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Abstract: Nowadays, remote sensing datasets with long temporal coverage generally have a limited
spatial resolution, most of the existing research uses the single image super-resolution (SISR) method
to reconstruct high-resolution (HR) images. However, due to the lack of information in low-resolution
(LR) images and the ill-posed nature of SISR, it is difficult to reconstruct the fine texture of HR images
under large-scale magnification factors (e.g., four times). To address this problem, we propose a
new reference-based super-resolution method called a Residual-Dense Hybrid Attention Network
(R-DHAN), which uses the rich texture information in the reference image to make up for the
deficiency of the original LR image. The proposed SR model employs Super-Resolution by Neural
Texture Transfer (SRNTT) as a backbone. Based on this structure, we propose a dense hybrid attention
block (DHAB) as a building block of R-DHAN. The DHAB fuses the input and its internal features of
current block. While making full use of the feature information, it uses the interdependence between
different channels and different spatial dimensions to model and obtains a strong representation
ability. In addition, a hybrid channel-spatial attention mechanism is introduced to focus on important
and useful regions to better reconstruct the final image. Experiments show that compared with SRNTT
and some classical SR techniques, the proposed R-DHAN method performs well in quantitative
evaluation and visual quality.

Keywords: super-resolution; remote sensing; attention mechanism; dense connection mechanism

1. Introduction

With the vigorous development of remote sensing technology, high-resolution (HR)
remote sensing images play an important role in many fields, such as object detection [1,2],
urban planning [3], semantic labeling [4] and object detection [5]. However, most accessi-
ble public remote sensing datasets cannot maintain long-term coverage and high spatial
resolution at the same time. For example, the earliest remote sensing data of Sentinel-2 can
be traced back to only seven years ago. For remote sensing datasets with a time coverage of
more than 20 years, it is usually impossible to maintain a high spatial resolution. To avoid
the huge cost of directly improving satellite imaging equipment, image super-resolution
(SR) technology is proposed to improve the quality of low-resolution (LR) images. The SR
methods based on the interpolation method [6,7] proposed earlier have poor reconstruction
effects. In recent years, people have focused on the field of deep learning [8]. However,
the single image super-resolution (SISR) method based on a convolutional neural network
(CNN) [9–12] cannot accurately reconstruct the HR image texture that has been excessively
damaged due to degradation and its final reconstruction effect is often fuzzy. Although
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the SR method based on GAN [13] considers human subjective visual perception and effec-
tively alleviates the appealing problem, the resulting artifacts have also become another
thorny problem.

Considering that the details of LR image loss can be compensated by the rich informa-
tion in its similar HR reference (Ref) image, the reference-based super-resolution (RefSR)
method [14,15] came into being. Not only does it effectively avoid the ill-posed problem
caused by the SISR method, but also the reconstructed texture is more realistic with the help
of the rich detailed information of the Ref image. Image alignment and patch matching
are two mainstream ideas of recent RefSR methods. In remote sensing SR tasks, HR-Ref
images and LR images can be easily located at the same geographical location through
longitude and latitude matching. Therefore, it can ensure that the image contents of Ref and
LR images have a certain similarity, which further explains the adaptability of the RefSR
method in the field of remote sensing. However, due to different shooting viewpoints and
geographical coordinate deviation, the alignment degree between the Ref image and the LR
image is still not ideal. Therefore, we choose the RefSR method based on patch matching.
Because SRNTT [14] looks for the most similar LR-Ref patch pair in the global scope, it can
deal with the dependence of long distance and ensure the robustness of the model in the
case of serious dislocation between Ref and LR images.

Although the above-mentioned methods have good performance, their results can be
further improved. Different from natural images, the spatial information of remote sensing
images is very large and complex. Therefore, for most SR methods of remote sensing
images, improving the representation ability of the network means that a higher level of
abstraction and better data representation can be obtained. This is very important for the
final reconstruction effect of the LR remote sensing image. To improve the performance of
the model, previous methods usually redesign the model structure, such as deepening the
depth [16], expanding the network width [17] and increasing the cardinality [18], while we
achieve the goal through lightweight mechanisms (such as attention mechanism and dense
connection mechanism) that do not need too much network engineering. Therefore, we
propose a residual dense hybrid attention network (R-DHAN), which integrates feature
information from different levels, reduces the role of unimportant channels and spatial
regions and improves the effective utilization of features. The major contributions are
as follows:

(1) We propose an end-to-end SR algorithm for remote sensing satellite images, called
residual dense hybrid attention network (R-DHAN), which is superior to most classical
algorithms in quantitative and qualitative evaluation.

(2) A spatial attention module (SA) and a channel attention module (CA) are added
to the network. This helps the network have a more flexible discriminative ability for
different local regions and re-examine the importance of different channels. It contributes
to reconstructing the final image.

(3) Based on some lightweight mechanisms, we propose a new residual block named
DHAB, which mainly includes the local feature fusion (LFF) module and convolution
block attention module (CBAM). LFF module makes full use of the current intra-block
features and the original input features, while CBAM uses the interdependence between
different channels and spatial dimensions to re-weight the features with different degrees
of importance. Both of them improve the characterization ability of the network.

In the rest of this article, we briefly review the relevant work in Section 2. The details
of our proposed method are introduced in Section 3. The experimental setup and final
results are provided in Section 4 and our work is summarized in Section 5.

2. Related Work
2.1. SISR

In recent years, SISR algorithms based on deep learning has gradually become the
mainstream. Compared with traditional SR methods, they have made full progress in
improving performance. Dong et al. proposed SRCNN [19] which firstly adopted deep
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learning in SISR by using a three-layer CNN to represent the mapping function, while
SRCNN had outperformed traditional-based methods, Bicubic LR images made the net-
work operate in a high-dimensional space and largely increased the computational cost. To
alleviate the problem, a fast super-resolution convolutional neural network (FSRCNN) was
proposed [20]. Then, Kim et al. proposed VDSR [9] and DRCN [21] successively, which
provided a more easily achieved goal by learning residual mapping instead of directly
generating HR images. The application of the residual blocks (RBs) and dense blocks (DBs)
has raised the performance of SISR to a new level. Among them, the application of ResNet
architecture in SISR evolved into SRResNet [22]. On this basis, EDSR [10] removed unneces-
sary batch normalization (BN) modules and added more convolution layers to the network.
This makes the performance of EDSR better without taking up more computing resources.

However, the above method ignores human visual perception. GAN is an effective
way to solve this problem. SRGAN [22] introduced GAN into the SR field for the first
time and added perceptual loss [23] based on the common loss function. These operations
greatly improved the visual aesthetics of images. On this basis, ESRGAN, proposed by
Wang et al. [24], further improved the network structure, adversarial loss and perceptual
loss and obtained a more realistic reconstruction effect. Compared with ordinary L1 or
L2 loss functions, when the monitoring method is replaced by GAN, the model is often
more visually sensitive, but the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [25] will be reduced accordingly.

2.2. RefSR

Unlike SISR, the RefSR method requires additional input of images with similar
content to LR images to assist the SR reconstruction process, which is called Ref images.
They may come from images taken from different viewpoints, images of different frames in
the same video, network search, etc.

A kind of mainstream method in RefSR follows the idea of image alignment. These
methods aim to improve the alignment of Ref and LR images as much as possible. Land-
mark [26] solves the problem of image alignment through global matching. Wang et al. [27]
proposed a method of non-uniform distortion and repeatedly applied it before feature
synthesis to optimize the Ref image. CrossNet [15] adopts the optical flow alignment
method. When the Ref images and LR images are aligned at different scales, they are input
into the decoder and spliced in the corresponding layer. However, these methods rely too
much on the alignment quality of the image. When the alignment quality declines, the SR
reconstruction effect of LR image is often not ideal, which does not fit well with the remote
sensing task of images taken by different satellites at different viewpoints.

Another kind of mainstream method in RefSR follows the idea of patch matching.
Boominathan et al. [28] first down-sampled Ref image and then matched its patch with
the gradient feature of LR. Zheng et al. [29] applied the method of semantic matching,
replacing simple gradient features with features for matching and then using the previous
SISR method for feature synthesis. SRNTT [14] first extracts the Ref and LR features, which
is completed by the pretraining network VGG. Then these features are divided into small
patches and the most similar texture features are exchanged by calculating the similarity
score between Ref patches and all LR patches. This ensures robustness when the Ref and
LR images are significantly misaligned.

2.3. Methods of Improving Model Performance
2.3.1. Attention Mechanisms

Attention mechanisms first appeared in the field of machine translation. Later, peo-
ple found that CNN has different degrees of importance in different spatial dimensions
and channel dimensions. Using an attention mechanism, we can break the previous phe-
nomenon of treating all dimensions equally by re-empowering different dimensions, so
that neural networks can filter out irrelevant information.
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Attention mechanisms include four main types: (1) channel attention mechanism [30,31],
(2) spatial attention mechanism [32], (3) temporal attention mechanism [33], (4) hybrid
attention mechanism [34,35]. These attention mechanisms can provide different weighted
features according to different directions.

The core idea of the CA mechanism is to use the interdependence between channels to
model and then the characteristics of different channels will be self-adaptive recalibrated.
A typical network of CA mechanisms is Squeeze-and-Excitation Network (SE-Net) [36].
Because of its plug-and-play characteristics, its application in the field of SISR is also very
common. For example, RCAN [37] and MSAN [38] applied the CA mechanism, which
effectively improved the final reconstruction effect of the network, but they did not consider
the role of the SA mechanism. CBAM [39] considers the role of CA and SA at the same time.
It connects the two modules in series so that the network can give consideration to the
influence of channel and space and retain the most useful “location” while paying attention
to the more relevant “content”.

2.3.2. Dense Connection Mechanism

ResNet introduces a shortcut connection for the first time, which makes the structure
available to the model deeper and reduces the difficulty of training. Densenet [40] intro-
duces a dense connection mechanism, connecting each layer with each subsequent layer,
rather than simply connecting a layer. Such an operation has a significant effect on slowing
the disappearance of gradients and enhancing feature propagation. SRDenseNet [41] is the
application of the dense connection mechanism in the SR field. Through dense connection,
the features of the current layer are propagated to all subsequent layers, making full use of
low-level features and high-level features, so that the reconstruction ability of the model has
been greatly improved. In addition, RDN [42] proposed a new residual dense block (RDB),
which combines the dense connection mechanism and the shortcut connection mechanism
and can help the model extract local dense features.

3. Method

Given the good performance of SRNTT when LR image and Ref image are misaligned
to a certain extent, SRNTT is used as the backbone structure in this method. However,
we substantially redesigned the texture transfer structure in two aspects. Firstly, a hybrid
channel-spatial attention mechanism (Figure 1) is added to the original network. This
will be discussed in Section 3.1. Secondly, we replace the original RB with our proposed
DHAB (Figure 2) to further improve the network performance. This will be discussed in
Section 3.2.

As shown in Figure 1a, we retain the feature swapping part of SRNTT. First, we apply
bicubic up-sampling on ILR to obtain the enlarged image ILR↑, which has the same size
as IHR. In order to obtain the Ref image with the same frequency band as ILR↑, we apply
bicubic down-sampling and up-sampling on IRe f with the same scale and get IRe f ↓↑ with a
blur degree similar to ILR↑. As for ILR↑ and IRe f ↓↑ patches, as shown in Figure 1b, we use
the inner product in the neural feature space φ(I) to measure the similarity between neural
features.

Si,j =

〈
Pi

(
φ
(

ILR↑
))

,
Pj

(
φ
(

IRe f ↓↑
))

∥∥Pj
(
φ
(

IRe f ↓↑))∥∥
〉

, (1)

where Pi(·) denotes sampling the i-th patch from the neural feature map and Si,j is the
similarity between the i-th ILR↑ patch and the j-th IRe f ↓↑ patch. The similarity computation
can be efficiently implemented as a set of convolution operations over all ILR↑ patches with
each kernel corresponding to a IRe f ↓↑ patch. Where the position of the IRe f ↓↑ patch with
the highest similarity score corresponding to each ILR↑ patch is denoted as Pmax(x,y). Each
patch in M centered at (x, y) is defined as

Pω(x,y)(M) = Pmax(x,y)

(
φ
(

IRe f
))

, (2)
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where ω(·, ·) maps patch center to patch index.Here we replace the IRe f ↓↑ patch with a IRe f

patch at the same position to preserve the reference information of the original HR. All the
reference patches together constitute the exchange feature map M at this scale.

Figure 1. The network structure comparison of Super-Resolution by Neural Texture Transfer (SRNTT)
and our Residual-Dense Hybrid Attention Network (R-DHAN). (a,b) The feature swapping network
of SRNTT. (c) The texture transfer network of SRNTT. (d) The texture transfer network of our
R-DHAN.

Figure 2. The comparison of the original residual block (RB) and our dense hybrid attention block
(DHAB). (a) RB structure of SRNTT; (b) our DHAB architecture.

The texture transfer network of SRNTT is shown in Figure 1c. The base generative
network takes the RBs as the main body and uses skip connections [16,43]. The network
output λk of layer k can be expressed:

λk+1 = [R(λk‖Mk) + λk] ↑2×, (3)
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where λk denotes ILR, Mk denotes IRe f and R(•) denotes the RBs. The channel connection
symbol is represented by ‖ and the upscaling sub-pixel convolution [44] with 2× scale is
represented by ↑2×. The final reconstruction result SR image is expressed as:

ISR = [R(λk‖Mk) + λk], (4)

Our texture transfer network is shown in Figure 1d. Firstly, RBs in SRNTT are replaced
with DHAB. More details about DHAB are given in Section 3.2. In addition, after λk and
Mk are extracted by DHAB, the weighted feature map is generated by adding the hybrid
channel-spatial attention mechanism and it is merged with the target content by using skip
connection.

3.1. Channel-Spatial Attention Mechanism

Bottleneck Attention Modules (BAMs) and CBAMs are two representative examples
of channel-spatial attention mechanisms. Although they both involve the SA module and
CA module, they are different in the arrangement and combination of these two modules.
BAM keeps the two modules in a parallel structure, while CBAM keeps the two modules
in a series structure. Relevant ablation experiments show that connecting CA and SA in
sequence can bring optimal performance enhancement. Therefore, here we use the idea of
CBAM for reference. After DHAB extracts relevant features, we add channel attention and
spatial attention in sequence. The relevant features extracted by DHAB are affected by the
original features λk to focus on more important and useful areas and content.

In the CBAM module, the feature output f1 after CA module is expressed as:

f1 = Ca( f )⊗ f , (5)

The feature output f2 after the SA module is expressed as:

f2 = Sa( f1)⊗ f1, (6)

where f ∈ Rh×w×c denotes the input feature maps of the CBAM. Ca ∈ R1×1×c denotes
the CA module. Sa ∈ Rh×w×1 denotes the SA module. Moreover, The height, width
and channels of the feature map are represented by h, w and c, respectively. ⊗ denotes
multiplication element-wise.

Ca( f ) = σ
(

MLP
(

Fc
arg( f )

)
+ MLP(Fc

max( f ))
)

(7)

= σ
((

W2

(
W1

(
Fc

avg( f )
))

+ (W2(W1(Fc
max( f ))))

))
, (8)

where Fc
avg denotes the operation of average-pooling in the CA module. Fc

max denotes
the operation of max-pooling in the CA module. MLP denotes a multilayer perception
network. The weights of MLP are denoted by W1 ∈ Rc\t×c and W2 ∈ Rc×c\t, where t
denotes the scale of the number of channels, σ denotes the sigmoid activation function.

Sa( f1) = σ
(

F7×7
(

CAT
(

Fs
mean

(
F
′)

, Fs
max( f1)

)))
, (9)

where Fs
mean denotes the operation of obtaining the mean value of the feature maps. Fs

max
denotes the operation of obtaining the maximum value of the feature maps. Their output
results are two SA maps. CAT denotes the connection operation of SA maps. F7×7 means
convolution with a filter of size 7× 7. σ denotes the sigmoid activation function.

3.2. Dense Hybrid Attention Block

The improvements made by our DHAB compared with the original RB are shown in
Figure 2, mainly reflected in LFF and CBAM.

Since the existence of the BN layer will not have a substantial impact on the super-
resolution task, we deleted the BN layer in the original network to lighten the network
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and further release the memory space of GPU. In addition, extracting and aggregating
features can maximize the use of these features by the network, which can enhance the
characterization ability of the network and further improve the final SR reconstruction
effect. Thus, we have added the LFF module to DHAB. The LFF module can adaptively
fuse some layers in the current DHAB with the preceding DHAB. However, because the
features of the j− lth DHAB are directly introduced into the jth DHAB, resulting in too
many features, we introduce a 1× 1 convolution layer that performs the dimensionality
reduction operation to ensure the constant output dimension. The above operations are
expressed as:

f j,LLF = Sj
LLF
([

f j−1; f j,σ; f j,conv2
])

, (10)

where Sj
LFF denotes the function of 1× 1 convolution layer in the jth DHAB. f j−1 denotes

the output of the jth DHAB. f j,σ denotes the feature maps produced by the activation
function. f j,conv2 denotes the feature maps generated by the second convolution layer in
the jth DHAB. The symbol [•] denotes the concatenation of the feature maps. After the
LFF module, we further apply CBAM to distinguish the importance of different contents
and regions.

4. Experiments
4.1. Experiment Settings

In this section, the datasets used in this paper and the specific experimental details
will be introduced.

4.1.1. Datasets

Since there is no publicly available sensing dataset for super-resolution reference
images, we choose to build our training set and test set using publicly available ArcGIS
online maps and Google Earth images with high resolution. Among them, HR images are
from ArcGIS online map images of Qingdao, China, and Jinan, China, taken in 2017, with a
resolution of 0.8 m. The Ref image is from 2019 Google Earth images with a resolution of
0.5 m. Image acquisition and matching are based on longitude and latitude matching. We
perform bicubic downsampling on HR images with a scale factor of 4 to obtain LR images.
The size of HR and Ref images is 160 × 160 pixels, correspondingly, the size of the LR image
is 40 × 40 pixels. Finally, we obtained 9160 pairs of samples, each pair of samples includes
LR images, Ref images and HR ground real images. Figure 3 shows some examples in the
dataset.

In order to further prove the effectiveness of the proposed model, we will compare
it with the classical algorithm on the open benchmark natural dataset named CUFED5.
It is composed of 11,871 training pairs. Each pair contains an original HR image and a
corresponding reference image at 160 × 160 resolution. Figure 4 shows some examples in
CUFED5.

In addition, we tested our method on the real remote sensing images of the GF-2
satellite, which has a spatial resolution of 2 m. The corresponding Ref images are still
collected from Google Earth.
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Figure 3. Examples from our private training dataset.

Figure 4. Examples from the CUFED5 dataset.

4.1.2. Evaluation Details

During the training of R-DHAN, we set the batch size to 16. The Adam method [45]
with β1 = 0.9 and β1 = 0.99 is used as the optimizer. We set the number of training
iterations of the network to 20 and the initial learning rate to 5× 10−4, reduced by half
every 10 epochs. The above parameter settings are close to SRNTT to ensure fairness. In
addition, our experiments are conducted under the Pytorch framework and two NVIDIA
GTX 1080Ti GPUs are used for model training. Like most SR methods, we use PSNR and
SSIM as evaluation indicators. The higher the score, the better the performance.
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4.2. Comparisons with the Other Methods

In order to verify the effectiveness of our method, we compared our method with
several other methods. The comparison methods include four SISR methods (namely SR-
CNN [19], FSRCNN [20], VDSR [9], EDSR [10]) and one RefSR method, namely SRNTT [14].
We use our private data set and public data set CUFED5 to train and test all models under
the same conditions.

Table 1 shows the mean PSNR and SSIM values of the reconstructed HR images
of our private test set on the ×2 and ×4 enlargement; Table 2 shows the mean PSNR
and SSIM values of the reconstructed HR images of the CUFED5 test set on the ×2 and
×4 enlargement.

Table 1. Our private dataset ×2 and ×4 test results. Best results are in bold.

SRCNN FSRCNN VDSR EDSR SRNTT Ours

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 27.23/0.808 27.95/0.836 28.17/0.844 28.65/0.852 29.10/0.865 29.25/0.869
×4 26.69/0.793 27.08/0.805 27.33/0.814 27.77/0.825 28.01/0.836 28.12/0.839

Table 2. CUFED5 dataset ×2 and ×4 test results. Best results are in bold.

SRCNN FSRCNN VDSR EDSR SRNTT Ours

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 26.45/0.790 26.93/0.798 27.12/0.806 27.40/0.814 27.66/0.817 27.83/0.822
×4 25.33/0.745 25.55/0.756 25.72/0.765 25.93/0.778 26.24/0.784 26.37/0.788

As can be seen from the above table, our method achieved the best performance on
both datasets, which proves the effectiveness of our method.

Figures 5 and 6 show the SR results with scaling factor ×2 on our private test set;
Figures 7 and 8 show the SR results with scaling factor ×4 on our private test set. Through
observation, it can be concluded that: (1) the reconstructed images obtained by the bicubic
method are very fuzzy and a large amount of detailed information is lost; (2) although
SRCNN, FSRCNN, VDSR and EDSR have made great improvements in content details, they
cannot obtain deeper information from LR images, resulting in blurred image contours;
(3) SRNTT can restore better texture details, but the final reconstruction result is still not
ideal due to the low utilization of features between channels; (4) compared with other
methods, our method can show better edge details.

Figures 9 and 10 show the SR results with scaling factor ×2 on CUEFD5 test set;
Figures 11 and 12 show the SR results with scaling factor ×2 on CUEFD5 test set. Areas
with obvious differences are locally amplified. As can be seen in Figure 9, R-DHAN better
restores the detailed texture of the character’s teeth and obtains significantly clearer edges;
in Figure 10, the lines on the door frame are sharper and clearer. Similarly, in Figure 11,
the reconstruction effect of the human nose and mouth is significantly better than other
methods; In Figure 12, the URL watermark below the image is also restored to the greatest
extent in our method. The appeal results show that our method is superior to other methods
in visual quality.
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Figure 5. Visual comparison on example 1 of our private test set with a scaling factor of ×2.

Figure 6. Visual comparison on example 2 of our private test set with a scaling factor of ×2.
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Figure 7. Visual comparison on example 1 of our private test set with a scaling factor of ×4.

Figure 8. Visual comparison on example 2 of our private test set with a scaling factor of ×4.
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Figure 9. Visual comparison on example 1 of CUFED5 test set with a scaling factor of ×2.

Figure 10. Visual comparison on example 2 of CUFED5 test set with a scaling factor of ×2.
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Figure 11. Visual comparison on example 1 of CUFED5 test set with a scaling factor of ×4.

Figure 12. Visual comparison on example 2 of CUFED5 test set with a scaling factor of ×4.

4.3. Ablation Studies

In this section, based on the CUFED5 dataset, we conducted some ablation experiments
to prove the effectiveness of the main components of our proposed method, including
the DHAB module and the CBAM module. Table 3 shows the results of 2× and 4× SR.
By observing that the DHAB module can improve the network performance by 0.14 and
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0.11 dB on different scales, the CBAM can improve the network performance by 0.05 and
0.04 dB on different scales. It can be seen that the DHAB module contributes more to the
improvement of the model than the CBAM and the best performance of the model can be
obtained when the two modules are used at the same time.

Table 3. Ablation studies of different modules for different scales.

Scale DHAB CBAM PSNR/SSIM

×2

× × 27.66/0.817

×
√

27.71/0.818
√

× 27.80/0.820
√ √

27.83/0.822

Scale DHAB CBAM PSNR/SSIM

×4

× × 26.24/0.784

×
√

26.28/0.784
√

× 26.35/0.786
√ √

26.37/0.788

In order to further verify the effectiveness of the DHAB module, we replaced the
DHAB module with the same number of RB, DB and RDB without using the CBAM. The
performance comparison is shown in Table 4.

Table 4. Performance comparison of different residual blocks. Best results are in bold.

With RB With DB With RDB With DHAB

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 27.66/0.817 27.71/0.818 27.74/0.819 27.80/0.820
×4 26.24/0.784 26.28/0.784 26.31/0.785 26.35/0.786

The results in Table 4 show that the DHAB achieves higher PSNR and SSIM, which
proves the powerful characterization ability of the DHAB. Similarly, to further verify the
effectiveness of the CBAM, we replace the DHAB with the original RB. In this case, we
replace the CBAM with the CA block and the SA block, respectively. The performance
comparison is shown in Table 5.

Table 5. Performance comparison of different attention modules. Best results are in bold.

RB+CA RB+SA RB+CA+SA

PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 27.68/0.818 27.67/0.817 27.71/0.818
×4 26.26/0.784 26.25/0.784 26.28/0.784

By observing the results in Table 5, it is easy to conclude that, in terms of model perfor-
mance, the CBAM is stronger than the CA block and the SA block. There is no information
regarding the training steps, for example, the amount of data required to train the network,
convergence tests and complexity. In addition, in Table 6, we report the number of model
parameters, the training time and the inference time of different SISR and RefSR methods.
Compared with the results of SRNTT, we improved the network performance under the
premise of better indicators, which proves the superiority of our method.

We report the number of model parameters, training time and reasoning time of
different SISR and RefSR methods. Compared with the results of SRNTT, we improved the
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network performance under the premise of better indicators, which proves the superiority
of our method.

Table 6. Comparison of model parameters and inference runtime.

Method Param (M) Training Time (h) Inference Time (s)

SRCNN 0.48 18.3 0.0035
FSRCNN 0.30 15.6 0.0027

VDSR 0.67 24.6 0.0046
EDSR 1.08 22.1 0.0133

SRNTT 4.20 28.0 6.8045
Ours 4.16 27.8 6.9232

4.4. Results on Real Remote Sensing Data

In this section, we use remote sensing images from the real world to verify the robust-
ness of our proposed method. The model was trained on our private training set and tested
on the remote sensing images from GaoFen-2. Figures 13 and 14 show the results of ×2 and
×4 enlargements. Even if the spatial resolution of the input LR image is different from that
of the LR image in the training data set, our method can still effectively improve the visual
quality of remote sensing images.

Figure 13. SR results of real of ×2 and ×4 scale factors for the real example 1 of the GaoFen-2 satellite.
(a–d) The results of Bicubic×2, R-DHAN×2, Bicubic×4 and R-DHAN×4, respectively.
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Figure 14. SR results of real of ×2 and ×4 scale factors for the real example 2 of the GaoFen-2 satellite.
(a–d) The results of Bicubic×2, R-DHAN×2, Bicubic×4 and R-DHAN×4, respectively.

5. Discussion

Compared with SRNTT, we obtain better performance without introducing more
parameters. This paper proves that the mixed use of the dense connection mechanism
and the attention mechanism is effective in terms of improving the SR performance of
remote sensing images. However, due to the lack of datasets of multiband remote sensing
images, we did not carry out relevant experiments on them. Therefore, the direction of our
future work is to make datasets of multiband remote sensing images and further verify the
robustness of our methods.

6. Conclusions

In this paper, we propose a new remote sensing image SR network named R-DHAN to
solve the problems of insufficient resolution and blurred details of remote sensing images.
Specifically, we design a dense hybrid attention block (DHAB), which makes good use of
the rich high-frequency information in the multi-level feature map. In addition, we added
a channel-spatial attention block to pay more attention to the more important and difficult
reconstruction areas. A large number of experiments show that our method is superior to
many classical methods in quality and accuracy. In addition, experiments on real satellite
data (GF-2) verify the robustness of R-DHAN.
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BAM Bottleneck Attention Module
BN Batch normalization
CA Channel attention
CBAM Convolution block attention module
CNN Convolutional Neural Network
DB Dense block
DHAB Dense hybrid attention block
DRCN Deeply-Recursive Convolutional Network
EDSR Enhanced Deep Super-Resolution Networks
ESRGAN Enhanced Super-Resolution Generative Adversarial Networks
FSRCNN Accelerating the Super-Resolution Convolutional Neural Network
GAN Generative Adversarial Network
LFF Local feature fusion
MSAN Multiscale Attention Network
PSNR Peak signal-to-noise ratio
RB Residual block
RCAN Residual Channel Attention Networks
RDB Residual dense block
R-DHAN Residual-Dense Hybrid Attention Network
RefSR Reference based super-resolution
SA Spatial attention
SE-Net Squeeze-and-Excitation Network
SISR Single image super-resolution
SRCNN Image Super-Resolution Using Deep Convolutional Networks

SRGAN
Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network

SRNTT Super-Resolution by Neural Texture Transfer
SSIM Structural similarity ratio
VDSR Accurate Image Super-Resolution Using Very Deep Convolutional Networks
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