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Abstract: Blue spaces (or water bodies) have a positive impact on the built-up environment and
human health. Various open and high-resolution land-use/land-cover (LULC) datasets may be used
for mapping blue space, but they have rarely been quantitatively evaluated and compared. Moreover,
few studies have investigated whether existing 10-m-resolution LULC datasets can identify water
bodies with widths as narrow as 10 m. To fill these gaps, this study evaluates and compares four
LULC datasets (ESRI, ESA, FROM-GLC10, OSM) for blue space mapping in Great Britain. First, a
buffer approach is proposed for the extraction of water bodies of different widths from a reference
dataset. This approach is applied to each LULC dataset, and the results are compared in terms of
accuracy, precision, recall, and the F1-score. We find that a high median accuracy (i.e., >98%) is
achieved with all four LULC datasets. The OSM dataset gives the best recall and F1-score. Both the
ESRI and ESA datasets produce better results than the FORM-GLC10 dataset. Additionally, the OSM
dataset enables the identification of water bodies with widths of 10 m, whereas only water bodies
with widths of 20 m or more can be identified in the other datasets. These findings may be beneficial
for urban planners and designers in selecting an appropriate LULC dataset for blue space mapping.

Keywords: water body; land cover; land use; open data; OpenStreetMap

1. Introduction

The term “blue space” is used in the field of urban planning and design to refer to
different kinds of water bodies (e.g., rivers, lakes, reservoirs, canals, open sea) in an urban
built-up environment [1]. Extensive studies have reported that blue space has a positive
impact in terms of reducing air pollution [2,3] and the urban heat island effect [4,5], as well
as improving the physical and mental health of human beings [6–8]. The monitoring of
urban blue space is also essential for achieving the 2030 Sustainable Development Goals
(SDGs) adopted by the United Nations [9–11], i.e., SDG 6 (clear water and sanitation) and
SDG 11 (sustainable cities and communities). It is therefore desirable to acquire suitable
geospatial data for blue space mapping in order to support various applications.

Different data sources can be used for blue space mapping. Most existing studies used
remote sensing (RS), i.e., the acquisition of information about an object (e.g., water body)
without any physical contact with the object. For instance, Huang et al. [12] combined pixel-
and object-based machine learning methods to identify water bodies from 2-m-resolution
GeoEye-1 and WorldView-2 imagery, while Chen et al. [13] proposed a deep learning
architecture for extracting urban water bodies from high-resolution (4–5 m) ZY-3 images.
Chen et al. [14] recently proposed a method for detecting open water in urban areas based
on high-resolution RS imagery. However, the use of RS requires a series of preprocessing
steps (e.g., data acquisition, rectification, detection, and/or identification), which remains
a technical challenge for most planners and designers. As an alternative, open land-
use/land-cover (LULC) data products or geospatial data edited by global volunteers (e.g.,
OpenStreetMap, or OSM) have become essential sources for acquiring data related to water
bodies. For instance, Feranec et al. [15] determined the changes and flows in European
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landscapes between 1990 and 2000 based on the CORINE LULC data produced by the Land
Monitoring Service. Teixeira et al. [16] used the CORINE LULC data to identify the forces
driving changes in land cover, and Nowosad et al. [17] used the CCI-LC dataset, produced
by the European Space Agency Climate Change Initiative, to quantitatively assess changes
in land use (including crop, forest, grass, urban, water, and wetland) at a global scale.
Recently, Long et al. [18] and Zhou et al. [19] have used the Finer Resolution Observation
and Monitoring of Global Land Cover (FROM-GLC) dataset to investigate the spatial
pattern of urban green space (all kinds of vegetations in an urban area, e.g., forest, grass,
and shrub) at a global scale. Jakovljević et al. [20] used water bodies extracted from OSM
data as a reference for comparison with water bodies extracted from different RS images
(Sentinel-2, Landsat 8, and RapidEye). Luo et al. [21] used both the Joint Research Centre’s
Global Surface Water (JRC GSW) dataset and OSM data to study long-term (2008–2018)
changes in the Yangtze River basin.

There are several benefits of using open LULC datasets for extracting urban water
bodies. First, these datasets are generally produced by either non-profit organizations
(e.g., Land Monitoring Service and European Space Agency) or global volunteers and
are thus freely acquirable. Second, most open LULC datasets (e.g., CCI-LC and OSM)
have global coverage, making it possible to acquire data related to urban blue space or
water bodies at both regional and global scales. Third and most important, it is easy for
planners and designers to extract water bodies from open LULC datasets, i.e., selecting
one or several LULC types as water bodies. Compared with RS techniques, there are
few technical challenges in using open LULC datasets. Despite the above-mentioned
advantages, there are several limitations to open LULC data. First, an increasing number
of open LULC datasets are becoming available. Although some studies have focused
on comparing different LULC datasets [22,23], to the best of our knowledge, few studies
have investigated how well these open LULC datasets perform in terms of blue space
mapping and which dataset offers the optimal performance. Additionally, several 10-m-
resolution (currently the highest spatial resolution) open LULC datasets (e.g., Esri 2020
Land Cover, ESA WorldCover, and FROM-GLC10) have recently been published for public
use. Theoretically, it is possible to identify small water bodies as narrow as 10 m, but
few studies have investigated whether a 10-m-resolution LULC dataset can identify water
bodies of this size. The answers to the above-mentioned questions may be beneficial for
planners and designers in selecting appropriate LULC datasets for blue space mapping.

To fill the above-mentioned research gaps, this study has two main objectives.

1. Evaluate and compare a total of four global open LULC datasets (Esri 2020 Land
Cover, ESA WorldCover, FROM-GLC10, and OSM) for urban blue space mapping,
and determine which datasets give the best/worst performance.

2. Investigate whether a 10-m-resolution LULC dataset can identify water bodies with
a width of 10 m. If not, we determine the minimum width of water bodies that can
be identified. This is achieved by proposing a simple approach for identifying water
bodies of different widths.

2. Study Area and Data
2.1. Study Area

A total of 133 urban regions in Great Britain were chosen as the study areas (Figure 1).
These urban areas were freely acquired from the urban center vector dataset of the GHS
Settlement Model [24], which was developed by the European Commission’s JRC. Such
a large number of urban areas, rather than only a few, were chosen to reduce bias in the
analysis. More importantly, a reference dataset related to water bodies is freely available
for these urban areas, making it possible to compare among the water bodies extracted
from different global open LULC datasets.
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Figure 1. Locations of the 133 urban areas in Great Britain.

2.2. Data

(1) Global open LULC datasets
Four global open LULC datasets were selected for analysis (Table 1). These datasets

were chosen because they each have a relatively high spatial resolution (10 m) or positional
accuracy (e.g., <10 m). Specifically, the three raster datasets (ESRI, ESA, FROM-GLC10)
were all produced using 10-m-resolution RS data (Sentinel-2) as the source. Although
the OSM data may suffer from variable quality because they were edited by volunteers,
previous studies have reported that the position accuracy of OSM data (in vector format)
is mostly within 10 m [25–27]. Additionally, these four datasets were produced recently
(from 2017–2021), raising the possibility of analyzing the performance of each dataset
through comparisons with RS images in Google Earth. Finally, these datasets not only have
global coverage but also are freely acquirable. The details of these open LULC datasets are
introduced next:

• Esri 2020 Land Cover: This is a global 10-m-resolution LC dataset produced by Esri
and published in June 2021 [28]. This dataset was first made available for the year 2020
and subsequently updated for five years from 2017–2021. In our study, the year-2020
dataset was used for analysis. Moreover, this dataset is divided into nine different LC
types: water, trees, flooded vegetation, crops, built area, bare ground, snow/ice, clouds, and
rangeland. The LC type water was extracted and assumed to represent water bodies.

• ESA WorldCover: This is another global 10-m-resolution LC dataset, produced by the
European Space Agency and published in October 2021 [29]. This dataset was made
available for 2020 and includes 11 different LC types: tree cover, shrubland, grassland,
cropland, built-up, bare/sparse vegetation, snow and ice, permanent water bodies, herbaceous
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wetland, mangroves, and moss and lichen. The LC type permanent water bodies was
extracted for analysis.

• FROM-GLC10: This global 10-m-resolution LC dataset was produced by Tsinghua
University and published in March 2019 [30]. This dataset was made available for 2017
and includes 10 different LC types: cropland, forest, grassland, shrubland, wetland, water,
tundra, impervious surface, bareland, and snow/ice. The LC type water was extracted for
subsequent analysis.

• OSM: This global open dataset is represented in vector format. The OSM data of
different map features or layers (e.g., roads, buildings, landuse, natural, and water) can
be acquired from a third-party platform, Geofabrik. Moreover, this platform provides
datasets for different countries and regions across the globe. For this study, the five
different components of the water layer (dock, reservoir, river, riverbank, water) were
acquired in December 2020 and assumed to represent water bodies.

Table 1. Description of the four global open LULC datasets.

Name Format Spatial
Resolution Year LULC Types Website

Esri 2020 Land
Cover (ESRI) Raster 10 m 2020

Water, trees, flooded
vegetation, crops, built area,

bare ground, snow/ice,
clouds, rangeland

https://livingatlas.arcgis.com/
landcover/

accessed on 20 February 2022

ESA WorldCover
(ESA) Raster 10 m 2020

Tree cover, shrubland,
grassland, cropland, built-up,
bare/sparse vegetation, snow

and ice, permanent water
bodies, herbaceous wetland,
mangroves, moss and lichen

https://esa-worldcover.org/en
accessed on 25 January 2022

Finer Resolution
Observation and

Monitoring-Global
Land Cover

(FROM-GLC10)

Raster 10 m 2017

Cropland, forest, grassland,
shrubland, wetland, water,
tundra, impervious surface,

bareland, snow/ice

http://data.ess.tsinghua.edu.cn
accessed on 30 January 2022

OpenStreetMap
(OSM) Vector N/A 2020 Dock, reservoir, river,

riverbank, water
https://download.geofabrik.de
accessed on 30 December 2020

(2) Reference data
Ordnance Survey (OS) data, produced by the national mapping agency of Great Britain,

was used as the reference. These data were acquired in vector format at a 1:10,000 scale;
more importantly, they are “the most detailed ‘street level’ mapping product available
within the open data arena” [31]. The OS data include 20 different LU types. The SurfaceWa-
ter_Area and TidalWater (TidalWater denotes the extent of tidal water up to the high water
mark and normal tide limit of rivers [31]) regions were extracted and assumed to represent
water bodies.

3. Methods

This study has two objectives. The first is to compare the water bodies extracted
from different LULC datasets and to investigate which LULC dataset gives the best perfor-
mance. The second objective is to investigate whether the existing 10-m-resolution LULC
datasets can detect water bodies with a width of 10 m. If not, we wish to determine the
minimum width at which water bodies can be detected. To answer these two research
questions, water bodies of various widths were extracted from the reference dataset, and
these were compared with those extracted from each global open LULC dataset in terms of
various measures.

https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
https://esa-worldcover.org/en
http://data.ess.tsinghua.edu.cn
https://download.geofabrik.de
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3.1. Extracting Water Bodies of Different Widths

We propose a buffer-based approach for extracting water bodies (of different widths)
from the reference dataset. To illustrate this approach, a schematic figure is presented in
Figure 2. This figure shows two water bodies, A and B (Figure 2a).
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The proposed approach has two main steps.
First, we buffer these water bodies with a negative buffer radius (e.g., −10 m). Thus,

water body A, which has a smaller width, is removed, and only water body B is retained
(Figure 2b). We then buffer the remaining water bodies with a positive buffer radius (e.g.,
10 m). Thus, retained water body B is restored to its original size.

Different thresholds can be used for the buffer radius (e.g., 0 m, 5 m, 10 m, 15 m, 20 m,
and 25 m). The threshold approximately equals half of the water body width. Thus, from
the same reference dataset, sub-datasets with different water body widths can be extracted.
For example, if the threshold is set to 10 m, the corresponding sub-dataset contains water
bodies with a width of 20 m or more.

3.2. Evaluating Various LULC Datasets with Different Measures

Four common measures are used to quantitatively compare the water bodies extracted
from the global open LULC datasets with those extracted from the reference dataset. These
measures are accuracy, precision, recall, and the F1-score, which are widely used to evaluate
the effectiveness of classification models [32,33]. These metrics are defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
× 100% (1)

Precision =
TP

FP + TP
× 100% (2)

Recall =
TP

FN + TP
× 100% (3)

F1-score =
2 × Precision × Recall

Precision + Recall
(4)

where TP (true positive) denotes the common area between water bodies extracted from
an open LULC dataset and the reference dataset, TN (true negative) denotes the common
area between non-water bodies (regions not classified as water bodies) in both datasets,
FP (false positive) denotes the total area of water bodies extracted from the open dataset
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but not from the reference dataset, and FN (false negative) denotes the total area of water
bodies extracted from the reference dataset but not from the open dataset.

4. Results and Analysis

First, because most of the LC datasets have a spatial resolution of 10 m, a sub-dataset
was extracted from the reference dataset using a 5-m buffer radius. This sub-dataset
was then compared with each LULC dataset in terms of accuracy, precision, recall, and the
F1-score. The evaluation results for the 133 urban areas are presented in Figure 3.

From Figure 3, the following conclusions can be stated:

1. The accuracy is high (e.g., >90%) for most of the 133 urban areas, although this is not
always the case for urban areas along the coastline. This is probably because, in urban
areas, most land is correctly classified as non-water bodies.

2. The precision is generally high (e.g., >60%) in most urban areas. This indicates that
most water bodies extracted from the various global open LULC datasets are also
identified as water bodies in the corresponding reference dataset.

3. The recall is relatively low (e.g., <60%) for some urban areas. This indicates that
several water bodies in the reference dataset were not correctly identified as water
bodies in the LULC datasets. Moreover, in terms of the three LC datasets (ESRI, ESA,
and FROM-GLC10), the urban areas with a relatively low recall are mostly located in
central regions of Great Britain. In terms of the OSM dataset, areas with a relatively
low recall are mostly located along the boundary (i.e., coastline) of Great Britain.
This indicates that the weaknesses of using different LULC datasets for blue space
mapping may vary (Figure 4). Specifically, three LC datasets (ESRI, ESA, and FROM-
GLC10) cannot identify some water bodies with relatively small widths (e.g., 10–20 m,
Figure 4a–c). Although this is not the case for the OSM dataset (Figure 4d), water
bodies in the open sea cannot be identified in the OSM data (Figure 4i) but can be
identified by the other three global open LC datasets (Figure 4f–h).

4. The F1-score is relatively low for some urban areas. The spatial pattern of the F1-score
is similar to that of the recall, which indicates that the F1-score is highly dependent on
the recall because the precision is relatively high.

Figure 5 compares the water bodies extracted from the four global open LULC datasets
with those extracted from the reference dataset at six different buffer thresholds (from 0 to
25 m at intervals of 5 m). These thresholds correspond to water body widths varying from
0 to 50 m at intervals of 10 m. The corresponding values of the various metrics are listed in
Appendix A.

Figure 5 and Appendix A indicate the following:

1. In terms of accuracy, the median values for the various LULC datasets are high, i.e.,
98% or above. This indicates that most of the land in urban areas can be correctly
classified as either water bodies or non-water bodies. Nevertheless, the minimum
value is much lower (i.e., less than 70%) using the OSM dataset than with the other
three LC datasets. This is because the open sea adjacent to some urban areas cannot be
identified in the OSM data, as shown in Figure 4.

2. In terms of precision, the median value varies under different buffer thresholds and
with different global open LULC datasets. As an example, when using the OSM
dataset, the median value is higher than 92% with a buffer threshold of 0 m, but this
value decreases to 56% with a buffer threshold of 25 m. This indicates that water
bodies with a width of 10 m or less can be identified using the OSM dataset. In
contrast, when using the FROM-GLC10 dataset, all median values are greater than
98%, regardless of the buffer threshold. This is probably because, with this dataset, few
water bodies with a width of 50 m or less are identified. Moreover, the median value
varies with different LULC datasets. Generally, the greatest median value comes from
using the FROM-GLC10 dataset (99%) or the ESA dataset (95%) rather than the OSM
dataset (92%) or the ESRI dataset (84%). This indicates that the FROM-GLC10 dataset
performs the best and the ESRI dataset performs the worst in terms of precision.
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the reference sub-dataset extracted using a 5-m buffer radius: (a) ESRI, accuracy; (b) ESA, accuracy;
(c) FROM-GLC10, accuracy; (d) OSM, accuracy; (e) ESRI, precision; (f) ESA, precision; (g) FROM-
GLC10, precision; (h) OSM, precision; (i) ESRI, recall; (j) ESA, recall; (k) FROM-GLC10, recall;
(l) OSM, recall; (m) ESRI, F1-score; (n) ESA, F1-score; (o) FROM-GLC10, F1-score; (p) OSM, F1-score.
“No data” means that no water bodies were identified in that urban area using the corresponding
LULC dataset.
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Figure 5. Comparison of the four global open LULC datasets (ESRI, ESA, FROM-GLC10, and OSM)
with reference sub-datasets extracted using different buffer thresholds, visualized using box plots:
(a) ESRI, accuracy; (b) ESA, accuracy; (c) FROM-GLC10, accuracy; (d) OSM, accuracy; (e) ESRI,
precision; (f) ESA, precision; (g) FROM-GLC10, precision; (h) OSM, precision; (i) ESRI, recall;
(j) ESA, recall; (k) FROM-GLC10, recall; (l) OSM, recall; (m) ESRI, F1-score; (n) ESA, F1-score;
(o) FROM-GLC10, F1-score; (p) OSM, F1-score. The x-axis denotes the minimum width of the water
bodies, i.e., varying from 0 to 50 m at intervals of 10 m.

3. In terms of recall, the median value generally increases with increasing buffer threshold
for the various LULC datasets. For instance, using the ESRI dataset, the value is close
to 50% when the buffer threshold is 0 m, but this value increases to 80% or more
when the buffer threshold reaches 20 or 25 m. This indicates that the ESRI dataset
may fail to detect some water bodies with a relatively small width (e.g., 0–20 m). A
similar conclusion can be reached for the other three LUCL datasets. Nevertheless,
the greatest median value is much higher when using the OSM dataset (90%) or the
ESRI dataset (85%) compared with the ESA dataset (74%) or the FROM-GLC10 dataset
(52%). Thus, the OSM dataset gives the best performance and the FROM-GLC10
exhibits the worst performance in terms of recall.

4. In terms of the F1-score, the highest median value of 0.77 occurs when using the
OSM dataset; median values of 0.68–0.76 are given by the other three LC datasets.
Moreover, using the OSM dataset, the maximum F1-score is achieved when the buffer
threshold is set to 5 m. This indicates that the OSM dataset can detect water bodies
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with a width of around 10 m. In contrast, the other three LC datasets attain maximum
F1-scores with a buffer threshold of 20–25 m. This suggests that these datasets can
only effectively identify water bodies with widths of 40–50 m.

Figure 6 shows some typical examples of using the four global open LULC datasets for
blue space mapping. Specifically, each dataset was overlapped with RS images in Google
Earth, and water bodies of different widths (0–50 m) were involved in the analysis.
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images. Different width thresholds were used for the analysis: (a–e) 0 m; (f–j) 10 m; (k–o) 20 m;
(p–t) 30 m; (u–y) 40 m; (z–dd) 50 m.

We can see from Figure 6 that water bodies of less than 10 m width cannot be identified
using the ESRI, ESA, and FROM-GLC10 datasets (Figure 6a–c). This is because the spatial
resolution of these datasets is 10 m. Moreover, water bodies with widths of 10–40 m may
not be effectively extracted (Figure 6f,l,w) or even identified (Figure 6g,m,r). Thus, we
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conclude that a 10-m-resolution LC dataset may not enable the identification of water
bodies with a width of 10 m. Specifically, a 10-m-resolution LC dataset can identify water
bodies with larger widths, i.e., 20–40 m, depending on the dataset. For instance, both the
ESRI and ESA datasets allow water bodies with a width of 20 m to be identified, but this
threshold increases to 40 or 50 m when using the FROM-GLC10 dataset.

However, this is not the case for the OSM dataset. That is, with this dataset, water
bodies with widths of less than 10 m can be identified (Figure 6e,j). This is probably because
most of the OSM data were provided and/or edited through data vectorization based on
Bing Image with a spatial resolution as high as 0.6 m [34]. Thus, the use of the OSM dataset
provides the best blue space mapping, which is consistent with the results in Figure 5m–p.

When using the ESRI dataset, some non-water bodies may also be identified (Figure 6p,u,z).
Therefore, this dataset achieves a relatively low precision (Figure 5).

5. Discussion
5.1. Implications

This study compared four global open and high-resolution LULC datasets (ESRI,
ESA, FROM-GLC10, and OSM) for blue space mapping in terms of their accuracy, preci-
sion, recall, and F1-score. Although other studies have compared different open LCLU
datasets [35–37], most of these studies involved lower-resolution datasets (e.g., 20–100 m).
This study found that all of the analyzed datasets achieve excellent accuracy. The OSM
dataset performed the best in terms of recall and the F1-score, while the FROM-GLC10 per-
formed the worst in terms of recall and the F1-score. However, FROM-GLC10 performed
the best in terms of precision because fewer water bodies were identified using this dataset.
These findings are not fully consistent with those of existing studies. For instance, Liao
et al. [33] reported that the FROM-GLC10 dataset gives the best performance for urban
green space mapping in terms of accuracy, recall, and the F1-score. This indicates that the
effectiveness of using an LULC dataset may vary according to the application (e.g., blue
space or green space mapping).

Furthermore, we investigated whether a 10-m-resolution LC dataset can be used to
identify water bodies with a width of 10 m. We found that few 10-m-resolution LC datasets
can accurately identify water bodies with widths of between 0 and 20 m, and the specific
width that can be identified varies among the different LULC datasets. Specifically, the
OSM dataset was able to identify water bodies with a width of 10 m or less, and both the
ESRI and ESA datasets identified water bodies with widths of around 20–30 m, but the
FROM-GLC10 dataset could only identify water bodies 40–50 m in width (Figure 6). Thus,
both ESRI and ESA performed better than FROM-GLC10 in terms of identifying small
water bodies. Moreover, Table 2 lists the area percentages of water bodies of the two urban
areas shown in Figure 4 (Northampton and Bognor Regis), which were calculated using
both the open LULC datasets and the reference dataset. This table indicates that, for the
study area of Northampton, the use of the OSM dataset gives the best performance for
blue space mapping, because the area percentage of water bodies (1.52%) calculated using
this dataset is closest to that (1.51%) of the corresponding reference dataset. For Bognor
Regis, however, the use of the OSM dataset produces the worst performance, because the
open sea is not identified using this dataset (Figure 4). This indicates that, in practical
applications, it may be better to integrate the OSM dataset with another LC dataset(s) for
blue space mapping.

To the best of our knowledge, this is the first time that the performance of various
LULC datasets has been compared for the purpose of blue space mapping. The results may
be beneficial for urban planners and designers in selecting appropriate datasets (e.g., OSM
and/or ESRI) for blue space mapping. Indeed, a recent study reported that the ESRI dataset
can be used to acquire urban blue space for investigating land surface temperature [38].
Additionally, the ESRI data product includes data for each year from 2017–2021. Thus, this
dataset may be used to analyze changes in land use (e.g., ecosystem accounting [39,40]). In
contrast, both the ESA and FROM-GLC10 datasets are only available for a single year.
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Table 2. Area percentage of water bodies of the two urban areas in Figure 4, calculating using different
LULC datasets.

Study Area Measure
Open LULC Dataset

Reference Dataset
ESRI ESA FROM-GLC10 OSM

Case 1
Northampton Area percentage of

water bodies

0.84% 0.59% 0.42% 1.52% 1.51%

Case 2
Bognor Regis 31.92% 31.60% 29.67% 1.14% 31.85%

5.2. Limitations

There are several limitations of this study. First, there are numerous LULC datasets
that may be used for blue space mapping. For instance, CCI-LC is a 300-m-resolution LC
dataset produced by the ESA, and GlobeLand30 is a 30-m-resolution LC dataset produced
by the National Geomatics Center of China. These datasets were not analyzed because they
have relatively low spatial resolutions (i.e., 30–300 m) and thus they would theoretically
perform worse than the datasets analyzed in this study. Indeed, Mao et al. [41] found that
existing 30-m-resolution global water body datasets experience difficulties when mapping
small rivers (i.e., widths narrower than 300 m). Nevertheless, other datasets should be
incorporated into the analysis in future work.

Second, there are a number of LULC types in each LULC dataset. We mainly extracted
areas of water from the LC datasets and used the five different types of water bodies (dock,
reservoir, river, riverbank, and water) in the OSM dataset. These types are conceptually
defined as permanent water areas, rather than seasonal water areas (e.g., wetland), and
were visually determined through comparisons with Google Earth images (Figure 7).
However, the evaluation results may vary if different LULC types were selected for the
analysis [33]. Therefore, in future work, it would be interesting to compare the performance
when different LULC types are extracted as water bodies for blue space mapping.
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Finally, this study only considered 133 urban areas of Great Britain for the analysis.
The water bodies in rural areas were not analyzed because urban areas have much higher
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populations. Existing studies have highlighted the positive impact of water bodies (or blue
space) on the physical and mental health and well-being of urban residents [6–8]. It is
therefore more important to investigate the distribution of water bodies in urban built-up
areas. It remains necessary to validate our results with urban areas in other countries and
regions. This is especially true for the OSM dataset because existing studies have reported
that both the map scale and the completeness (how well a region has been mapped) of OSM
data may vary dramatically in different countries and regions [42–47]. Specifically, Zhou
et al. [46] reported that the completeness of OSM LULC data is higher in Europe than in
other regions. This indicates that the findings when using OSM data may not be applicable
to other study areas. Recall that this study involved only Great Britain as the study area
due to the availability of the reference dataset. However, water bodies in rural areas and in
other countries and regions should be considered for further validation.

6. Conclusions

This study quantitatively compared four global open and high-resolution LULC
datasets (ESRI, ESA, FROM-GLC10, and OSM) for urban blue space mapping. These
datasets were evaluated by comparing their results with those from a reference dataset
acquired from the national mapping agency of Great Britain (Ordnance Survey) across four
different metrics (accuracy, precision, recall, and F1-score). Specifically, 133 urban regions
were chosen as study areas, and sub-datasets were extracted from the reference dataset to
represent water bodies of various widths (varying from 0 to 50 m at intervals of 10 m). The
results led to the following conclusions:

1. All water bodies extracted from these LULC datasets achieved good performance in
terms of accuracy. The OSM dataset performed the best in terms of recall and the
F1-score. The FORM-GLC10 dataset performed the worst in terms of recall and the
F1-score, although it offered the best performance in terms of precision.

2. The OSM dataset identified water bodies with a width of 10 m or less. The ESRI and
ESA datasets could only identify water bodies with widths of more than 10 m (e.g.,
20–30 m). The FROM-GLC10 dataset was only able to identify water bodies with a
width of 40–50 m.

We conclude that the OSM dataset performs better than existing LC datasets for blue
space mapping. Both the ESRI and ESA datasets outperform the FROM-GLC10 dataset.

In future work, other global or regional open LULC datasets will be included in the
analysis. Different LULC types may also be selected as water bodies to investigate the
performance of various LULC types for blue space mapping. Finally, the water bodies in
other countries and regions will be analyzed to validate whether the conclusions from this
study are more widely applicable.
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Appendix A. Comparing the Four Global Open LULC Datasets (ESRI, ESA, FROM-GLC10, and OSM) with Reference Sub-Datasets
Extracted Using Different Buffer Thresholds

Data Quartile
Accuracy (%) Precision (%) Recall (%) F1-Score

0 m 5 m 10 m 15 m 20 m 25 m 0 m 5 m 10 m 15 m 20 m 25 m 0 m 5 m 10 m 15 m 20 m 25 m 0 m 5 m 10 m 15 m 20 m 25 m
Min. 97.11 97.52 98.01 98.10 98.13 97.96 6.45 6.45 6.45 6.45 6.45 6.45 0.10 0.15 0.41 0.62 0.79 0.91 0.00 0.00 0.01 0.01 0.01 0.02
Q1 98.79 98.98 99.19 99.23 99.27 99.27 75.76 75.08 73.80 72.56 66.82 53.71 29.19 35.98 46.55 54.54 63.58 69.80 0.42 0.49 0.58 0.62 0.64 0.60

Median 99.08 99.26 99.47 99.53 99.58 99.61 83.82 83.72 83.29 81.95 79.80 76.15 48.75 58.41 68.51 73.36 79.97 85.20 0.59 0.65 0.72 0.74 0.76 0.75
Q3 99.32 99.52 99.69 99.77 99.82 99.83 96.70 96.70 96.68 96.62 96.08 95.78 90.21 91.20 92.89 94.05 94.88 95.33 0.93 0.94 0.94 0.95 0.95 0.94

ESRI

Max. 99.86 99.93 99.95 99.96 99.98 99.98 100.00 100.00 100.00 100.00 100.00 100.00 99.60 99.64 99.66 99.69 99.76 99.82 0.99 0.99 0.99 0.99 0.99 0.99

ESA

Min. 97.36 97.76 97.97 97.98 97.99 98.01 67.93 67.89 48.52 44.12 30.66 0.91 0.59 0.72 1.14 1.33 1.83 0.89 0.01 0.01 0.02 0.03 0.04 0.01

Q1 98.83 99.04 99.21 99.26 99.32 99.34 91.82 91.61 88.75 85.71 76.63 66.41 22.29 28.47 37.69 46.17 52.37 58.85 0.36 0.44 0.53 0.58 0.63 0.62

Median 99.11 99.26 99.46 99.57 99.61 99.62 94.93 94.82 94.03 92.51 89.68 85.25 42.32 47.96 58.14 63.11 68.56 73.80 0.58 0.64 0.71 0.73 0.75 0.75

Q3 99.31 99.48 99.67 99.75 99.81 99.84 98.09 98.08 98.01 97.95 97.57 97.15 87.43 89.30 89.54 90.01 90.77 91.57 0.93 0.93 0.94 0.94 0.94 0.94

Max. 99.85 99.93 99.94 99.95 99.96 99.97 99.92 99.92 99.92 99.91 99.90 99.88 98.43 98.47 98.49 98.52 98.69 98.99 0.99 0.99 0.99 0.99 0.99 0.99
Min. 93.54 93.66 94.04 94.22 94.34 94.44 33.76 33.74 33.71 33.31 33.08 20.03 0.05 0.07 0.17 0.19 0.27 0.41 0.00 0.00 0.00 0.00 0.01 0.01
Q1 98.14 98.34 98.51 98.57 98.68 98.87 96.22 96.19 96.10 95.76 94.86 93.34 7.86 9.41 15.51 19.70 24.59 32.00 0.14 0.17 0.26 0.32 0.37 0.45

Median 98.71 98.92 99.16 99.31 99.46 99.60 99.15 99.13 99.12 99.05 98.80 98.54 24.73 30.69 36.63 40.84 47.86 51.96 0.38 0.47 0.53 0.57 0.63 0.68
Q3 99.10 99.35 99.58 99.69 99.76 99.82 99.84 99.84 99.83 99.79 99.74 99.65 73.98 75.53 75.85 76.19 76.77 77.45 0.85 0.86 0.86 0.86 0.87 0.87

FROM-
GLC10

Max. 99.84 99.91 99.93 99.96 99.98 99.98 100.00 100.00 100.00 100.00 100.00 100.00 96.12 96.45 96.54 96.65 96.73 96.98 0.97 0.97 0.97 0.97 0.97 0.97

OSM

Min. 68.69 68.89 68.92 68.90 68.90 68.90 44.22 34.19 25.26 11.48 6.50 2.11 0.54 0.50 0.45 0.40 0.29 0.17 0.01 0.01 0.01 0.01 0.01 0.00

Q1 94.85 95.12 95.12 95.12 95.11 95.14 87.53 84.13 70.00 56.25 43.86 33.07 24.47 28.84 32.87 35.74 34.43 33.33 0.38 0.44 0.44 0.34 0.27 0.23

Median 99.42 99.56 99.56 99.50 99.40 99.30 92.13 89.85 83.35 74.68 64.80 55.87 60.65 75.16 82.61 86.52 88.88 89.55 0.71 0.77 0.70 0.67 0.59 0.51

Q3 99.58 99.75 99.74 99.71 99.69 99.64 94.72 94.09 90.01 85.03 80.04 74.09 73.50 84.03 89.16 91.43 93.07 93.95 0.82 0.87 0.86 0.82 0.76 0.68

Max. 99.87 99.97 99.94 99.94 99.93 99.94 98.71 98.63 98.28 97.82 97.33 96.85 96.73 97.71 98.22 98.57 98.81 99.03 0.98 0.98 0.98 0.98 0.98 0.98



Remote Sens. 2022, 14, 5764 15 of 16

References
1. Völker, S.; Kistemann, T. The impact of blue space on human health and well-being—Salutogenetic health effects of inland surface

waters: A review. Int. J. Hyg. Environ. Health 2011, 214, 449–460. [CrossRef] [PubMed]
2. Choe, S.-A.; Kauderer, S.; Eliot, M.N.; Glazer, K.B.; Kingsley, S.L.; Carlson, L.; Awad, Y.A.; Schwartz, J.D.; Savitz, D.A.;

Wellenius, G.A. Air pollution, land use, and complications of pregnancy. Sci. Total Environ. 2018, 645, 1057–1064. [CrossRef]
[PubMed]

3. Zhu, D.; Zhou, X. Effect of urban water bodies on distribution characteristics of particulate matters and NO2. Sustain. Cities Soc.
2019, 50, 101679. [CrossRef]

4. Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total
Environ. 2017, 584–585, 1040–1055. [CrossRef] [PubMed]

5. Lin, Y.; Wang, Z.; Jim, C.Y.; Li, J.; Deng, J.; Liu, J. Water as an urban heat sink: Blue infrastructure alleviates urban heat island
effect in mega-city agglomeration. J. Clean. Prod. 2020, 262, 121411. [CrossRef]

6. Nutsford, D.; Pearson, A.L.; Kingham, S.; Reitsma, F. Residential exposure to visible blue space (but not green space) associated
with lower psychological distress in a capital city. Health Place 2016, 39, 70–78. [CrossRef]

7. Garrett, J.K.; White, M.P.; Huang, J.; Ng, S.; Hui, Z.; Leung, C.; Tse, L.A.; Fung, F.; Elliott, L.R.; Depledge, M.H.; et al. Urban blue
space and health and wellbeing in Hong Kong: Results from a survey of older adults. Health Place 2019, 55, 100–110. [CrossRef]

8. White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and
synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [CrossRef]

9. Wessells, A.T. Urban Blue Space and “The Project of the Century”: Doing Justice on the Seattle Waterfront and for Local Residents.
Buildings 2014, 4, 764–784. [CrossRef]

10. Sadoff, C.W.; Borgomeo, E.; Uhlenbrook, S. Rethinking water for SDG 6. Nat. Sustain. 2020, 3, 346–347. [CrossRef]
11. Wuijts, S.; de Vries, M.; Zijlema, W.; Hin, J.; Elliott, L.R.; Breemen, L.D.; Scoccimarro, E.; Husman, A.M.; Külvik, M.; Frydas, I.S.;

et al. The health potential of urban water: Future scenarios on local risks and opportunities. Cities 2022, 125, 103639. [CrossRef]
12. Huang, X.; Xie, C.; Fang, X.; Zhang, L.P. Combining pixel- and object-based machine learning for identification of water-body

types from urban high-resolution remote-sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2097–2110.
[CrossRef]

13. Chen, Y.; Fan, R.; Yang, X.; Wang, J.; Latif, A. Extraction of urban water bodies from high-resolution remote-sensing imagery
using deep learning. Water 2018, 10, 585. [CrossRef]

14. Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open Water Detection in Urban Environments Using High
Spatial Resolution Remote Sensing Imagery. Remote Sens. Environ. 2020, 242, 111706. [CrossRef]

15. Feranec, J.; Jaffrain, G.; Soukup, T.; Hazeu, G. Determining changes and flows in European landscapes 1990–2000 using CORINE
land cover data. Appl. Geogr. 2010, 30, 19–35. [CrossRef]

16. Teixeira, Z.; Teixeira, H.; Marques, J.C. Systematic processes of land use/land cover change to identify relevant driving forces:
Implications on water quality. Sci. Total Environ. 2014, 470–471, 1320–1335. [CrossRef] [PubMed]

17. Nowosad, J.; Stepinski, T.F.; Netzel, P. Global assessment and mapping of changes in mesoscale landscapes: 1992–2015. Int. J.
Appl. Earth Obs. Geoinf. 2018, 78, 332–340. [CrossRef]

18. Long, X.; Chen, Y.; Zhang, Y.; Zhou, Q. Visualizing green space accessibility for more than 4000 cities across the globe. Environ.
Plan. B Urban Anal. City Sci. 2022, 49, 1578–1581. [CrossRef]

19. Zhou, Q.; Yiming, L.; Wang, J. Mapping global urban greenspace: An analysis based on open land-cover data. Urban For. Urban
Green. 2022, 74, 127638. [CrossRef]
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23. Sertel, E.; Topaloğlu, R.H.; Şallı, B.; Yay Algan, I.; Aksu, G.A. Comparison of Landscape Metrics for Three Different Level Land
Cover/Land Use Maps. ISPRS Int. J. Geo-Inf. 2018, 7, 408. [CrossRef]

24. Florczyk, A.J.; Cobane, C.; Ehrlich, D.; Freire, S.; Kemper, T.; Maffeini, L.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Schiavina, M.;
et al. GHSL Data Package 2019; JRC Technical Report; Publications Office of the European Union: Luxembourg, 2019. [CrossRef]

25. Haklay, M. How good is OpenStreetMap information: A comparative study of OpenStreetMap and Ordnance Survey datasets for
London and the rest of England. Environ. Plan. B 2010, 37, 682–703. [CrossRef]

26. Zhou, Q. Rethinking the buffering approach for assessing openstreetmap positional accuracy. In ICACI 2017: Advances in
Cartography and GIScience; Peterson, M., Ed.; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland,
2017; pp. 435–448. [CrossRef]

27. Brovelli, M.; Zamboni, G. A New Method for the Assessment of Spatial Accuracy and Completeness of OpenStreetMap Building
Footprints. ISPRS Int. J. Geo-Inf. 2018, 7, 289. [CrossRef]

http://doi.org/10.1016/j.ijheh.2011.05.001
http://www.ncbi.nlm.nih.gov/pubmed/21665536
http://doi.org/10.1016/j.scitotenv.2018.07.237
http://www.ncbi.nlm.nih.gov/pubmed/30248831
http://doi.org/10.1016/j.scs.2019.101679
http://doi.org/10.1016/j.scitotenv.2017.01.158
http://www.ncbi.nlm.nih.gov/pubmed/28161043
http://doi.org/10.1016/j.jclepro.2020.121411
http://doi.org/10.1016/j.healthplace.2016.03.002
http://doi.org/10.1016/j.healthplace.2018.11.003
http://doi.org/10.1016/j.envres.2020.110169
http://doi.org/10.3390/buildings4040764
http://doi.org/10.1038/s41893-020-0530-9
http://doi.org/10.1016/j.cities.2022.103639
http://doi.org/10.1109/JSTARS.2015.2420713
http://doi.org/10.3390/w10050585
http://doi.org/10.1016/j.rse.2020.111706
http://doi.org/10.1016/j.apgeog.2009.07.003
http://doi.org/10.1016/j.scitotenv.2013.10.098
http://www.ncbi.nlm.nih.gov/pubmed/24317108
http://doi.org/10.1016/j.jag.2018.09.013
http://doi.org/10.1177/23998083221097110
http://doi.org/10.1016/j.ufug.2022.127638
http://doi.org/10.1080/01431161.2018.1538584
http://doi.org/10.1080/17538947.2020.1810338
http://doi.org/10.1016/j.rse.2007.11.013
http://doi.org/10.3390/ijgi7100408
http://doi.org/10.2760/290498
http://doi.org/10.1068/b35097
http://doi.org/10.1007/978-3-319-57336-6_30
http://doi.org/10.3390/ijgi7080289


Remote Sens. 2022, 14, 5764 16 of 16

28. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2
and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 11–16 July 2021; pp. 4704–4707.

29. Van De Kerchove, R.; Zanaga, D.; De Keersmaecker, W.; Souverijns, N.; Wevers, J.; Brockmann, C.; Grosu, A.; Paccini, A.;
Cartus, O.; Santoro, M. ESA WorldCover: Global land cover mapping at 10 m resolution for 2020 based on Sentinel-1 and 2 data.
In Proceedings of the AGU Fall Meeting 2021, New Orleans, LA, USA, 13–17 December 2021.

30. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited
sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci.
Bull. 2019, 64, 370–373. [CrossRef]

31. Ordnance Survey. OS Open Map—Local Product Guide. Available online: https://www.ordnancesurvey.co.uk/business-
government/tools-support/open-map-local-support, (accessed on 1 May 2019).

32. Tharwat, A. Classification Assessment Methods. Appl. Comput. Inform. 2021, 17, 168–192. [CrossRef]
33. Liao, Y.; Zhou, Q.; Jing, X. A comparison of global and regional open datasets for urban greenspace mapping. Urban For. Urban

Green. 2021, 62, 127132. [CrossRef]
34. Li, H.; Herfort, B.; Lautenbach, S.; Chen, J.; Zipf, A. Improving OpenStreetMap missing building detection using few-shot transfer

learning in sub-Saharan Africa. Transactions GIS 2022, 1–22. [CrossRef]
35. Xu, Y.; Yu, L.; Feng, D.; Peng, D.; Li, C.; Huang, X.; Lu, H.; Gong, P. Comparisons of three recent moderate resolution African land

cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. Int. J. Remote Sens. 2019, 40, 6185–6202. [CrossRef]
36. Reinhart, V.; Fonte, C.; Hoffmann, P.; Bechtel, B.; Rechid, D.; Boehner, J. Comparison of ESA climate change initiative land cover

to CORINE land cover over Eastern Europe and the Baltic States from a regional climate modeling perspective. Int. J. Appl. Earth
Obs. Geoinf. 2021, 94, 102221. [CrossRef]

37. Sun, W.Y.; Ding, X.T.; Su, J.B.; Mu, X.M.; Zhang, Y.Q.; Gao, P.; Zhao, G.J. Land use and cover changes on the Loess Plateau: A
comparison of six global or national land use and cover datasets. Land Use Policy 2022, 119, 106165. [CrossRef]

38. Chen, L.; Wang, X.; Cai, X.; Yang, C.; Lu, X. Combined Effects of Artificial Surface and Urban Blue-Green Space on Land Surface
Temperature in 28 Major Cities in China. Remote Sens. 2022, 14, 448. [CrossRef]

39. Hein, L.; Remme, R.P.; Schenau, S.; Bogaart, P.W.; Lof, M.E.; Horlings, E. Ecosystem accounting in the Netherlands. Ecosyst. Serv.
2020, 44, 101118. [CrossRef]

40. Petersen, J.E.; Mancosu, E.; King, S. Ecosystem extent accounts for Europe. Ecosyst. Serv. 2022, 57, 101457. [CrossRef]
41. Mao, W.; Yang, K.; Zhang, W.; Wang, Y.; Li, M. High-resolution global water body datasets underestimate the extent of small

rivers. Int. J. Remote Sens. 2022, 43, 4315–4330. [CrossRef]
42. Touya, G.; Reimer, A. Inferring the Scale of OpenStreetMap Features. In OpenStreetMap in GIScience; Jokar Arsanjani, J., Zipf, A.,

Mooney, P., Helbich, M., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2015; pp. 81–99.
[CrossRef]

43. Tian, Y.; Zhou, Q.; Fu, X. An Analysis of the Evolution, Completeness and Spatial Patterns of OpenStreetMap Building Data in
China. ISPRS Int. J. Geo-Inf. 2019, 8, 35. [CrossRef]

44. Wang, S.; Zhou, Q.; Tian, Y. Understanding Completeness and Diversity Patterns of OSM-Based Land-Use and Land-Cover
Dataset in China. ISPRS Int. J. Geo-Inf. 2020, 9, 531. [CrossRef]

45. Zhou, Q.; Lin, H. Investigating the completeness and omission roads of OpenStreetMap data in Hubei, China by comparing with
Street Map and Street View. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2020 XXIV ISPRS Congress, Nice, France, 24 August 2020; pp. 299–306.

46. Zhou, Q.; Wang, S.; Liu, Y. Exploring the accuracy and completeness patterns of global land-cover/land-use data in Open-
StreetMap. Appl. Geogr. 2022, 145, 102742. [CrossRef]

47. Zhang, Y.; Zhou, Q.; Brovelli, M.A.; Li, W. Assessing OSM building completeness using population data. Int. J. Geograph. Inf. Sci.
2022, 36, 1443–1466. [CrossRef]

http://doi.org/10.1016/j.scib.2019.03.002
https://www.ordnancesurvey.co.uk/business-government/tools-support/open-map-local-support,
https://www.ordnancesurvey.co.uk/business-government/tools-support/open-map-local-support,
http://doi.org/10.1016/j.aci.2018.08.003
http://doi.org/10.1016/j.ufug.2021.127132
http://doi.org/10.1111/tgis.12941
http://doi.org/10.1080/01431161.2019.1587207
http://doi.org/10.1016/j.jag.2020.102221
http://doi.org/10.1016/j.landusepol.2022.106165
http://doi.org/10.3390/rs14030448
http://doi.org/10.1016/j.ecoser.2020.101118
http://doi.org/10.1016/j.ecoser.2022.101457
http://doi.org/10.1080/01431161.2022.2111531
http://doi.org/10.1007/978-3-319-14280-7_5
http://doi.org/10.3390/ijgi8010035
http://doi.org/10.3390/ijgi9090531
http://doi.org/10.1016/j.apgeog.2022.102742
http://doi.org/10.1080/13658816.2021.2023158

	Introduction 
	Study Area and Data 
	Study Area 
	Data 

	Methods 
	Extracting Water Bodies of Different Widths 
	Evaluating Various LULC Datasets with Different Measures 

	Results and Analysis 
	Discussion 
	Implications 
	Limitations 

	Conclusions 
	Appendix A
	References

