecting winter was similar to that of spring, but winter was not significantly affected by
CO2 and NH3 emissions from the residential sector.
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Table 6. Seasonal detection results of different sectoral emissions for NCon(NOx) and
NCon(NMVOC).

BC CO
Spring Summer Autumn Winter Spring Summer Autumn Winter

Transportation 0.20 * 0.12 0.04 0.06 0.09 0.06 0.03 0.07
Residential 0.38 ** 0.11 0.17 0.38 ** 0.34 ** 0.07 0.14 0.39 **

Power 0.14 0.07 0.06 0.10 0.14 0.12 0.08 0.10
Industry 0.12 0.06 0.07 0.05 0.14 0.09 0.09 0.04

Agriculture / / / / / / / /

CO2 NH3
Spring Summer Autumn Winter Spring Summer Autumn Winter

Transportation 0.09 0.06 0.03 0.07 0.09 0.06 0.03 0.07
Residential 0.27 ** 0.10 0.15 0.07 0.39 ** 0.09 0.15 0.28

Power 0.15 0.10 0.08 0.06 / / / /
Industry 0.13 0.11 0.10 0.06 / / / /

Agriculture / / / / 0.25 ** 0.10 0.14 0.27 **

NOx OC
Spring Summer Autumn Winter Spring Summer Autumn Winter

Transportation 0.14 0.06 0.04 0.06 0.14 0.12 0.04 0.06
Residential 0.34 ** 0.08 0.20 * 0.34 ** 0.34 ** 0.34 ** 0.34 ** 0.34 **

Power 0.11 0.11 0.07 0.11 0.11 0.11 0.11 0.11
Industry 0.14 0.12 0.08 0.06 0.13 0.13 0.13 0.13

Agriculture / / / / / / / /

PM2.5 PM10
Spring Summer Autumn Winter Spring Summer Autumn Winter

Transportation 0.14 0.19 0.14 0.14 0.14 0.14 0.14 0.14
Residential 0.34 ** 0.07 0.34 ** 0.34 ** 0.33 ** 0.33 ** 0.33 ** 0.33 **

Power 0.11 0.09 0.11 0.11 0.12 0.12 0.12 0.12
Industry 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14

Agriculture / / / / / / / /

SO2 NMVOC
Spring Summer Autumn Winter Spring Summer Autumn Winter

Transportation 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09
Residential 0.09 0.09 0.09 0.09 0.30 ** 0.30 ** 0.30 ** 0.30 **

Power 0.12 0.12 0.12 0.12 0.10 0.10 0.10 0.10
Industry 0.10 0.10 0.10 0.10 0.15 0.15 0.15 0.15

Agriculture / / / /

**. Significantly correlated at the 0.01 level (bilaterally). *. Significantly correlated at the 0.05 level (bilaterally).

4. Discussion

This paper first designed four sets of sensitivity experiments based on neural networks
to explore the relative contributions of meteorological factors and anthropogenic emissions
in four seasons. The results show that O3 concentrations in the GBA were controlled
mainly by meteorological factors, and the normalized contribution of meteorological factors
reached more than 60% in all four seasons. Due to the GBA’s location in the southern coastal
region of China, changes in monsoon clouds might also lead to strong seasonality in ozone
concentrations [48], and the meteorological influence on O3 variability in the Bay Area was
greater than in other regions [13]. Although the contribution of anthropogenic emission
to the change in O3 concentrations in the GBA during all seasons was relatively small, it
was the main driver of the long-term upward trend in O3 concentrations [49]. This paper
also refined the spatial distribution of the direction of the contribution of meteorological
and anthropogenic emission factors to O3 production. The results show that meteorology
in the four seasons had a major role in promoting O3 concentrations in the GBA, and the
distribution of emission factor on the production or accumulation of O3 concentrations was
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more stable in the four seasons in the region of promotion and mitigation, and different
emission measures should be considered for the two regions.

This article quantified the effects of small factors of meteorology, anthropogenic
emission, and landscape pattern on O3 concentrations, and the results showed that only
meteorological factors had a significant effect on O3 at the 0.01 level. Spring O3 concen-
trations were related to wind speed, air temperature, and precipitation. Low wind and
high-pressure stable atmospheric conditions limited convective mixing and ozone diffu-
sion, and the weather pattern of increasing spring temperature was more conducive to
accelerated O3 production [50]. In addition, precursors from biomass emissions in the
Indo–Burma region of the Southeast Asian subcontinent [51,52] and southwesterly winds at
850 hPa in spring [53] contributed to O3 production, while the encounter with cold fronts or
cold eddies may produce a certain amount of precipitation. The lowest O3 concentration in
the GBA in summer was related mainly to precipitation and humidity, and the presence of
frequent typhoon storms and plum rains in summer brought clean ocean air, diluting high
O3 concentrations [16,54]. O3 concentrations were highest in the GBA in autumn, and the
results of this paper showed a significant relationship between temperature and humidity.
The PRD was vulnerable to tropical cyclones and subtropical high pressure in autumn,
and the ground conditions of enhanced solar radiation, higher temperatures, reduced
cloudiness, and lower relative humidity were conducive to the photochemical reaction
of O3 [55]. Meanwhile, the stable atmospheric structure of the PRD at the periphery of
typhoons was also conducive to the accumulation of O3 [56]. In winter, the results showed
a significant correlation between humidity and barometric pressure. In winter, northern
winds prevailed in the GBA, dominated by the East Asian monsoon and influenced by the
cold high pressure from the north, the humidity was lower in the GBA, and the temperature
and radiation were also lower, which was not conducive to the photochemical reaction of
O3 [57], while the northern wind also brought in PM2.5 pollutants, and the dimming effect
of aerosols further inhibited the production of O3 [58]. In addition, low O3 air masses from
the equatorial tropical low convergence zone transported by the East Asian local Hadley
circulation can also reduce O3 concentrations in areas such as Hong Kong [51].

Although the direct effect of urban landscape patterns on O3 concentration was
not very obvious, the results of the interaction detector showed that landscape pattern
can interact with meteorological factors in a nonlinearly enhanced way to influence O3
concentration changes. The smaller the area of individual patches, the more complex
individual shape, the more complex the overall landscape shape, and the lower the degree
of aggregation that would interact with the ground meteorological conditions favoring
O3 generation, such as high temperature, high pressure, and low humidity to promote
O3 generation., Thus, increasing the area utilized by individual site types, reducing the
complexity of individual site shapes, and increasing the aggregation of different site types
can suppress the generation of O3. Additionally, these landscape pattern changes that favor
O3 formation also correspond to the development of urbanization [59]. It had been shown
that the evolution of the urban heat island effect and changes in the thermal cycle caused
by changes in urban structure due to urbanization and heat generated by anthropogenic
heat sources can affect O3 concentration [54,60–63]. Mitigating O3 concentrations can also
be achieved by introducing new landscapes to improve local microclimates. Studies have
shown that the Wind-Corridor project can indirectly change meteorological factors, such as
humidity, insolation, and evaporation by introducing more strong winds, thus reducing air
pollution, while the project can also effectively mitigate the urban heat island effect [20,64],
thereby reducing photochemical reactions. Therefore, the reduction of O3 concentration
can be achieved not only by reducing industrial activities and traffic inducement but also
by changing the urban landscape pattern indirectly and permanently. The results of this
paper also showed that landscape pattern factors, especially the interaction of individual
patch shape and overall landscape type with wind speed and precipitation, were more
complex for O3 concentration.
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This paper also quantified the relative contributions of NOx and NMVOC to O3
in the GBA. Compared with the NOx/VOC limit—which indicates that as NOx (VOC)
concentration increases, O3 concentration increases, and as VOC (NOx) concentration
increases [65], O3 concentration decreases—the relative contribution zone of NOx (VOC)
represents the greater effect of the increase or decrease of unit NOx (VOC) concentration on
the change of O3 concentration in the region. The spatial distribution of the contributions in
the four seasons varied substantially, with the GBA dominated by NMVOC contributions in
spring and autumn, NOx contributions in summer, and winter showing VOC contributions
in the northwest and NOx contributions in the southeast. The results of the study are similar
to the results of Hu et al., with a moderate VOC-limited state in spring and autumn and a
weaker VOC-limited state in summer. While Hu et al. showed a stronger VOC-controlled
state in winter [66], the results of this paper showed a greater range of NOx contribution, a
possible discrepant result that may be the result of different study scales and models or may
be related to different quantitative focus (degree of impact and spatial extent of impact),
but our results all suggest that seasonally different NOx and VOC emission controls should
be developed in GBA.

The results of this paper showed that emissions of CO, BC, NOx, OC, PM2.5, PM10,
and NMVOC from the residential sector and NH3 from the agricultural sector were the
main factors influencing the changes in the relative contribution areas of NOx and NMVOC.
CO is one of the precursors of O3, which can generate O3 with hydrocarbons through HOx
and NOx by radical catalytic reaction [55]. BC and CO may have a close source, and there
was a good positive correlation between the two [67]. In addition, BC, OC, NH3, PM2.5,
and PM10 as aerosols and their precursors can also influence the photochemical reaction of
O3 by affecting UV radiation [68,69]. For emission sources, biomass combustion was the
major source of NH3, NOx, CO, OC, and BC [70]. Biomass combustion, biogenic sources,
paints/varnishes, and household solvents were also important sources of ambient VOC
in the PRD region [71,72], and there was an enhancing trend of HCHO in some densely
populated areas [73]. The results of this paper also emphasized the need for research on
the mechanisms of O3 formation from residential sector emissions in highly urbanized and
densely populated areas, such as the GBA and the Yangtze River Delta region.

Considering that the dilution effect of wind speed on O3 concentrations may have an
impact in quantifying the contribution of local landscape pattern factors to O3 concentra-
tions, we additionally conducted experiments at different levels of wind speed, but the
results showed little difference, so they are not discussed here (Table A2). The limitation
of this work is that, firstly, in order to remedy the problem that the assimilation data of
reanalysis data lack site data in Hong Kong and Macao, this paper used monitoring data
to fuse with reanalysis pollution data, and this fusion method could be influenced by the
distribution of sites, and the accuracy of O3 concentration in areas with few sites may
be impacted. Second, the landscape pattern of individual site types was not studied in
this work. In addition, when studying the relationship between landscape patterns and
environmental processes, multiple spatial scales should be selected to study or find the
best study scale, but due to the limitation of data acquisition, only the highest accuracy of
emissions was obtained as the scale for this paper, and further studies on this aspect will be
considered in the future.

5. Conclusions

This paper studied the GBA and adopted sensitivity experiments and GeoDetector to
analyze the dominant factors affecting O3 and the contribution between each factor in 2017.
The main findings are as follows.

The contribution of meteorology to O3 concentration changes was dominant both
in terms of region and extent, while the contribution of emissions was relatively weak,
and both were dominant in contributing to O3 production. Meteorology had a significant
effect on O3 concentrations. Although the direct effect of surface landscape on O3 was
not obvious, it would have a nonlinear interaction with meteorological conditions to
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influence O3 concentration changes, and the interaction between surface landscape patterns
toward urbanization and favorable meteorological conditions promoted O3 concentration
generation or accumulation. Furthermore, the degree of contribution of NOx and NMVOC
in the GBA varied considerably in different seasons. Residential sector emissions and
agricultural sector NH3 emission were the main factors influencing the change in the
relative contribution area of NOx and NMVOC, related to a large amounts of precursors
from biomass burning, biogenic sources, paint/varnish, and household solvents due to the
dense population in the GBA. We provide support for the development of regionally and
seasonally differentiated control strategies for the mitigation of O3 concentration generation
and production, as well as theoretical support for the mechanisms of urbanized surface
landscape effects on O3 concentration. The impact of emissions from the residential sector
on O3 sensitivity is also highlighted.
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Appendix A

The corrected O3 was more accurate. The coefficient of determination R2 increased
from 0.5 to 0.7 (Figure A1), root mean square error (RSME) decreased from 12 to 9.7, and
normalized mean square error (NME) also decreased from 13.9% to 11.1%.
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Table A1. Meteorology, emission, and landscape pattern ecological detection results.

WS SP T RH TP BC CO CO2 NH3 NOx

SP N
T Y Y

RH Y Y Y
TP Y Y N Y
BC Y N Y Y Y
CO Y N Y Y Y N
CO2 Y N Y Y Y N N
NH3 Y N Y Y Y N N N
NOx Y N Y Y Y N N N N
OC Y N Y Y Y N N N N N

PM2.5 Y N Y Y Y N N N N N
PM10 Y N Y Y Y N N N N N
SO2 Y N Y Y Y N N N N N
VOC Y N Y Y Y N N N N N
LPI Y N Y Y Y N N N N N
LSI Y N Y Y Y N N N N N

SHAPE MN Y N Y Y Y N N N N N
CONTAG Y N Y Y Y N N N N N

SHDI Y N Y Y Y N N N N N
AI Y N Y Y Y N N N N N

OC PM2.5 PM10 SO2 VOC LPI LSI SHAPE MN CONTAG SHDI

PM2.5 N
PM10 N N
SO2 N N N
VOC N N N N
LPI N N N N N
LSI N N N N N N

SHAPE MN N N N N N N N
CONTAG N N N N N N N N

SHDI N N N N N N N N N
AI N N N N N N N N N N

Note: Y indicates that there is a significant difference in the effects of the two factors on O3 changes, and N means
no significant difference.

Table A2. The q and p values of factor detectors for O3 concentration and landscape patterns at
different wind speed classes (p-values less than 0.01 represent results significant at the 0.01 level).

WS (1–2) WS (1–2) WS (5–6) WS (7–8) WS (9–10)
q p q p q p q p q p

LPI 0.02 0.81 0.01 0.99 0.04 0.93 0.07 0.99 0.10 1.00
LSI 0.03 0.83 0.00 1.00 0.06 0.74 0.06 1.00 0.10 1.00

SHAPE
MN 0.01 1.00 0.02 1.00 0.05 0.97 0.06 0.89 0.10 1.00

CONTAG 0.02 1.00 0.02 0.99 0.03 1.00 0.07 0.69 0.10 1.00
SHDI 0.02 0.98 0.03 0.70 0.05 1.00 0.04 0.97 0.08 1.00

AI 0.03 1.00 0.01 1.00 0.03 1.00 0.08 0.91 0.07 1.00
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