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Abstract: A five-band short-range multispectral sensor (MicaSense RedEdge-M) was adapted to
an underwater housing and used to obtain data from coral reef benthos. Artificial illumination
was required to obtain data from most of the spectral range of the sensor; the optimal distance for
obtaining these data was 0.5 m, from the sensor to the bottom. Multispectral orthomosaics were
developed using structure-from-motion software; these have the advantage of producing ultra-high
spatial resolution (down to 0.4 × 0.4 mm/pixel) images over larger areas. Pixel-based supervised
classification of a multispectral (R, G, B, RE bands) orthomosaic accurately discriminated among
different benthic components; classification schemes defined 9 to 14 different benthic components
such as brown algae, green algae, sponges, crustose coralline algae, and different coral species with
high accuracy (up to 84% overall accuracy, and 0.83 for Kappa and Tau coefficients). The least useful
band acquired by the camera for this underwater application was the near-infrared (820–860 nm)
associated with its rapid absorption in the water column. Further testing is required to explore
possible applications of these multispectral orthomosaics, including the assessment of the health of
coral colonies, as well as the automation of their processing.

Keywords: MicaSense RedEdge-M; underwater multispectral orthomosaics; supervised classification;
structure from motion

1. Introduction

Coral reef characterization, assessment, and mapping efforts rely increasingly on
imagery; being digital photographs, video, or remotely sensed images. These datasets
provide the means for estimating, measuring, and identifying many reef components at
several scales, from species identification (cm2), percent cover of benthic components (m2),
to reef habitats, geomorphology, and bathymetry (from ha to km2) [1].

The sustainable management of coral reef systems depends on scientifically validated
datasets (regarding reefs’ condition, function, and structure), and specifically, on the avail-
ability of these datasets in a timely manner. On the one hand, direct observation methods
such as the Atlantic and Gulf Rapid Reef Assessment protocol (AGRRA) [2], provide useful
reef assessment data shortly after fieldwork, but require at least a 6-person team of highly
trained observers, and assessments over large areas are time-consuming. On the other
hand, imagery-based methods are quicker in the field, but imaging equipment can be
cost-prohibitive, and in general, these approaches have longer data processing and product
availability times. In this context, a positive trait of these imagery-based methods is that
they generate permanent records that can be analyzed repeatedly and have the potential
to answer future questions, different from the original question for which the imagery
was collected.
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In the last two decades, the implementation and advancement of the use of digital
underwater photogrammetric techniques [3–7] coupled with the general availability of
structure from motion software (SfM, i.e., Agisoft’s Metashape Pro, Pix4D), has led to
strong research lines on a wide range of applications, from coral colonies characterization
to applications for reef benthos assessment and ecological hypothesis testing [8–16], taking
in-situ imagery records to a new analytic level, supported by the accurate re-creation of
benthic features in ultra-high spatial resolution and combined with 3D perspectives.

A widely adopted approach for coral reef characterization is the use of multispectral
imagery from satellites and airborne sensors. These tools have demonstrated their value in
the past decades, in many different applications such as mapping reef habitats, bathymetry,
reef structural parameters, and prediction of fish biodiversity and biomass [17–24]. They
also have spawned several research topics for data correction associated with the behav-
ior of light in the water column as surface sun-glint [25,26], light extinction in the water
column [27–31], etc. These multispectral images are generated by passive-optical sensors
which require an external energy source, and these images provide numeric data repre-
senting the intensity of different ranges of electromagnetic spectra reflected on the surface,
which allows discrimination of different materials [32].

Notwithstanding the advancement in remotely sensed imagery for coral reef applica-
tions, underwater optical discrimination of materials is uncommon. This approach has two
main avenues: hyperspectral analysis, defining spectral signatures, which has a long re-
search tradition [33–36]; and multispectral analysis, which traditionally has been hindered
by the availability of adequate sensors, the variability in sunlight-incidence on the bottom
associated both to light extinction (solar energy absorption related to depth), and to the
changes in illumination intensity due to water surface dynamics [1,37].

Nevertheless, earlier tests of methods and equipment [3,38–42] (among others) built
a relevant knowledge base concerning the multispectral discrimination and classification
of reef benthic components. These studies have motivated the goal of this study: To test
the underwater use of a narrow-band multispectral sensor for reef benthos classification;
with the following associated specific objectives: (a) to test the adequate operation of
the sensor adapted in an underwater housing, (b) to test the need and usefulness of
artificial illumination, (c) to test the appropriate image-capture distance from the bottom,
(d) to test the adequacy of the underwater multispectral orthomosaics to classify benthos
components, and (e) to compare the results of different supervised classification algorithms
applied to the multispectral orthomosaics. The results reveal insights into the optimal
approach to underwater multispectral image acquisition and facilitate accurate percent
cover measurements of reef benthos components.

2. Materials and Methods
2.1. Study Area

Akumal reef is a well-developed fringing reef off the eastern coast of Quintana Roo,
México; It has a shallow reef lagoon with a conspicuous seagrass bed, coral patches, bottoms
associated with algal assemblages and coral rubble, and a well-developed back-reef zone
which passes into a discontinuous reef crest, that separates the lagoon zone from the reef
front. The reef front (4 to 12 m deep) and reef slope zones are well developed, starting on
a hard-ground plain at 5–6 m and giving way gradually to tracts of denser colonies that
increase in rugosity, that pass into spur and groove areas that end at ~15–16 m by a sand
channel, and the reef slope continues with this spurs-and-grooves system at 16–17 m deep,
reaching down to 30–35 m deep in a buttress zone (Figure 1).
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Plots A and B. 

2.2. Field Equipment 
Multispectral Sensor: The multispectral sensor employed was a MicaSense® 

RedEdge-M camera. This sensor was designed for agricultural assessments hence its five 
narrow bands: blue, green, red, red edge, and near-infrared (Table 1) were selected to take 
advantage of the reflectance of photosynthetic pigments. The RedEdge-M records one im-
age per second on each band at 16-bit radiometric resolution in RAW/TIFF format on an 
up to 32 Gb SD memory card (writing speed class 10/U3). It has a lens focal length of 5.4 
mm and a field of view of 46° [43]). This camera was retrofitted in an acrylic underwater 
video housing (Equinox, 3D), along with a 10,000 mAh (2.4 A) rechargeable battery 
(power bank, with USB-A connectivity), along with its GPS antenna and Down Light Sen-
sor (Figure 2A,B). 

Table 1. MicaSense RedEdge-M spectral bands specifications [43]. FWHM: full width at half maxi-
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1 Blue 475 20 
2 Green 560 20 
3 Red 668 10 
4 Near IR 840 40 
5 Red edge 717 10 

Figure 1. Coastal zone of Akumal, (*) are the locations of the dive sites for multispectral surveys Plots
A and B.

2.2. Field Equipment

Multispectral Sensor: The multispectral sensor employed was a MicaSense® RedEdge-
M camera. This sensor was designed for agricultural assessments hence its five narrow
bands: blue, green, red, red edge, and near-infrared (Table 1) were selected to take advan-
tage of the reflectance of photosynthetic pigments. The RedEdge-M records one image per
second on each band at 16-bit radiometric resolution in RAW/TIFF format on an up to
32 Gb SD memory card (writing speed class 10/U3). It has a lens focal length of 5.4 mm and
a field of view of 46◦ [43]). This camera was retrofitted in an acrylic underwater video hous-
ing (Equinox, 3D), along with a 10,000 mAh (2.4 A) rechargeable battery (power bank, with
USB-A connectivity), along with its GPS antenna and Down Light Sensor (Figure 2A,B).

Table 1. MicaSense RedEdge-M spectral bands specifications [43]. FWHM: full width at half maximum.

Band Number Band Name Center Wavelength (nm) Bandwidth FWHM (nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Near IR 840 40
5 Red edge 717 10

Depth and Level Monitoring: To maintain a relatively constant height over the sub-
strate a dive computer was attached to the underwater housing, facing the diver; and a
two-way (T) level was fixed to the rear plate of the housing (Figure 2C).



Remote Sens. 2022, 14, 5782 4 of 20Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 2. Adaptation of underwater video housing (Equinox 3D) for its use with the MicaSense 
RedEdge-M camera. (A) front view of flat port and a neoprene cutout insert to avoid back lighting 
and reflections; (B) back view with down light sensor and GPS module; (C) T-level fixed to the back 
acrylic plate. 

Depth and Level Monitoring: To maintain a relatively constant height over the sub-
strate a dive computer was attached to the underwater housing, facing the diver; and a 
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effect on the light reaching the sensor inside the housing. 

Artificial Illumination: To provide a uniform and thorough illumination for the test 
mentioned above and for the use of the sensor over the reef bottom, we used two LED 
underwater video lights (Keldan Video 8X) with a maximum output of 13,000 lumen/5600 
candelas, a correlated color temperature of 5600° kelvin, a color rendering index (CRI) of 
92, and a 110° beam in water. They were mounted to the ball adaptors on the housing 
handles, using clamps and 20.3 cm (8″) Ultralight arm sections to fix the Keldan lights at 
~30 cm to left and to the right from the sensor (Figure 3). Later, a 4-piece kit of StiX adjust-
able jumbo floats was added to the ultralight arms to enhance the maneuverability and 
compensate for the buoyancy of the setup. 

Figure 2. Adaptation of underwater video housing (Equinox 3D) for its use with the MicaSense RedEdge-
M camera. (A) front view of flat port and a neoprene cutout insert to avoid back lighting and reflections;
(B) back view with down light sensor and GPS module; (C) T-level fixed to the back acrylic plate.

A dry (on land) test was performed with the camera system inside the housing to check
the appropriate functioning of the sensors (downwelling light sensor, the GPS module, and
the multispectral camera). A comparison was carried out using images of the calibration
panel captured with the camera outside and inside of the housing, taken at 1 m, under
controlled illumination conditions (dark room with two 13,000 lumen lights at full power),
to establish if the polycarbonate flat port on the housing had an absorption effect on the
light reaching the sensor inside the housing.

Artificial Illumination: To provide a uniform and thorough illumination for the test men-
tioned above and for the use of the sensor over the reef bottom, we used two LED underwater
video lights (Keldan Video 8X) with a maximum output of 13,000 lumen/5600 candelas, a
correlated color temperature of 5600◦ kelvin, a color rendering index (CRI) of 92, and a
110◦ beam in water. They were mounted to the ball adaptors on the housing handles, using
clamps and 20.3 cm (8”) Ultralight arm sections to fix the Keldan lights at ~30 cm to left
and to the right from the sensor (Figure 3). Later, a 4-piece kit of StiX adjustable jumbo
floats was added to the ultralight arms to enhance the maneuverability and compensate for
the buoyancy of the setup.
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2.3. Field Tests

Two test sites in Akumal’s reef front were surveyed at different dates and at different
depths: Plot A, was a 5 × 5 m plot at −10 m, surveyed during June 2019; and Plot B was
a 2.5 × 2.5 m plot at −16.5 m, surveyed in August 2019. The position of the plots was
selected because of their diversity in benthic components and bottom types. Plots were
delimited by fixing a PVC survey tape to bottom features (rocks or bases of octocorals) on
the corners of the plots.

Imagery acquisition was performed with the Micasense RedEdge-M narrow-band
sensor, recording images perpendicularly from the bottom, following a grid pattern (left to
right, and then front to back) covering the entire plot ensuring high (>50% overlap between
images). Before running each photo survey, a small set of images of a calibrated reflectance
panel (CRP), originally provided with the sensor, was acquired according to the procedures
stated by MicaSense [43]. One set of images was acquired on the boat right before the
dive, and one underwater, positioning the panel in the bottom and recording the images
at 0.5 m illuminated with both Keldan lights at their maximum power, ensuring the QR
code in the CRP appears in the picture. The CRP provided with the camera by MicaSense
(RP04-1911069-SC) has the following absolute reflectance values: blue 0.508, green 0.509,
blue 0.509, red edge 0.509, and near-infrared 0.507.

Plot A was surveyed at ~1.8 m from the bottom using natural light, under the assump-
tion that the downwelling light sensor (DLS) from the camera would compensate for the
light variability during the imagery survey; this plot had large coral colonies, octocorals,
and encompassed a deeper section in a sand channel between two spurs. The distance was
selected following similar digital photogrammetry approaches [12,14,15,44].

Plot B has a relatively even substrate with small coral and octocoral colonies providing
the largest vertical difference in the substrate; it was surveyed applying the same grid
pattern as Plot A to acquire imagery for a multispectral orthomosaic, but this time at a
0.5 m height above the substrate using the Keldan lamps at their maximum output.

2.4. Orthomosaic Generation

The imagery datasets acquired at each plot were filtered manually to exclude images
not corresponding to perpendicular shots of the reef bottom, not at the specified height or
not within the plot areas. They then were processed as follows, using Agisoft MetaShape
Pro software v. 1.7 (previously PhotoScan Pro), installed on a PC workstation with Windows
10 Professional (64-bit), dual Intel Xeon processors, 128 GB RAM, dual AMD Radeon FirePro
w8100 GPUs, and 2TB HDD:

(1) A camera calibration file was created for each band of the sensor, following the
MetaShape manual [45], and then the parameters in these files were applied to the
imported multispectral imagery datasets.

(2) The reflectance of these multispectral images was calibrated manually using the
images of the CRP, and its reflectance values corresponding to each band (included in
the CRP).

(3) The primary channel was set to band 2 (green) since it provides the best visual contrast
for these underwater images.

(4) Metasahape workflow was followed using these settings: Image alignment (highest
accuracy, generic preselection, excluding stationary tie points—useful for excluding
suspended particles from the alignment process); build dense cloud (quality ultra-
high, depth filtering moderate and calculating point confidence), dense cloud filter by
confidence (range 0–2); build mesh (source data: dense cloud; surface type: height
field; face count: high; interpolation enabled), and build orthomosaic using mesh as
surface, and mosaic blending mode, also enabling hole filling.

(5) The resulting orthomosaics (16-bit) were transformed to normalized reflectance
(0–1 value range), creating new bands in the Raster Transform/Raster Calculator
tool where bands are divided by the normalization factor of 32,768 [46], and export-
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ing the resulting composite image as TIFF, selecting the index value in the raster
transform field.

2.5. Artificial Ilumination Test

The artificial illumination test was performed by acquiring a few sets of images with
the narrow-band sensor at different heights (0.5 m, 0.75 m, and 1 m) above the surface
of an Orbicella franksi coral colony, using two Keldan Video 8X lamps at their maximum
light output, carefully adjusting the position of the beams to light evenly the substrate
perpendicular to the sensor. Three orthomosaics of the O. franksi were resolved and
1150 pixels over the coral colony were selected randomly to test the difference among the
pixel values per band (R, G, B, RE, NIR) at the three different distances. This test was
carried out by applying multivariate analysis (ANOSIM and SIMPER, in the software
Primer v6.1.14, Primer-E Ltd., Brugg, Switzerland).

2.6. Orthomosaic Preprocessing

A visual inspection of the orthomosaic from Plot B revealed variability in the pixel
values across homogeneous surfaces (salt and pepper effect) due in part to orthomosaic
generation artifacts and to the small size of the pixels (Garza-Pérez, Nuñez-Morales and
Rioja-Nieto -in prep.-). This impact was addressed by applying a Local Sigma Filter (LSF;
9 × 9 pixels), which preserves fine details and markedly reduces speckle [47], in ENVI
v.5.3 (Excelis).

Moreover, during the visual inspections a few orthomosaics, construction artifacts
associated to rolling shutter effects were noted, including chromatic aberrations on moving
objects (i.e., soft corals), and blurred areas on fixed objects. These artifacts prevented the
use of the entire area of the orthomosaic for classification tests, so two smaller areas of the
othomosaic (subsets B I and B II), with correctly resolved bottom features, were cropped to
test as a proof-of-concept. Later, a mask was applied to remove artifact-ridden areas, and
to apply a rigorous supervised classification to the largest possible usable area.

2.7. Supervised Classification

For the initial proof-of-concept visual inspections of the subplots B I and B II defined
the different benthic components (classes) in each dataset, classes were trained to digitize
20 fields over positively identified features for each class (n = 20 fields × #of classes). For
plot B full, a total of 7993 pixels were used to train the different identified classes, with as
few as 325 points for smaller benthic components, and as many as 1100 points for larger
benthic components. Class separability was calculated (ROI Tool/ENVI 5.3) for the training
fields defined in plots B I, B II, and B full, following the recommendation to edit the shape
and location of some fields to increase the calculated separability values closer or above 1.9
on the reported Jeffries–Matusita and transformed divergence separability measures [48].

Several supervised classification methods available on ENVI 5.3 were applied to the
three subset plots (B I, B II, and B full), i.e., Mahalanobis distance, maximum likelihood,
minimum distance, neural net, and support vector machine, to find the best-classified
product. Classified products from subplots B I and B II were assessed first to define if the
multispectral orthomosaic was able to accurately separate bottom features. Moreover, for
subplot B I, a test was carried out to define the usefulness and discrimination power of
an R, G, B band subset vs. the R, G, B, RE. This test used the same training fields coupled
with the classification algorithms that produced the most accurate products for the 4-band
subset. A post-classification procedure (majority analysis with a 3 × 3 kernel) was applied
to all supervised classification products to remove the salt-and-pepper effect and to present
more spatially coherent classes.

The accuracy of the supervised classifications was assessed both visually, to compare
the results with the spatial patterns of benthic components in the original multispectral
orthomosaic, and through the accuracy assessment using overall accuracy, Kappa [49] and
Tau [50] coefficients. A stratified random approach to generate points over the different
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classes in the classified products was used to generate confusion matrices, thus avoiding
the spatial correlation bias of using polygons (clusters of pixels) as the ones used to train
the classes in subplots B I and B II. A Z-test was applied to the Tau coefficients obtained
from the different supervised classification products of Plot B full to assess and objectively
select the best one. The next diagram (Figure 4) depicts the methods flowchart.
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3. Results
3.1. Field Tests
3.1.1. Sensor Backfitting and Dry-Land Imagery Capture Test

The camera, DLS, and GPS module worked properly when fitted inside the sealed
housing. Camera control was responsive using its Wi-Fi connection through a web browser
in a mobile device (Apple iPhone X), and GPS was able to acquire all satellites to fix both
the geographic location of the camera and the date and time on the captured images.
Multispectral images were acquired continuously to test the consistency of the power bank
energy output, and the operating autonomy of the setup. The limiting factor for maximum
operation time (~45 min) is the SD card memory space, which fills completely in that
time, capturing all five bands at 1 s intervals. The powerbank provided consistent power
during this period for the camera to operate adequately. The housing flat port test found
no significant difference (p = 0.05) between sample values from images acquired inside vs.
outside of the housing.

3.1.2. Underwater Orthomosaic Plot A

Plot A was surveyed successfully at a 1.8 m height, and acquired imagery was pro-
cessed on Agisoft MetashapePro software. The resulting orthomosaic (Figure 5A) was
resolved adequately preserving the spatial structure (shapes of benthic components and
geomorphology), it has an area of ~25 m2 at a spatial resolution of 0.8 × 0.8 mm/pixel.
Although this resolution is sufficient to visually identify benthic organisms (Figure 5B) and
inert bottom types, it lacked a consistent spectral response along the whole orthomosaic.
Banding artifacts are noticeable (light/dark pattern), which the DLS data (used on the
orthomosaic generation) was not able to homogenize. Moreover, the distance to the bottom
rendered useless both the red edge and NIR bands, whereas the red band had severe
shortcomings, and the blue and green bands contained adequate data (Figure 5C–G). After
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this partial success, and as expected, the need for artificial illumination was established;
thus, we performed a test using artificial illumination at different heights above the bottom.
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Figure 5. (A) composite image (R, G, B) of Plot A (5 × 5 m); (B) detail of coral colonies of Orbicella
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3.1.3. Artificial Lighting Test

Three orthomosaics were resolved for each O. franksi image set at three different
distances (0.5 m, 0.75 m, and 1 m). The values of 1150 randomly selected pixels over
the coral colony in each orthomosaic were used to test for significant differences among
them. The one-way ANOSIM test (using distances as a factor) pointed to the existence of
significant differences between the 0.5 m distance group and the 0.75 m and 1 m groups
(R = 0.92 for both groups, Global R = 0.561, at a 0.1 significance level), and no significant
differences between the 0.75 m and 1 m groups (R = 0.37, 0.1 significance level). This
was confirmed with the SIMPER test, which revealed tight groups for pixel values at each
distance (average squared distance within groups of 0.4, 0 and 0, for 0.5 m, 0.75 m, and 1 m
distances, respectively) with an average squared distance between groups of 0.89 between
the 0.5 m group and the 0.75 m and 1 m groups.

The statistically significant differences in pixel values between the 0.5 m dataset and
the 0.75 m and 1 m datasets were assessed visually. The closer-distance orthomosaic
had better spatial feature definition in all five bands and its pixel values were higher in
contrast to the farther datasets (variability charts in Supplementary Materials Figures S1–S5,
end member spectral signatures Tables S6 and S7). We established the 0.5 m distance
as the option most suitable for capturing useful pictures on all 5 bands and producing
orthomosaics with at least 4 useful bands. Thus, we proceeded to survey Plot B at that
height, while ensuring the Keldan lights’ beams were correctly pointed to the camera’s
field of view, and the lamps set at full power.
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3.1.4. Underwater Orthomosaic Plot B

The resulting orthomosaic from Plot B, surveyed at 0.5 m from the bottom, had a
0.4 × 0.4 mm/pixel spatial resolution, and bands blue, green, red, and red edge contained
useful data, whereas data from NIR band, once again, was useless for the purposes of
resolving a multispectral band representing accurately the spatial structure of the reef
bottom. The spatial structure of the bottom was preserved in most of the orthomosaic,
except for (a) moving objects (soft corals that rock to-and-fro due to the water movement
of waves or currents); and (b) objects (rocks and coral colonies) that rose markedly above
the bottom, thus were much closer to the lens (Figure 6). The moving objects produced
chromatic aberrations since the brief delay between bands capture allowed for a difference
in the positions of branches amplified by the different position of the lenses, as well as
the different position of the diver. Tall objects were not adequately resolved and showed
significant distortion (Figure 6, green highlighted areas).
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Padina (brown algae), Amphiroa (red calcareous algae) and crustose coralline clgae; (D) Genus Dyctiota
(brown algae), Padina and a second type of crustose coralline algae.

3.2. Supervised Classification

The ultra-high spatial resolution of the resulting orthomosaics facilitates accurate
visual identification of benthic organisms, such as hard corals and zoanthids to the species
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level, types of algae (fleshy brown and red, calcareous green and red, crustose coralline
and filamentous algae), morphotypes of sponges and octocorals, as well as inert substrate
(sand, rubble, calcareous pavement).

The proof-of-concept for the supervised classification of underwater multispectral
orthomosaics included cropping two data subsets from Plot B (B I and B II, Figure 6 pink
highlighted areas), where the spatial structure of the bottom was well preserved and there
were several bottom components represented. A first attempt used data subsets from the
original orthomosaic generated by MetashapePro software (with DN values converted to
reflectance), which produced classifications with adequate accuracy (72.56% average overall
accuracy; to improve the accuracy of the classifications, a Local Sigma filter (9-pixel radius)
was applied to the orthomosaic from which new subsets B I and B II were cropped again.

Twelve different benthos components were visually identified in data subset B I,
whereas only nine were identified in subset B II, although for this, there were three addi-
tional and different components to those in subset B I (Table 2). Training field separability
was calculated using the 20 training fields digitized over each class of benthos components,
for each data subset (Supplementary Materials, Tables S1 and S6), and the values were
deemed satisfactory. Most of the pairwise comparisons on B I (73% of class pairs) and B II
(85% of class pairs) were ≥1.9 on the Jeffries–Matusita and transformed divergence Indexes.

Table 2. Benthic components identified in subplots B I and B II of the orthomosaic, NP = class not
present in subplot.

Class Classes Plot B I Classes Plot BII

1 Coral Agaricia agaricites Coral Agaricia agaricites
2 Coral Orbicella franksi NP
3 Encrusting Sponge Cliona Tenius Encrusting Sponge Cliona Tenius
4 Fire Coral Millepora alcicornis NP
5 Coral Montastraea cavernosa NP
6 Sponge Callispongia vaginalis NP
7 Lead weight NP
8 Algae Genus Dyctiota Algae Genus Dyctiota
9 Algae Genus Padina Algae Genus Padina
10 Red Encrusting Algae Red Encrusting Algae
11 Filamentous Algae Filamentous Algae
12 Octocoral NP
13 NP Encrusting Sponge 1
14 NP Encrusting Sponge 2
15 NP Zoanthid Palythoa caribeorum

Different supervised classification algorithms were applied to both data subsets using
20 training fields per class. The most accurate supervised classification for B I and B II
subsets, preprocessed with the 9-pixel LSF, and post-processed with the majority analysis
were produced with the ML algorithm, with an overall accuracy of 84.37%, and 0.83 for
Kappa and Tau coefficients for subplot B I (Figure 7), and for B II an overall accuracy
of 78.86% and 0.74 for Kappa coefficient and 0.86 for Tau coefficient (Figure 8) (Table 3,
Supplementary Materials Tables S2–S5, S7 and S8).

An additional test compared the supervised classification products of subplot B I with
4-band (R, G, B, RE) vs. its 3-band image subset (R, G, B). Using the same training fields
for 12 classes on both images, we applied the two most accurate classification algorithms
for the 4-band subset (SVM and ML). Average pair separability (Jeffries–Matusita index)
decreased from 1.94 S.D. ± 0.11 for the 4-band image vs. 1.78 S.D. ± 0.33 for the 3-band
image. Classification accuracies also decreased for the 3-band subset (Table 3).
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Table 3. Accuracy assessment values for subplot B I and B II before and after LSF, also compared to
Postclassification (Postcl) applying a majority analysis. SCA, supervised classification algorithm; OA,
overall accuracy; Kappa, Kappa coefficient; Tau: Tau coefficient; SVM; support vector machine; ML,
maximum likelihood; Mh, Mahalanobis.

Original LSF 9-Pixels

Subplot SCA OA Kappa Tau OA Kappa Tau

B I RGBRE
12 classes

SVM 79.00% 0.77 0.77 81.64% 0.79 0.80
ML 79.86% 0.78 0.78 79.86% 0.78 0.78
Mh 64.97% 0.61 0.62 67.26% 0.64 0.64

BI RGB SVM - - - 67.18% 0.63 0.64
12 classes ML - - - 64.12% 0.60 0.61

B I RGBRE
12 cl/Postcl

SVM - - - 82.97% 0.81 0.81
ML - - - 84.37% 0.83 0.83
Mh - - - 69.30% 0.66 0.67

B II RGBRE ML 70.15% 0.65 0.66 72.29% 0.68 0.68
9 classes SVM 68.80% 0.64 0.64 70.17% 0.65 0.66

B II RGBRE ML - - - 78.86% 0.74 0.76
9 c/Postcl SVM - - - 73.84% 0.69 0.70

The adequate separability of benthic components as well as the accuracy of these clas-
sified products, established a basis to attempt the classification of plot B full pre-processed
with LSF, removing the poorly resolved areas by masking prior to the supervised classifica-
tion (Figure 9). A different approach was used to train this masked dataset; in it, 7993 pixels
selected manually trained 14 benthic components (classes) (Table 4). The most accurate
supervised classification product for Plot B full was generated by the SVM algorithm
when applying the majority analysis as post-classification; with an overall accuracy of
82.77%, and Kappa and a Tau coefficients value of 0.81; (Table 5; class separability table
and confusion matrix are reported in Supplementary Materials Tables S9 and S10).

Table 4. Benthic components (classes) identified in the masked dataset (B Full) of the orthomosaic,
and the percentage of cover extracted from the SVM classification.

Class Name Cover Percentage (%)

1 Lead weight 0.86
2 Coral Orbicella franksi 1.59
3 Zoanthid Palythoa caribeorum 5.05
4 Encrusting Sponge Cliona tenius 4.70
5 Fire Coral Millepora alcicornis 0.13
6 Coral Mycetophyllia aliciae 0.99
7 Coral Siderastraea siderea 1.20
8 Coral Porites divaricata 7.09
9 Coral Montastraea cavernosa 14.04

10 Algae Genus Padina 14.00
11 Algae Genus Dyctiota 25.66
12 Filamentous Algae 15.11
13 Red Encrusting Algae 2.06
14 Coral Stephanocoenia intersepta 7.51

Table 5. Overall accuracy, Kappa and Tau coefficients values obtained from classification with
different algorithms of the masked orthomosaic.

Algorithms Overall Accuracy Kappa Coefficient Tau Coefficient

Maximum likelihood 82.46% 0.81 0.81
Neural net 70.40% 0.67 0.68

SVM 82.77% 0.81 0.81
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The error matrices generated from the three most accurate supervised classifications
of Plot B full, using SVM, maximum likelihood, and neural network, were compared by
applying a Z-test on the Tau coefficients to test for significant differences among them.
Z-values consistently less than 1.96 suggest that there are no significant differences among
classification products (Table 6).

Table 6. Z values obtained for the comparison of error matrices of the masked orthomosaic classifica-
tions using the Tau coefficient.

Classification Comparison Z

Maximum likelihood vs. neural net 0.79
Maximum likelihood vs. SVM 0.022

Neural net vs. SVM 0.90

4. Discussion
4.1. RedEdge-M Underwater Operational Limitations

The multispectral orthomosaic from plot A (25 m2) represents the optimal extent
surveyable with this kind of setup, since the autonomy of this camera model (RedEdge-M)
is limited by the maximum SD memory capacity (32 Gb). This memory size translates into
~45 min of imagery collection, although it is possible to extend this time by turning off the
capture of one or more bands, thus using less memory. This scenario would apply in the
case of the NIR band which is of limited usefulness according to our results. As a note, new
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versions of the RedEdge cameras accept larger memory cards (128 Gb) that should allow
for a longer autonomy recording images.

Multivariate tests defined the existence of significant differences between the O. franksi
dataset acquired at 0.5 m distance and the datasets acquired at 0.75 and 1 m distances.
Pixel values were higher on the 0.5 m distance, and visually objects were better represented
in comparison with the orthomosaics at other distances. This optimal distance to the
substrate of 0.5 m to collect useful data on at least four bands (B, G, R, RE) increases the
time needed to survey that area as sweeps are narrower and data require very slow swim-
ming to avoid image blurring. In comparison, other underwater digital photogrammetry
approaches acquire pictures at distances ranging from 1 to 2 m above the bottom using
camera lenses with similar or wider FOV (47.2◦ for RedEdge-M vs. 42◦ to 100◦ for 55 to
18 mm lenses) [12,14,15,44], allowing the photographic survey of plots up to 100 m2 in
roughly the same time.

The optimal acquisition of underwater multispectral data with this MicaSense required
the use of artificial illumination to balance and rectify the amount of light recorded in each
band. This factor reduces the system’s autonomy further, since Keldan lights (Video
8X) have a full-power burn time of ~40 min [51], and other available underwater lights
with similar specifications have even shorter burn times (Light & Motion Sola Video 15K,
35–40 min).

4.2. Artificial Illumination

Regarding the need for artificial illumination, in an experiment under controlled
laboratory conditions, Guo et al. [38,39] measured light detection with a multispectral
sensor at distances up to 2.6 m for blue (420 nm) and yellow (520 nm) bands. Steiner [52]
in a gray-literature article mentions that LED light (90-CRI) signal is still detectable up
to 2.25 m in clear seawater, although reducing colors close to a monochromatic scale,
showing the best color intensity at 0.75 m. Our Plot A was surveyed at a depth of 10 m
without artificial illumination, and at a distance of ~1.8 m from the bottom; accordingly, we
could still collect useful data on the B (475 nm, center wavelength) and G bands (560 nm,
center wavelength).

Our tests on the artificial illumination in the field, on the one hand, empirically
showed that there was no visible illumination effect of the two Keldan lights at full power
positioned 1.8 m above the substrate. On the other hand, the analysis of the scene-relative
reflectance values from the O. franksi colony recorded at different distances found that
1 m and 0.75 m distances provide poor spectral data in bands R, RE, and NIR, and higher
scene-reflectance values are obtained for all bands at 0.5 m, but NIR images at even that
short distance commonly are of very limited use, specifically because the NIR band resolved
in the orthomosaics is mostly blurry noise. The placement of the two Keldan lights to the
sides of, and separated from, the sensor (Figure 3) is optimal to reduce backscatter and
offers the greatest attenuation length values for this underwater imaging system [53,54].

4.3. Spatial Coherence of Multispectral Orthomosaics

The need for geometric calibration of the RedEdge-M camera has been recognized
before [55], and specialized SfM software such as MetaShapePro provides means to carry
out this calibration. Although the resulting orthomosaics using this camera lens calibration
tool offer better spatial structure accuracy, the difference in the lenses position for each
band detector is an unresolved issue, especially for this short-distance approach. The
optimal distance of 0.5 m for acquiring useful multispectral data, established after our field
tests, produces chromatic aberrations by differences in pixel alignment even in adequately
resolved surfaces. These small misalignments do not have a notorious visual impact on the
spatial patterns of the supervised classification products, although they should introduce
errors in the classification by decreasing the user and producer accuracies. Another issue
is non-rigid benthic structures (octocorals, macroalgae canopies above a certain height,
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wandering fish) that move between image captures, and objects too close to the lens (higher
coral colonies) that produce areas in the orthomosaic with poorly resolved features.

4.4. Spectral Accuracy of Multispectral Orthomosaics

Underwater artificial illumination introduces an associated issue, its non-uniform
distribution, producing variations with even small changes in the distance from the bottom,
given by both the motion of the diver operating the system, and the inherent changes
in bottom topography. These variations in the absorption of light in water, driven by
differences in distance, were recorded by the different sensor bands, and were conspicuous
in some parts of other orthomosaics not used in this study. We assume these variations are
also present in plot B and might play a role both in the discrimination of different benthic
components, and in the resulting accuracy of the classifications. Visual analysis of the
SVM classification of plot B Full, reveals an overestimation of the percent cover of coral
P. divaricta, (light blue class in Figure 9), probably due to this non-uniform light distribution.

Although special care was taken to illuminate the substrate with a wide spectrum
light and calibrate the reflectance of the orthomosaics using the CRP, reflectance values in
the multispectral orthomosaic were neither similar nor comparable with known spectral
signatures of reef benthic components (Goodman and Rodríguez Vázquez—unpub. data).
Light variability is the key to this incompatibly, since reflectance data were measured using
a GER-1500 spectrometer, in an environmental light-sealed contraption using halogen
light [56].

The reflectance values in the orthomosaic are quite low. Thus, all spectral information
in the orthomosaic is considered scene-relative reflectance, but still useful for the supervised
classification of reef benthos components. The examples of the spectral signatures of six
different benthic components in Figures S6 and S7 (Supplementary Materials) illustrate
this scene-relative reflectance concept. In Figure S6, reflectance values for the 5 bands
have completely different scales from the values in Figure S7. The two image sets from
where these values were obtained, were collected within 2 min from each other and at
relatively the same depth (−16.5 m), at the measured distances of 0.5, 0.75, and 1 m,
and the orthomosaics were calibrated with the same CRP image dataset. Nevertheless,
the reflectance values of the five benthic components in Figure S7 (three coral species
Agaricia agaricites, Stephanocoenia intersepta and Montastraea cavernosa, one brown algae
genus—Padina, and red encrusting algae) are higher than the values of O. franksi, which are
more in line with the scale of the orthomosaic (plot B) values, but not entirely comparable
among them.

4.5. Additional Spectral and Spatial Caveats

At this point, results identify a tradeoff between correctly resolving benthic features
and robustly characterizing their spectral signatures. While a greater distance of the
multispectral camera to the bottom allows for the correctly resolving benthic components
at different heights from the substrate (Plot A, Figure 5), it introduces two important
issues: The first is the nullification of the main advantage of artificial illumination—higher
scene—relative reflectance values on all bands—due to light attenuation as the signal
decreases with distance. The second is the scattering light effect on the bottom features
which amplifies the variability of natural illumination (sun light) over the substrate [54,57],
given by passing clouds and waves, which at 0.5 m and with the aid of artificial illumination
is not visually noticeable, as the field of view of the camera is saturated by the underwater
lamps (Figure 3). That increase in the variability of natural light and associated signals from
the substrate trumps the assumptions of spectroscopy and optical remote sensing [32,58],
causing uneven (darker vs. brighter) spectral responses of the same substrata (Figure 5).
The DLS information, in theory, could be used to calibrate this variation, since the sensor is
placed towards the back of the housing with the transparent acrylic backplate. Nonetheless,
according to the MicaSense knowledge base [59–61], the use of these DLS data is advisable
only with totally overcast conditions, and not in the rapidly shifting situation mentioned
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above. In future applications of this method, it could be useful to implement corrections
algorithms such as the one proposed by Gracias et al. [62] to remove sunlight flicker for
orthomosaics at higher distances.

4.6. Multispectral Orthomosaic Classification Accuracy and Implications

Usually, as pointed out by Andrefoüet et al. [18], supervised classification accuracy
decreases inversely to the number of classes and the heterogeneity or complexity of the
habitat, i.e., A decrease of 12% in overall accuracy from schemes of 4–5 classes to schemes
of 9–11 classes. For our products, even with the pixel misalignment issue, the supervised
classifications of B I and B II had a high accuracy for 12 and 9 classes, respectively (up
to 84.37% overall accuracy, and 0.83 for Kappa and Tau coefficients), with the capability
of discrimination between objects of very similar spectral signatures, such as different
coral species in subplot B I (Agaricia agricites vs. Montastraea cavernosa, and Orbicella franksi
vs. Montastraea cavernosa with separation values of 1.97 and 1.98 in the Jeffries–Matusita
index respectively), and also between different genus of brown algae in subplot B II (Genus
Padina vs. Dyctiota with 1.91 separation in the Jeffries–Matusita index), along with the
discrimination between other common substrates as filamentous algae, red encrusting
algae, sponges, zoanthids and octocorals. The reported accuracy by Gleason et al. [3] for
supervised classification of multispectral images using 9 to 12 classes, ranges from 70 to
75% and is comparable with the accuracies obtained in this study.

A preprocessing of the multispectral orthomosaics—even as simple as the Local Sigma
Filter—to despeckle ultra-high spatial resolution products consistently helps to enhance the
accuracy of the supervised classifications. This accuracy enhancement can be up to 2.64%
for overall accuracy, and Kappa and Tau coefficients can improve up to 0.2 depending on the
accuracy of the original products; lower accuracy products generally benefit more from this
preprocessing than the products with higher accuracies. Post-processing (majority analysis)
of the supervised classification products systematically enhanced their accuracy, from a
modest 0.6% to a 6.5% in overall accuracy, and 0.1 to 0.6 in Kappa and Tau coefficients
values (Table 3).

These encouraging results led to the classification of full plot B, masking out the
poorly resolved areas; these classifications in general had similar accuracy (up to 82.77%
overall, 0.81 Kappa and Tau coefficients) to the subplots B I and II, but this time using a
classification scheme of 14 benthic components. The comparison (Z-test) between the Tau
coefficients of the classified products did not show statistically significant differences, so
we kept our choice of the SVM classification for the estimation of the percent cover of coral
benthos components.

Complex spatial patterns of benthic components, such as the ones observed in these
subplots where filamentous algae are mixed with brown and red encrusting algae, make the
need for accurate classification approaches (supervised, as well as other pixel and texture-
based methods) of paramount importance to the efficient estimation of their cover. Hard
coral species such as O. franksi, M. cavernosa, and A. agricites, as well as brown macroalgae
Genus Padina and Dyctiota, constitute ecologically important benthic components because
of their role as reef condition indicators if converted to a percentage of cover of hard coral
and macroalgae [63]. As such, the relevance of their user accuracy values, up to 84.37%, on
plots BI and B II validates the possible application of this kind of multispectral products to
assess and monitor the condition of coral reefs.

4.7. Comparison with Hyperspectral Approaches

Underwater remote sensing approaches using hyperspectral imaging systems to
characterize and classify benthic components [34,36,64] are at least one order of magnitude
more expensive (USD + 10 K vs. USD + 100 K), and data are much more complicated to
process. This complex data analysis arises from the magnitude of data associated with
hundreds of hyperspectral bands and to the number of corrections required to obtain
products with adequate spatial geometry; these corrections are needed to measure accurate
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areas (percentage cover of benthic components). Chennu et al. [34], present a supervised
classification of 11 benthic categories, using most of the hyperspectral bands (excluding the
NIR portion as in our case), with an average producer accuracy of 95.7% using an SVM
algorithm. In comparison, our SVM average producer accuracy for the 14 classes on plot
B full was 78.9%. Their approach to supervised classification of an RGB dataset yielded
56.5% in producer accuracy on the same 11 categories vs. our 64.6% on 12 classes for the
RGB subset of B I. Although a direct comparison is not possible due to their approach to
RGB using narrower bands than the RedEdge-M’s: the blue (460 nm), green (540 nm), and
red (640 nm) wavelengths bands, which probably offer too little spectral information.

These comparisons between hyperspectral and multispectral approaches to super-
vised classification of coral reef benthic components provide the following insights. The
hyperspectral datasets have greater discriminant power because of the sheer amount of
relevant data, but the multispectral dataset from the RedEdge-M using narrow bands R, G,
B, RE, do have an adequate discriminant power, higher than the R, G, B datasets (both by
MicaSense and by the hyperspectral sensor), thus highlighting the usefulness of RE band
for this purpose. As a note, with all the caveats pertaining to the scene-relative reflectance,
Figure S7 (Supplementary Materials) shows a higher response of the five spectral signatures
in the RE band, than in the other four bands.

The artificial illumination used on [36] (Keldan Video 8M) is quite similar to our
Keldan Video 8X, enabling their hyperspectral sensor to record spectral data at 700 nm,
at distances ranging from 06 to 1.8 m. The RedEdge-M’s RE band FWHM comprises the
712–723 nm range, and the spectral power distribution curve of the lights reported in [51]
reaches at least 730 nm, although as mentioned above, in our case the distance to the
substrate is a limitative factor for acquiring adequate data on this band.

On the spectral ranges identified in earlier studies to discriminate reef benthos, the
spectral band center proposed by Hochberg and Atkinson [65,66] in the blue region, and
the spectral bands proposed by Holden and LeDrew [33] for green and red regions roughly
correspond to RedEdge-M’s B, G and R bands center wavelength and FWHM. These
long-accepted spectral bands together with the RE band constitute a powerful set for the
classification of coral reef benthic components, reaffirming the usefulness of the proposal by
Gleason et al. [3] for using (10 nm) narrow bands (10 and 20 nm in the case of RedEdge-M)
for this purpose.

4.8. What Can Be Learned from Other Digital Photogrammetry Approaches?

Other underwater digital photogrammetry approaches exist. Some require digitizing
features by hand [14,15] which is time consuming, in addition to the time needed to
resolve the orthomosaics, and in some cases digitizing becomes difficult and results could
have observer bias on areas where different algae types, or algae types and substrata, are
mixed. Advancement in imagery analysis with very high accuracy and tending to the
automatization of features identification and mapping, as the semantic mapping [16,64],
and the segmentation of orthoprojections [67] are promising approaches that probably
constitute the next steps for the analysis of multispectral orthomosaics.

5. Conclusions

A novel approach of using an agricultural multispectral sensor originally developed to
be used on unmanned aerial vehicles is applied to the underwater assessment of reef benthic
features. This approach had its origins in earlier studies suggesting the use of narrow-band
sensors for this purpose, and on the advancement in digital orthomosaics development.
As expected, the spectral information produced by the narrow bands (B, G, R, and RE) of
the MicaSense RedEdge-M allows for the accurate discrimination of benthic components.
One advantage of this approach is the use of the RE band, not present in other underwater
digital photogrammetry approaches (e.g., using only RGB sensors), which enhances the
discrimination of benthic components and could be used in future studies (pigment content,
coral colony health, macroalgae biomass, etc.). The supervised classification of underwater
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multispectral orthomosaics successfully discriminated most of the coral species present in
the area, as well as different types of algae, sponges and zoanthids. This task, however, has
its own challenges, including the lack of specialized hardware, as our prototype system had
to be adapted to an old video housing, and quality artificial underwater lights of sufficient
power had to be added. There is also the issue with the tradeoff between spatially resolving
all the benthic features adequately, and obtaining useful data among spectral bands, as the
optimal distance from the substrate for the latter is about one-third of the optimal distance
for the former. Nevertheless, our proof-of-concept study demonstrates a promising route
to a larger-scale and accurate approach to reef benthos mapping, especially in light of the
advancement and technological improvements in both multispectral sensors technology
and image processing methods.
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