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Abstract: On 20 July 2021, an extraordinary rainfall event occurred in Henan Province, China,
resulting in heavy waterlogging, flooding, and hundreds of fatalities and causing considerable
property damage. Because the damaged region was a major grain-producing region of China,
assessing crop food production losses following this event is very important. Because the crop rotation
production system is utilized in the region to accommodate two crops per year, it is very valuable
to accurately identify the types of crops affected by the event and to assess the crop production
losses separately; however, the results obtained using these methods are still inadequate. In this
study, we used China’s first commercial synthetic aperture radar (SAR) data source, named Hisea-1,
together with other open-source and widely used remote sensing data (Sentinel-1 and Sentinel 2), to
monitor this catastrophic flood. Both the modified normalized difference water index (MNDWI) and
Sentinel-1 dual-polarized water index (SDWI) were calculated, and an unsupervised classification
(k-means) method was adopted for rapid water body extraction. Based on time-series datasets
synthesized from multiple sources, we obtained four flooding characteristics, including the flooded
area, flood duration, and start and end times of flooding. Then, according to these characteristics, we
conducted a more precise analysis of the damages to flooded farmlands. We used the Google Earth
Engine (GEE) platform to obtain normalized difference vegetation index (NDVI) time-series data for
the disaster year and normal years and overlaid the flooded areas to extract the effects of flooding on
crop species. According to the statistics from previous years, we calculated the areas and types of
damaged crops and the yield reduction amounts. Our results showed that (1) the study area endured
two floods in July and September of 2021; (2) the maximum areas affected by these two flooding
events were 380.2 km2 and 215.6 km2, respectively; (3) the floods significantly affected winter wheat
and summer grain (maize or soybean), affecting areas of 106.4 km2 and 263.3 km2, respectively; and
(4) the crop production reductions in the affected area were 18,708 t for winter wheat and 160,000 t for
maize or soybean. These findings indicate that the temporal-dimension information, as opposed to
the traditional use of the affected area and the yield per unit area when estimating food losses, is very
important for accurately estimating damaged crop types and yield reductions. Time-series remote
sensing data, especially SAR remote sensing data, which have the advantage of penetrating clouds
and rain, play an important role in remotely sensed disaster monitoring. Hisea-1 data, with a high
spatial resolution and first flood-monitoring capabilities, show their value in this study and have
the potential for increased usage in further studies, such as urban flooding research. As such, the
approach proposed herein is worth expanding to other applications, such as studies of water resource
management and lake/wetland hydrological changes.

Keywords: time-series datasets synthesized from multiple sources; Hisea-1 data; characteristics of
flooding; Google Earth Engine (GEE); damaged crop species; yield reduction
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1. Introduction

Extreme precipitation and floods are becoming more frequent under global warming.
Continuously rising temperatures increase the amount of rain that the atmosphere can
hold and cause more water in the air to fall in extraordinary amounts, resulting in natural
disasters, such as floods, droughts, and mudslides; these disasters have become serious
problems for humanity [1,2]. The United Nations Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report on Climate Change states that global warming
will exacerbate the risks associated with extreme events [3]; specifically, the intensity and
frequency of extreme heavy precipitation will increase in midlatitude and humid tropical
regions [4]. Currently, with the increase in extreme precipitation events, floods have almost
equaled earthquakes and hurricanes in terms of economic losses [5]. In China, floods are
one of the most frequent meteorological disasters among different types [1,6]. From 1991 to
2020, the average annual number of people killed or missing due to floods in China totaled
more than 60,000 deaths, and the annual average direct economic loss from floods was
160.4 billion RMB, totaling approximately 4.81 trillion RMB [7]. Rapid flood monitoring
and flood area and duration mapping are thus important initiatives for disaster prevention
and mitigation.

Remote sensing technology is an important tool for monitoring floods due to its many
advantages; for example, these technologies can provide data rapidly and periodically
at large scales [8–12]. There is no doubt that optical remote sensing provides abundant
spectral band information [13,14] and has good applications in classification and water
body extraction tasks [15–17]. However, affected by clouds and rain, these data have
limited application potential for flood monitoring in disasters. However, synthetic aper-
ture radar (SAR) systems offer additional benefits; for example, they are independent of
extreme weather due to their long wavelength and ability to penetrate cloud and rain
particles [18,19]. Moreover, water bodies can be well defined from their backscattering
signatures [20,21]. Thus, SAR systems have become a suitable tool for flood mapping and
are now widely used [22–25].

A single SAR dataset can be used to detect flooded areas because water bodies, whose
surfaces are smooth and typically produce specular reflections (reflecting the radar signal
in the specular direction away from the antenna), obtain very low reflection signals and
appear as dark areas in SAR images [26]. However, to capture dynamic flood information,
a single image is not enough. A large amount of remote sensing image data is required to
make multiple, repeated observations of the flooded area. Currently, several international
Earth observation (EO) initiatives have been set up to provide data and services for flood
response and mitigation [26]. In addition, an optimal satellite constellation design can
also increase the acquisition speed, frequency, and flexibility of data, such as those of the
COSMO-SkyMed [27], TerraSAR-X [28], and Sentinel-1. In China, Hisea-1, as the world’s
first miniaturized commercial C-band SAR satellite, for which the formation of a satellite
constellation is also planned, was launched on 22 December 2020 [29]. Although small in
weight and size, this satellite can produce images at a high spatial resolution of 1 m and
a large observation width of 100 km [29]. Because of these advantages, Hisea-1 has some
initial applications for ocean, land, and emergency event monitoring. For example, after
the Hunga Tonga-Hunga Ha’apai volcano erupted on 15 January 2022, images collected by
Hisea-1 showed that a length of ~3 km2 along Hong’ahaapai Island was almost completely
submerged by seawater [30].

In this paper, we chose the flood caused by the extraordinary rainfall event that
occurred on 20 July 2021 in Henan, China as the study case. This event was the worst
devastating flood in China in recent years; it killed 398 people and affected more than
14.78 million people in 150 county-level areas [31]. According to the “Investigation report
on the ‘720’ exceptionally heavy rainstorm disaster in Zhengzhou, Henan Province”, more
than 1.09 million hectares of crops were damaged, more than 30,600 houses collapsed,
and the cumulative economic losses exceeded CNY 120 billion [32,33]. This extraordinary
rainfall event had the characteristics of a long duration, large coverage, large total rainfall
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amount, and short-term extremely heavy rainfall. To respond to the disaster, eight flood-
storage areas were activated across the province, leading to urban areas in Weihui being
flooded for 7 days. Because Henan Province is one of China’s major grain-producing
provinces, devastating disasters such as floods also have a profound impact on agricultural
production in this region [34].

In response to the 2021 flood disaster, we tested the flood-detection capability of
multisource satellite data, in particular the potential of identifying flooded crop types and
estimating their yield reductions using these data. By choosing Hisea-1 data, which were
first used for flooding monitoring, and other open remote sensing data (Sentinel-1/2), we
synthesized a dataset to identify four characteristics of floods, namely flood duration, area,
start time, and end time. Then, considering a crop rotation system is in use in the study
area, we used normalized difference vegetation index (NDVI) time-series products from
the Google Earth Engine (GEE) platform to extract the crop species and areas damaged by
the flood. According to the crop production statistics, we estimated the crop reduction of
each crop species. The paper is organized as follows: Section 2 describes the study area,
flood information, data adopted, and proposed methodology. Section 3 presents the results
and discussion. Finally, Section 4 provides the conclusions.

2. Study Area and Data
2.1. Study Area

Henan Province, located in the middle and lower reaches of the Yellow River in central
China, is situated from 110◦21′ to 116◦39′E and from 31◦23′ to 36◦22′N [35]. This province
is located in the transition area from the subtropical to warm temperate zone; the average
annual temperature is 15.9 ◦C and the average annual precipitation is 1133.3 mm in 2021.
The province has a total area of 167,000 km2, of which 107,720 km2 is the grain-cropping
area, making it an important grain-producing province in China [36].

In 2021, from 17 to 23 July, Henan Province was hit by historically rare extremely heavy
rainfall. From 17–18 July, rainfall occurred mainly in northern Henan Province (Jiaozuo,
Xinxiang, Hebi, and Anyang); from 19 to 20 July, the center of the rainstorm moved south
to Zhengzhou, where a very heavy, long-duration rainstorm occurred; from 21 to 22 July,
the rainfall center continued to move north again and gradually weakened before ending
on 23 July. Over 24 h (from 08:00 on 19 July to 08:00 on 20 July), the precipitation values
recorded at more than 794 meteorological observation sites exceeded 100 mm across Henan
Province [37]. Especially in Zhengzhou and Pingdingshan, five national meteorological
observation sites broke the extreme daily rainfall records collected since these sites were
established, with daily rainfall values of 250 to 401 mm [38]. In Zhengzhou, the peak hourly
precipitation rate reached 201.9 mm/h at 9:00 on 20 July, exceeding the strongest hourly
precipitation recorded at all observation sites in mainland China [39,40]. Short-term heavy
precipitation led to urban flooding. For disaster-mitigation purposes, the government
activated eight flood storage areas, including Anyang, Tangyin, Neihuang County, and
Wenfeng District in Anyang City, Jun and Qi County in Hebi City, and Weihui and Hua
County in Xinxiang City [33]. Among these storage areas, some are key grain-producing
areas. From remote sensing images and reports, the most severely affected area, mainly
including parts of Xinxiang, Hebi, and Anyang, was selected as the study area (Figure 1).

In addition, as shown in Figure 2, the average annual temperature in the study area
fluctuated between 13.5 and 15.9 ◦C during 1990–2021. However, the annual precipitation
varied from 350 to 850 mm during 1990–2020 and reached 1197 mm in 2021, which was
unusual and a direct factor of this flood.

2.2. Data

Six basic categories of data are used in this study, including multisource remote sensing
data, NDVI data from GEE, land use/land cover (LULC) data, winter wheat-cropping
distribution data in China, digital elevation model (DEM) data, and statistical data.
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Figure 1. Location of the study area, (a) in China, (b) in Henan Province and (c) the Sentinel-2
imagery representing 31 July 2021 over the study area. The figure was plotted by Arcmap10.2
software. (Projection: WGS84-based Universal Transverse Mercator Zone 49N).

Figure 2. Average annual precipitation and average annual temperature in the study area from 1990
to 2021. The figure was plotted by Origin2022 software.

i. Remote sensing data

To obtain accurate information regarding the dynamics of flooding, a dataset consisting
of 13 images was constructed, including Sentinel-1 (S1) SAR images, Sentinel-2 (S2) optical
multispectral images, and Hisea-1 SAR images. Table 1 lists the detailed information of all
images used in this study. The S1 and S2 images were obtained from the European Space
Agency (ESA) (https://scihub.copernicus.eu/dhus/#/home (accessed on 23 December
2021)). S1 is a space mission funded by the European Union and carried out by the ESA

https://scihub.copernicus.eu/dhus/#/home
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within the Copernicus Programme; S1 is in a near-polar, sun-synchronous orbit with a
12-day revisit cycle. It collects C-band SAR imagery at a variety of polarizations (single
polarization, including VV and HH; dual polarization, including HH + HV and VV + VH),
modes (StripMap, SM; interferometric wide swath, IW; extra-wide swath, EW; wave
mode, WV) and resolutions (https://sentinel.esa.int/web/sentinel/missions/sentinel-
1/instrument-payload (accessed on 23 December 2021)). Here, we collected 9 ground-
range-detected (GRD) SAR images taken from 15 July to 19 October 2021 in IW mode
and with a width of 250 km and a spatial resolution of 5 m × 20 m. The data were
preprocessed with ESA SNAP software. First, orbit correction was used to automatically
update the orbit status information; then, thermal noise removal was used to remove the
effect of thermal noise in the images; third, radiometric calibration was used to eliminate
radiometric errors [41]; fourth, multilooking and filtering was used to remove speckle noise
and improve image interpretability [42]; finally, geometric correction was performed to
eliminate geometric errors.

Table 1. Information on the remote sensing data used in this study.

Number Date
(Acquisition Time) Data Source Product Type Imaging Mode Process Level

1 2021.07.15 Sentinel-1A GRD IW Level-1
2 2021.07.25 Hisea-1 ORG SM Level-2
3 2021.07.27 Sentinel-1A GRD IW Level-1
4 2021.07.31 Sentinel-2B — — Level-1
5 2021.08.08 Sentinel-1A GRD IW Level-1
6 2021.08.13 Hisea-1 ORG SM Level-2
7 2021.08.20 Sentinel-1A GRD IW Level-1
8 2021.09.01 Sentinel-1A GRD IW Level-1
9 2021.09.09 Sentinel-2B — — Level-1
10 2021.09.13 Sentinel-1A GRD IW Level-1
11 2021.09.25 Sentinel-1A GRD IW Level-1
12 2021.10.07 Sentinel-1A GRD IW Level-1
13 2021.10.19 Sentinel-1A GRD IW Level-1

In addition, two cloud-free S2 images taken on 31 July and 9 September 2021 were
selected. These S2 satellites were obtained on a sun-synchronous orbit with a 10-day
revisit time and a swath width of 290 km (https://sentinel.esa.int/web/sentinel/missions/
sentinel-2 (accessed on 23 December 2021)). The multispectral instrument (MSI) carried on
the satellite can obtain optical images with a spatial resolution of 10–60 m and 13 spectral
bands ranging from the visible (VNIR) and near infra-red (NIR) bands to the short wave
infra-red (SWIR) band. Two images were preprocessed for radiometric calibration and
atmospheric correction in ESA’s Sen2cor (v2.10) plug-in.

Emphatically, two SAR images from the Hisea-1 satellite, the first commercial SAR
satellite in China, were collected. The Hisea-1 satellite has a sun-synchronous circular
orbit with an altitude of 512 km and an inclination angle of 97.43◦, with four modes: the
spotlight (SP), sliding spotlight (SSP), StripMap (SM), and ScanSAR (NS/ES) modes. In
this paper, we selected SM-mode GRD images taken on 25 July and 13 August 2021 with a
ground resolution of 3 m and then preprocessed the data with ENVI software (version 5.6),
performing multilooking, filtering, geocoding, and registration steps.

All remote sensing images were coregistered (we coregistered the S1 and Hisea-
1 images and ensured that the overall positional error was less than 0.5 pixels for the
S2 images). The images from S1 and Hisea-1 were resampled to a 10 m resolution.

ii. NDVI data from GEE

The normalized difference vegetation index (NDVI) is one of the widely used vege-
tation indices, which can reflect the vegetation growth status and cover [43]. To analyze
the crop growth characteristics before and after the flood, we calculated and averaged
monthly NDVI values for each pixel from July 2020 to June 2022. S2 optical image datasets

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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with less than 20% cloudiness taken within the study area were selected on the GEE
platform (Equation (1)):

NDVI =
BNIR − Bred
BNIR + Bred

(1)

where BNIR is the NIR band (band 8) and Bred is the red band (band 4) in the S2 multispec-
tral imagery.

iii. LULC data

To extract information regarding the cropland impacted by flooding and analyze the
yield losses, LULC data were adopted and overlaid with flooding inundation information.
In this study, the 2020 World Cover product from ESA was used (Available from https:
//ceos.org/gst/worldcover.html (accessed on 23 December 2021)), with a 10 m spatial
resolution and 11 land cover classes, including trees, shrublands, grasslands, croplands,
built-up lands, barren vegetation, snow and ice, herbaceous wetlands, moss and lichen,
open water, and mangroves. The overall accuracy of the product is 75%.

iv. DEM data

To remove speckle noise arising due to topography from the SAR images, DEM data
named the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) Version-3 (ASTGTM) were used; these
data have a spatial resolution of 1 arc second (corresponding to an approximately 30 m
horizontal span at the equator) (https://lpdaac.usgs.gov/products/astgtmv003/ (accessed
on 23 December 2021)).

v. Winter wheat cropping distribution data in China

To extract the areas in which grain crops are grown in the flooded farmland areas,
a 30-meter-resolution dataset comprising the planting distribution of winter wheat in
China in 2020 was obtained from the National Ecosystem Science Data Center (website:
http://www.nesdc.org.cn/ (accessed on 23 December 2021)). This dataset covers the
cropping distribution of winter wheat in 11 provinces of China from 2016 to 2020, with an
overall identification accuracy of 89.88% [44].

vi. Statistical data

To analyze the multi-year temperature and precipitation trends in the study area, we
collected annual precipitation and annual average temperature data from NOAA for the
Anyang station from 1990 to 2021 (available at https://www.ncei.noaa.gov/maps/annual/
(accessed on 23 December 2021)).

Similarly, to analyze the crop production reductions, regional statistical crop type
and average annual production data were collected from the Henan Provincial Bureau
of Statistics (available at https://tjj.henan.gov.cn/ (accessed on 23 December 2021)) and
Henan Provincial Department of Agriculture and Rural Affairs (available at https://nynct.
henan.gov.cn/ (accessed on 23 December 2021)).

2.3. Methods

In this study, we intended to use multisource remote sensing data to monitor the
extraordinary rainfall event that occurred on 20 July 2021 in Henan by extracting the flood
inundation extent, performing an integrated analysis of the flood dynamics, and identifying
the crop types and yield losses influenced by flood inundation using NDVI time-series data.
The entire integrated process of the whole study, shown in Figure 3, was constructed by a
few basic steps: (1) data collection and preprocessing (described in Section 2.2); (2) water
area extraction; (3) flood characteristic detection; and (4) crop damage information analysis.

https://ceos.org/gst/worldcover.html
https://ceos.org/gst/worldcover.html
https://lpdaac.usgs.gov/products/astgtmv003/
http://www.nesdc.org.cn/
https://www.ncei.noaa.gov/maps/annual/
https://tjj.henan.gov.cn/
https://nynct.henan.gov.cn/
https://nynct.henan.gov.cn/
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Figure 3. Flowchart of the flood feature extraction and crop loss analysis methods performed for the
20 July 2021 extraordinary rainfall event in Henan, China.

� Water area extraction

When extracting the area of a water body, the first task to be considered is elimination
of the impacts of mountain shadows and terrain undulations in SAR images because hill
shadow regions generate dark areas in SAR images that can easily be confused with water
surfaces [45]. In this study, based on DEM data, we used a decision tree classification
method supported by ENVI (version 5.3) software to conduct hill shadow removal. It is
known that a high gradient can cause flood waters to wash straight away and thus does
not cause flood water storage. Therefore, based on the slope classes stated in the Interna-
tional Geographical Union Commission on Geomorphological Survey and Mapping, the
areas with slopes greater than 15◦ were identified as steep-slope areas and were removed.
Conversely, areas in which the slope was lower than 15◦ were reserved for the water area
extraction [46].

Second, three different approaches were utilized to extract the water areas from the
three types of remote sensing data. For the S1 SAR images, the Sentinel-1 dual-polarized
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water index (SDWI) proposed by Jia et al. was calculated to extract the water body by
increasing the difference between the water areas and background using Equation (2) [47]:

KSDWI = ln(10 · VV · VH)− 8 (2)

where KSDWI is the SDWI value, VV is the pixel value from the VV polarization mode, and
VH is the pixel value from the VH polarization mode.

For the S2 optical images, the modified normalized difference water index (MNDWI)
was calculated to extract the water area, as described in Equation (3) below [48]:

MNDWI =
BGreen − BSWIR
BGreen + BSWIR

(3)

where BGreen is the green light band (band 3) and BSWIR is the SWIR band (band 11) in S2
multispectral images.

Then, the threshold segmentation method was adopted to extract water bodies based
on different water indexes. To set suitable threshold values, sample areas of water bodies
and non-water bodies were selected; then, frequency distribution histograms of the sample
pixels were plotted. By using histogram bimodal methods [49], the suitable threshold of
each image was calculated; the thresholds were then used to obtain the water body area by
segmenting the SDWI water body index images and MNDWI water body index images.

Since Hisea-1 is a single-polarized C-band SAR satellite, it is not applicable for calcu-
lating SDWI. Therefore, an unsupervised classification approach was used to extract the
water bodies from the Hisea-1 images. This is because unsupervised classification meth-
ods can use only information from the image pixel and cannot consider prior knowledge.
Among these unsupervised classification approaches, the k-means clustering technique was
adopted in this study to extract the water area; this method is the most well-known and ef-
fective self-organization clustering algorithm and was proposed by Hartigan and Wong [50].
It uses distance as a similarity indicator and the sum of squares of errors from sample points
of category centers as the evaluation indicator of the clustering quality and minimizes the
sum of squares function of the overall classification by an iterative method [51].

� Flood characteristics detection

After obtaining water areas from 13 remote sensing images, we integrated the results
on a temporal scale. For each pixel, we calculated the first and last times the pixel was
covered by flood waters to identify the flood start time, end time, and duration and to map
the flood dynamic.

� Crop damage identification

As previously mentioned, there is a large amount of agricultural land in the flood-
affected area. At the same time, crop rotation has been used in these regions, meaning
that maize is planted in summer (July–September) and wheat is planted in autumn (from
October to June of the following year). Due to the long duration of the studied flood, it
was important to determine exactly which kinds of crops were affected and the extent to
which production was reduced. With the help of the GEE platform, we extracted NDVI
time-series variation for each pixel within the flooded farmland areas (based on the LULC
data) from the NDVI time-series datasets from July 2020 to June 2022. We analyzed the
NDVI time-series curve during the crop growth process before and after flooding to identify
the areas affected by flooding containing maize, wheat, or both. After the areas and types
of crops damaged by the flood were extracted, the statistical data were used to estimate the
crop production losses in the study area.

3. Results and Discussion
3.1. Spatial and Temporal Changes in the Flooded Area

Using the method described above, we obtained dynamic information on the flood
caused by the 20 July 2021 extraordinary rainfall event in Henan, China. Figure 4 illustrates
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the spatial distribution of the flooded area over time, and Figure 5 provides statistics on the
extent of the flooded area. From these two figures, we found that the study area suffered
a total of two major flooding events during the disaster. The first flood began at least by
25 July (meaning that the images from Hisea-1 had observed the flood by this date; due
to coverage limitations, these images did not cover the whole study area, so the observed
flood area may be incomplete), which then gradually expanded and reached a maximum on
31 July, with an area of 380.2 km2. After 31 July, the flood began to recede rapidly, reaching
a minimum area of 65.4 km2 by 1 September. However, the area of flooding was small at
this time, and the flood had not completely subsided. By 13 September, an 81.0 km2 area
was still flooded. Then, the second flood followed, causing the flooded area to rapidly
increase and reach a maximum area of 215.6 km2 on 25 September. Thereafter, the flood
receded rapidly; the flooded area was 146.0 km2 on 7 October and had largely receded
by 19 October.

Figure 4. Flood spatial distribution maps caused by the 20 July 2021 extraordinary rainfall event
in Henan, China. The figure was plotted by Arcmap10.2 software. (S1: Sentinel-1 SAR data;
S2: Sentinel-2 optical data).

Figure 6 illustrates a superimposed map of the surface water extraction results obtained
for two floods; the map indicates the flood inundation duration for each pixel. According to
Figure 6, the more severely affected areas were mainly located on the banks of the Wei River
and the Communist Canal, which are also the main flood storage areas. Taking the first
flood as an example (Figure 6a), the flood durations within the Xinxiang City boundary on
both sides of the Wei River were relatively short, lasting approximately 12 days. However,
the flood durations in areas within the Hebi City boundary on both sides of the Wei River
were longer, with most lasting more than 15 days and the flooding in some areas lasting up
to 45 days. The main reason for this was that the Wei River basin within the Hebi section
was affected by several dike breaches caused by heavy rainfall and flood diversions [52].
During the second flood, the flooding in areas located in Hebi City around the Wei River
still lasted a relatively long duration (approximately 13 days); however, only a few regions
flooded for longer periods (more than 30 days).
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Figure 5. Flooding area statistics based on Sentinel1, Sentinel-2, and Hisea-1 remote sensing data for
monitoring the extent of flooding caused by “the 20 July 2021 extraordinary rainfall” event in Henan,
China. The figure was plotted by Origin2022 software.

3.2. Assessment of Crop Production Losses in Flooded Areas

As Henan Province is a major grain-producing province in China and, according
to related news reports, the main flood storage areas include key grain-producing areas
in Henan [53], it is essential to assess the impact of floods on grain production in this
region. Based on the acquired LULC map in 2020, winter wheat cropping distribution data,
and statistical data in Henan, we extracted the grain crop planting areas affected by this
heavy rainfall event, as shown in Figure 7. The area of farmland affected by this flood was
364.35 km2, of which 313.83 km2 comprised grain-cropping areas, accounting for 86.1%,
and 50.25 km2 comprised cash-cropping areas, accounting for 13.9%. Among the crops
grown in this region, food crops include winter wheat, corn, soybeans, and rice, and cash
crops refer to peanuts, cotton, rapeseed, and other crops [54].

Henan has a temperate monsoon climate, and most of the farmlands in this region
uphold a double cropping system; Henan is the main wheat-corn rotation planting area
in north-central China [55]. Based on statistical data, maize and soybean are planted from
July to September each year, and winter wheat is planted from October of one year to
June of the next year. The 20 July 2021 heavy rainfall event resulted in inundation with
different durations in different regions, among which the longest duration was nearly
3 months, covering the growing season of the autumn crop and the corresponding wheat-
sowing period.

As shown in Figure 8, in general, maize and soybean are sown in mid–late June,
followed by seedling rearing and growth, and NDVI peaks in September. Then, as crops
mature, the chlorophyll content begins to decline, and NDVI gradually decreases [56].
From July to September 2021, the NDVI values of most areas were below 0.2, except for
a few small areas with relatively short inundation durations. Considering that the NDVI
value was greater than 0.2 in the same period of 2020, the NDVI value of 0.2 in September
2021 was chosen as the critical threshold to extract the affected autumn grain crop areas,
with a statistical area of 263.3 km2. Combined with the statistical data, the yield per unit
area of food crops in autumn 2020 was found to be 606.82 t/km2, meaning that the study
area experienced a loss of 160,000 t of grain crop production in autumn due to the floods.

As shown in Figure 8, the winter wheat NDVI peaks in April each year as wheat enters
the tassel stage. In April 2021 (before the flood), the monthly average NDVI in the study
area reached 0.6, while, in April 2022 (after the flood), the monthly average NDVI values
were generally distributed at approximately 0.4, indicating that the flood adversely affected
the winter wheat yield in the following year. According to the statistics, the area with
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monthly average NDVI values greater than 0.4 in April 2021 was 305.84 km2, accounting
for 97% of the total planted area. However, the area with monthly average NDVI values
greater than 0.4 in April 2022 was only 207.4 km2, meaning that at least approximately
106.4 km2 of winter wheat yield in the study area would be reduced due to flooding. In
addition, it is common to use an NDVI value of 0.2 to distinguish bare land from green
vegetation [57]; therefore, a monthly average NDVI value of 0.2 in April 2022 was chosen
as the threshold to extract the winter wheat extinction area. Therefore, at least 28 km2 of
winter wheat faced extinction. Combined with the 2021 summer grain crop production per
unit area of 668.1 t/km2, the loss of at least 18.7 kt of winter wheat occurred in 2022 within
the study area.

Figure 6. Spatial distribution and duration of inundation of the first flood (from 26 July to 1 September)
(a) and for the second flood (from 1 September to 19 October) (b). The figure was plotted by
Arcmap10.2 software.
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Figure 7. The inundated grain crop and cash crop planting areas were extracted by overlaying the
2020 LULC map and winter wheat planting distribution map of the study area with the inundated
areas on 31 July 2021. The figure was plotted by Arcmap10.2 software.

Figure 8. (a–f) are the seasonal variation in NDVI per pixel in different regions of the study area. The
light gray lines indicate the NDVI value for each pixel within the cropland-covered flooded area in the
corresponding hotspot area from July 2020 to June 2021; the black line indicates the averaged NDVI
of all pixels within the corresponding region from July 2020 to June 2021; the light pink lines indicate
the NDVI for each pixel within the cropland-covered flooded area in the corresponding hotspot area
from July 2021 to June 2022; and the red line indicates the averaged NDVI of all pixels within the
corresponding region from July 2021 to June 2022. The figure was plotted by Python3.9 software.



Remote Sens. 2022, 14, 5771 13 of 17

3.3. Advantages of Hisea-1 Data

Heng used S1 and S2 data to analyze the extent of flooding and perform automatic ex-
traction of this flood using a threshold method with machine learning classification, which
focused on a comparison of the effectiveness of the two methods of water extraction [58];
Zhang et al. used CYGNSS data to monitor the extent of flooding in Henan Province during
heavy rainfall in 2021 and validated the results using SMAP [59]; Wang et al. used the GF-3
SAR data to statistically analyze the changes in urban water information in Zhengzhou City
in July 2021 [60]. Based on the above, it is essential to use high spatial and temporal resolu-
tion data to monitor a flood and to assess the damage after the disaster; moreover, high
spatial and temporal resolution SAR data is one of the most powerful means to monitor a
flood at present.

Hisea-1 SAR data have the advantages of a high resolution and cloud penetration and
are independent of time and extreme weather; thus, these data play an irreplaceable role
in the flood disaster monitoring process. In this study, the earliest flooding imagery data
were acquired by Hisea-1 after the disaster occurred. Although Hisea-1 data unfortunately
cannot fully cover the affected area, we still cannot ignore the important role played by these
high-resolution SAR images in our disaster monitoring research. As shown in Figure 9,
compared to the S2 optical imagery, Hisea-1 can monitor the spatial and temporal dynamics
of flooding in real time without interference from meteorological conditions when faced
with flooding conditions; compared to S1 SAR imagery, Hisea-1 can identify small rivers,
roads, bridges, and flooded areas in cities and can provide an important basis for timely
and efficient rescue work. In particular, urban flood monitoring, which is mainly caused
by accumulation of large amounts of precipitation in a short period of time, results in a
large number of deaths [61]. With the launch of the Hisea-2 satellite on 11 June 2021 and
the construction of the satellite constellation, these satellites will largely reduce the revisit
times of the collected data for disaster monitoring. Although this is beyond the scope of
this study, we believe that Hisea-1 will provide important support for urban flood research
and other disaster monitoring work in the future.

Figure 9. Comparison of the Hisea-1 image-extracted water area on 25 July 2021 and the S1 SAR
image-extracted results on 27 July 2021. The figure was plotted by Arcmap10.2 software. (a1,b1) are
the partial areas of Hisea-1 SAR image on 25 July 2021, (a2,b2) are the results of water area extraction
based on Hisea-1 image. (a3,b3) are the corresponding areas of (a1,b1) of the Sentinel-1 SAR image on
27 July 2021, (a4,b4) are the results of water body extraction based on the original Sentinel-1 image.
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3.4. Result Validation and Uncertainty Analysis

For the water body extraction results, we used ENVI software (version 5.3) to analyze
the accuracy of the results by constructing a confusion matrix with the test samples obtained
from the visual interpretation of satellite images. We selected two S1 SAR images, one S2
optical image, and one Hisea-1 SAR image for accuracy validation. The overall accuracies
were all greater than 90%, and the Kappa coefficients were all greater than 0.9, indicating
that the extraction results were reliable. In addition, regarding the statistics of the water
body area, the maximum flooded area extracted by Heng et al. was 322.47 km2 on 31 July
2021, which was consistent with our results [58].

Despite the efficiency of our chosen method, some uncertainties remained. For ex-
ample, the water body thresholds were extracted by the water body index method. For
the S1 SAR images and S2 optical images, we used the water body indexes to increase the
difference between water bodies and non-water bodies and used the histogram bimodal
method to select the appropriate threshold with which to extract water bodies, making
the extraction results somewhat subjective. In the future, automatically self-adaptive
threshold-selecting methods might be considered to reduce the associated errors. In addi-
tion, methods using DEM data to build a three-dimensional (3D) terrain model area and
extract the inundation depth could also be considered, which would benefit the subsequent
flood damage analysis.

In future studies, long-time-series remote sensing images together with spectral anal-
ysis should be considered to accurately identify crop species. After that, by using field
experiments or light use efficiency models, the GPP or NPP of damaged crops should be
estimated as this would allow the yield losses of crops to be estimated more accurately. In
addition, a hydraulic model of flood characteristics and crop production losses could be
considered to explore the specific relationship between flood characteristic indicators and
crop production losses. Finally, high-resolution SAR and optical remote sensing images
should be developed and promoted continuously to monitor urban flooding caused by
heavy rainfall in a timely and accurate manner and to respond quickly to protect people’s
lives and property to the greatest possible extent.

4. Conclusions

In this study, to monitor the flood induced by the 20 July 2021 extraordinary rainfall
event in Henan Province, we constructed a multisource dataset of two S2 optical, nine
S1 SAR, and two Hisea-1 SAR remote sensing images. Based on the constructed dataset,
we adopted the histogram threshold segmentation method with the MNDWI and SDWI
and the k-means clustering method to extract the water body area from each image. Then,
by integrating the water body extraction result, the flood dynamic characteristics were
obtained, including the flood start time, end time, duration, and area.

We found that flooding began by at least 25 July and did not recede completely until
19 October; overall, the flood consisted of two flood processes and lasted for almost three
months. The area of the first flood reached a maximum expanse of 380.2 km2 on 31 July
and gradually receded by 1 September. Regarding the second flood process, an area of
215.6 km2 was flooded on 25 September. The spatial distribution map shows that the
flooded areas were distributed near the banks of the Wei River and the Communist Canal,
and most of these regions were farmland areas.

After combining the NDVI time-series data from GEE with LULC data and statistical
data, the area and yield losses of damaged croplands caused by this heavy rainfall event
were identified as follows: (1) approximately 263.3 km2 of autumn grains faced extinction
in 2021, directly resulting in a loss of approximately 160,000 t of autumn grain production;
(2) combined with the per unit area yield of summer grain crops in 2021 (668.1 t/km2), the
2022 winter wheat yield in the study area decreased by at least 18,700 t.

In this study, we used remote sensing images to extract the spatial and temporal
variation characteristics of affected crops and combined the results with NDVI time-series
data to monitor the growth of crops after the analyzed flooding event. Compared to the
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traditional statistical methods by which yield losses of affected food crops are quantified,
our method was more accurate and effective in determining the type and area of affected
crops. In the future, by considering long-time-series remote sensing data, spectral analyses,
and multiple vegetation indexes, more accurate affected crop-type identifications and yield
loss estimations will be conducted.

Finally, we also tested whether application of Hisea-1 SAR data, due to its high resolu-
tion and all-weather capabilities, will play an important role in future disaster monitoring,
especially for disasters such as urban flooding. In addition, the large revisit interval of this
satellite is still a shortcoming in disaster monitoring applications. With the completion of
the satellite constellation, researchers will be able to obtain more detailed information on
the dynamic changes associated with disasters in future disaster monitoring work.
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