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Abstract: Data augmentation is a crucial technique for convolutional neural network (CNN)-based
object detection. Thus, this work proposes BoxPaste, a simple but powerful data augmentation
method appropriate for ship detection in Synthetic Aperture Radar (SAR) imagery. BoxPaste crops
ship objects from one SAR image using bounding box annotations and pastes them on another SAR
image to artificially increase the object density in each training image. Furthermore, we dive deep
into the characteristics of the SAR ship detection task and draw a principle for designing a SAR ship
detector—light models may perform better. Our proposed data augmentation method and modified
ship detector attain a 95.5% Average Precision (AP) and 96.6% recall on the SAR Ship Detection
Dataset (SSDD), 4.7% and 5.5% higher than the fully convolutional one-stage (FCOS) object detection
baseline method. Furthermore, we also combine our data augmentation scheme with two current
detectors, RetinaNet and adaptive training sample selection (ATSS), to validate its effectiveness. The
experimental results demonstrate that our newly proposed SAR-ATSS architecture achieves 96.3%
AP, employing ResNet-50 as the backbone. The experimental results show that the method can
significantly improve detection performance.

Keywords: synthetic aperture radar; ship detection; data augmentation; target detection

1. Introduction

Monitoring and identifying marine ships is a crucial task guaranteeing national secu-
rity. Specifically, it plays a vital role in monitoring and managing fishing ships, combating
smuggling, and protecting marine resources [1]. Synthetic Aperture Radar (SAR) is an
appropriate sensor for ship detection [2–4] because it can create high-resolution images
(Figure 1), regardless of the altitude and weather conditions, making ship detection a
computer vision task.

Figure 1. Synthetic Aperture Radar (SAR) ship detection images from the SAR Ship Detection Dataset
(SSDD) [5]. Green boxes are ground-truth labels manually annotated.
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In the past decades, the literature has suggested several SAR ship detection meth-
ods, mainly divided into two categories: traditional and convolutional neural network
(CNN)-based methods. In the former category, the Constant False-Alarm Rate (CFAR)
algorithm and its variants are the primary representative techniques of traditional SAR
ship detection [6–10]. Technically, this approach establishes a threshold to identify targets
statistically exceeding the background pixel level while retaining a low false alarm rate.
However, traditional algorithms are not robust to light and weather condition variations.
The second category involves CNNs, which have recently presented great success in object
detection [11–17]. Employing CNNs for SAR ship detection is also becoming a trend,
with [18] designing a modified faster region-based CNN (R-CNN) scheme involving a
densely connected network to solve the scale variance issue in SAR ship detection. Further-
more, [19] introduces a R-CNN to detect ships within SAR imagery. The issue of small ship
detection is solved by aggregating contextual features from different layers and achieving
improved performance. Commonly, the detection speed of ships within a SAR image
is often neglected and thus [20] suggests a lightweight network with fewer parameters
by mainly using depthwise separable CNN (DS-CNN) to achieve high-speed SAR ship
detection. Although the detection performance and speed continuously improved, their
scopes are limited to modifying the network structure.

Opposing previous works, this paper notices that the statistical characteristics of SAR
ship data are significantly different from the general object detection data. Considering
the SAR Ship Detection Dataset (SSDD) [5] as an example, we first calculate the number
of images with regard to the number of ships (Figure 2a). Figure 2a highlights that the
dataset involves more than 700 images, each of which contains only one ground-truth
target. The average number of ground-truth targets per image is 2.19, indicating that
objects are sparsely distributed (see also Figure 2a), as most pixels in SAR imagery are
background, revealing its relatively low information density. We also calculate the size of
the ships in pixels. The corresponding results in Figure 2b indicate that the areas occupied
by most ships are smaller than 2500 px (around 50× 50), which is about 0.95% of the picture,
highlighting that SAR imagery objects are very small compared to other general objects.
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Figure 2. Statistics of the SSDD dataset. (a) is the number of images with regard to the number of
ground-truth ships. (b) shows the number of ships with regard to the area of ground-truth ships.

Previous research [21] demonstrates that training an object detector is primarily a
learning process to identify the objects of interest. Therefore, increasing the object density in
each image should be beneficial for detection performance. Knowing these statistical charac-
teristics in a SAR ship detection task, we propose a simple but effective data augmentation
method named BoxPaste that increases the object density in each SAR image. Concretely,
during training, we crop objects from one image using bounding box annotations and
paste them into another SAR image. Opposing current data augmentation methods such as
random flipping and color jittering, the proposed BoxPaste is specially designed to increase
the number of ground-truth ships per image and ultimately enhance training efficiency.
Our experiments demonstrate that BoxPaste greatly improves the detection performance on
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anchor-free (Fully Convolutional One-Stage (FCOS) [15]) and anchor-based (RetinaNet [14])
detectors by 4.7% and 3.2% AP, respectively.

In addition, SAR ship detection is a single-class detection task. However, object de-
tectors such as RetinaNet, FCOS, and Faster R-CNN [11] are designed for general object
detection tasks, and thus directly applying those detectors to SAR imagery leads to over-
fitting. Therefore, we also introduce a principle for designing an appropriate SAR ship
detector governed by the concept that the larger model is not always the better. Following
this principle, we modify the well-known anchor-free object detector FCOS and develop
its lighter variant entitled SAR-FCOS. The latter is twice as fast as its FCOS baseline and
achieves a better detection performance, demonstrating the effectiveness of our modifica-
tion.

In summary, our contributions from this work are three-fold:

• Proposing BoxPaste, an easy but powerful data augmentation strategy for SAR ship
detection.

• Developing a principle to design a SAR image detector and proposing a modified
detector SAR-FCOS.

• Combining the two previous contributions to achieve a great detection performance
on the SSDD dataset employing ResNet-50 [22] as the backbone.

The rest of this article is organized as follows. The second section introduces the related
work of SAR ship detection. Section 3 details the proposed methods, including SAR-FCOS
and our proposed BoxPaste data enhancement strategy. In Section 4, the experimental results
and corresponding analysis are provided, and some conclusions are made in Section 5.

2. Related Works
2.1. Traditional Methods

The most widely used traditional ship detection algorithms are the CFAR algorithm
and its improved variants [6–10]. These methods set a threshold to detect statistically
significant targets exceeding the background pixel while maintaining a constant false
alarm rate. Concretely, [6] proposes a technique that computes the cross-correlation
values between two images extracted by sliding a small-sized window on the multi-view
SAR intensity (or amplitude) imagery, producing a coherent image. Furthermore, ref. [7]
suggests a new CFAR-based ship detection algorithm that considers the normal distribution
of two-dimensional joint logs, while [8] develops a ship detection method based on feature
analysis for high-resolution SAR images. The author of [9] introduces a bilateral CFAR
algorithm for ship detection in SAR images, reducing the influence of SAR ambiguities and
sea clutter by combining the SAR images’ intensity and spatial distribution. Due to the
high similarity between the harbor’s and ship’s body gray and texture features, traditional
methods cannot effectively detect inshore ships. Thus, ref. [10] presents a novel saliency
and context information approach dealing with this issue. Since CFAR and its improved
variants severely rely on the preset distribution or manually defined characteristics, their
adaptive ability is weak.

2.2. Deep Learning-Based Methods

With the development of deep learning technology and the establishment of a SAR ship
database [5,23,24], many ship detection algorithms based on convolutional neural networks
have emerged. For example, ref. [25] introduces Faster R-CNN for ship detection in SAR
imagery and solves the issue of small ship detection by aggregating contextual features
from different layers, achieving improved performance. The work of [26] introduces a new
network architecture, named You Only Look Once version2 (YOLOv2)-reduced, which has
a lower detection time than YOLOv2 [27] on an NVIDIA TITAN X GPU. Aiming at the
problem that the detection speed of SAR ships is often neglected at present, a brand-new
lightweight network [20] is established with fewer network parameters by mainly using DS-
CNN to achieve high-speed SAR ship detection, which can achieve high-speed and accurate
ship detection simultaneously compared with other methods. In [28], the authors develop a



Remote Sens. 2022, 14, 5761 4 of 15

novel ship detection method based on a high-resolution ship detection network (HR-SDNet)
appropriate for high-resolution SAR images. This method is more accurate and robust
for inshore and offshore ship detection of high-resolution SAR imagery. A two-staged
detector named Attention Receptive Pyramid Network (ARPN) [29] is suggested to improve
detecting multi-scale ships in SAR images by enhancing the relationships among non-local
features and refining information at different feature maps. This strategy is effective for
scenes of various sizes and complex backgrounds. To alleviate the excessive computational
burden and increased hyper-parameter cardinality problems, ref. [30] suggests an efficient
and low-cost ship detection network for SAR imagery. This work utilizes an anchor-
free SAR ship detection framework comprising a bounding box regression sub-net and
a score map regression sub-net based on a simplified U-Net. This pipeline achieves a
very competitive detection performance while being extremely lightweight. An improved
algorithm based on CenterNet [31] has also been proposed [32] that is significantly better
than CenterNet for small ship detection in low-resolution SAR imagery, adding low-level
feature representation to the pyramids for small object detection and optimizing the head of
detector to effectively distinguish foreground from background. Finally, ref. [33] introduces
an anchorless convolution network aggregating an intensive attention function that obtains
higher precision and is faster to execute than the mainstream detection algorithms.

2.3. Data Augmentation for Object Detection and Instance Segmentation

Reference [34] leverages segmentation annotations to increase the number of object
instances by appropriately modeling the visual context surrounding objects. The work
of [35] automatically extracts object instance masks and renders them on random back-
ground images. Mixup [36] randomly extracts two images from the training set and
then performs a linear weighted summation of the pixel values of the extracted image
data. At the same time, the One-hot vector labels corresponding to the samples are also
weighted and summed. In this way, a new image with a fuzzy classification boundary can
be obtained, enhancing the generalization ability of the model. CutMix [37] replaces the
removed regions with a patch from another image and changes the ground truth labels
by the number of pixels of the combined images. By requiring the model to recognize the
target from a local perspective, the localization ability can be enhanced. CutMix is usually
used for classification tasks and is not suitable for detection tasks because it usually crops
image patches randomly, which requires that the image does not contain too much context.
While [38] highlights that CopyPaste, i.e., simply pasting objects randomly, provides solid
gains on the detectors’ performance. While being similar to BoxPaste in this work, we
argue that our work is the first to migrate the key ideology of CopyPaste neglecting the
unnecessary usage of instance mask annotations in the SAR ship detection task.

3. Methods

This section first revisits FCOS [15], a well-known one-staged anchor-free object detec-
tor, which will be used as our baseline in this paper. Considering that objects in a SAR ship
detection scenario are statistically small and sparse, we lighten the structure of FCOS from
the Feature Pyramid Networks (FPN) [39] to the detection head and suggest SAR-FCOS.
Finally, this section introduces our proposed BoxPaste, a powerful data augmentation
strategy for SAR ship detection.

3.1. Revisiting FCOS

Although anchor-based object detectors have achieved massive success on many object
detection datasets, they suffer from the requirement to design anchor boxes. Furthermore,
the enormous amount of detection proposals dramatically slows down the post-processing
method, prohibiting the anchor-based mechanism from real-time applications. Recently,
anchor-free object detectors have shown great potential in general object detection. They
usually attain higher performance than their counterpart anchor-based detectors while
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enjoying a more straightforward architectural design. Hence, this work considers the
well-known anchor-free object detector FCOS as the baseline method.

Like other standard object detectors, FCOS comprises three parts: a backbone for
feature extraction, FPN for feature integration, and a detection head for prediction. Figure 3
illustrates the overall FCOS structure. As the backbone structure, Visual Geometry Group
(VGG) [40], ResNet [22], Inception [41], or any other well-known architectures designed for
classification can be exploited.

FPN comprises a sequence of top-down layers and several shortcut layers to combine
the knowledge encoded at different layers, which is also a broadly used structure in object
detection. The predicted results encoded by the detection head of FCOS are different from
other anchor-based object detectors. Unlike RetinaNet, Single Shot MultiBox Detector
(SSD) [13], YOLOv3 [12], and Faster R-CNN, which use anchor boxes, FCOS directly views
location points as training samples and learns to predict the four offsets from each location
to the bounding boxes, i.e., left, top, right, and bottom (l∗, t∗, r∗, b∗). Concretely, the
bounding box regression targets for location (x, y) is defined as:

l∗ = x− x0, r∗ = x1 − x,

t∗ = y− y0, b∗ = y1 − y,
(1)

where (x0, y0), (x1, y1) are the coordinates of the left-top and right-bottom corners of the
ground-truth bounding box. In addition to the regression prediction, one also needs to
know each location’s category. Regarding classification, if a location falls into the ground-
truth bounding box, that location is considered a positive sample and is responsible for
predicting that ground truth. Moreover, the FPN in the standard FCOS typically contains
five levels, i.e., from P3 to P7, while to construct valid receptive field scales for the neurons
at different FPN levels, different FPN levels are regressing different objects sizes. Given the
regression targets l∗, t∗, r∗, and b∗ for a location, the object scale per feature pyramid level
follows the following constraint:

max(l∗, t∗, r∗, b∗) > mi,

max(l∗, t∗, r∗, b∗) < mi+1,
(2)

where mi, i ∈ 2, 3, 4, 5, 6, 7 in the original FCOS are set as 0, 64, 128, 256, 512, and ∞, respectively.
To suppress the low-quality predicted bounding boxes generated by the locations far

away from the objects’ center, FCOS adopts the centerness branch. The centerness score of
each location xi, yi and the corresponding bounding box at feature level i is defined as:

centerness∗ =

√
min(l∗, r∗)
max(l∗, r∗)

× min(t∗, b∗)
max(t∗, b∗)

. (3)

The centerness score is then multiplied by the classification score to provide the final
predicted confidence used by the Non-Maximum-Suppression (NMS). It should be noted
that the pre-processing (e.g., normalizing images) and post-processing (e.g., decoding
outputs, NMS) methods of FCOS are the same as in other standard object detectors.

3.2. SAR-FCOS

Unlike general object detection tasks, objects in SAR ship detection scenarios usually
have two features: the objects’ sizes are relatively small, and there is only one object
category. Such features require designing a new network structure, and thus this section
simplifies the FCOS structure and proposes SAR-FCOS. Compared to the original FCOS,
the complexity of SAR-FCOS is severely reduced, aiming at preventing the network from
overfitting. Specifically, we only modify the FPN and detection head structure, as these two
parts are the main difference between detection and performing other tasks such as image
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classification and segmentation. Moreover, we wish to emphasize that our motivation is
not to design a lightweight detector for ship detection in SAR images but to highlight the
critical merit of designing an appropriate detector for the SAR ship detection task.

3.2.1. Light FPN

In [39], the authors developed the FPN to handle the large-scale variance in general
object detection tasks. The critical insight behind FPN is that the neurons’ valid receptive
fields at the deep layers are significant, and at the shallow layers, these are typically small.
Hence classifying different object sizes on different feature pyramid levels can benefit from
the scale alignment between the objects’ sizes and neurons’ valid receptive fields.
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Figure 3. A detailed illustration of the structural difference between the Fully Convolutional One-
Stage (FCOS) and SAR-FCOS.

However, as stated in Section 1, the ships’ scales in a SAR detection task are small.
Hence, by following the assigning rule of FCOS, only a few large objects will be assigned to
P6 and P7, i.e., the feature maps P6 and P7 have little contribution to the accuracy during
testing but impose a high computational cost. Therefore, P6 and P7 are redundant, and
we remove both these layers and their corresponding detection head. Our model involves
fewer FPN layers, and, therefore, our light FPN executes faster, exploiting some extra
modules to enhance the feature integration between the left layers. Knowing that the
ground-truth objects are mainly assigned to the P3, P4, and P5 layers, we use the Adaptive
Spatial Feature Fusion (ASFF) [42] to fuse different knowledge encoded between different
FPN layers.

3.2.2. Light Detection Head

The original structure and hyper-parameters are designed for the Common Objects
in Context (COCO) [43] benchmark containing 80 categories of various objects. However,
there is only one Ship category in the SSDD dataset, making the number of head channels
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(CHead) and head blocks (NHead) redundant in the original network. Therefore, it is
necessary to reduce the complexity of the detection head to prevent over-fitting. Our
trials involve extensive experiments with different head parameters, and specifically, we
reduce the CHead and NHead from 256/4 to 64/2, affording a better trade-off between
latency and detection performance. Despite our modifications being simple, these are not
trivial. In the experimental section, we demonstrate that the simplified detection head
reduces the detector’s complexity and surprisingly improves the detection performance,
indicating the severe over-fitting of the original FCOS for the SAR ship detection tasks.
Such a phenomenon reveals the importance of designing specific model structures and
hyper-parameters for a specific task. Our modified FCOS is named SAR-FCOS and is
illustrated in Figure 3.

3.3. BoxPaste
3.3.1. Revisiting CopyPaste

Data augmentation aims to increase the training dataset’s variability, a critical compo-
nent during object detector training, leading to significant improvements in object detection
tasks. The most recent and effective augmentation method is CopyPaste. By randomly
cropping objects from image A utilizing ground-truth masks and pasting them on image
B, CopyPaste creates more training samples and increases the number of ground-truth
samples per mini-batch, which are crucial for training object detectors [21]. A simple illus-
tration of CopyPaste is presented in Figure 4. CopyPaste affords a remarkable performance
gain on instance segmentation tasks, while additionally, it also significantly improves the
performance of object detection. Spurred by the advantages of CopyPaste, naturally, the
following question is raised: can we bring CopyPaste into the SAR ship detection task?

3.3.2. BoxPaste

A straightforward method is applying CopyPaste without instance segmentation
masks and employing bounding boxes to crop objects. However, the objects’ scales in
general object detection tasks vary greatly, and thus, the proposed method will lead to
heavy occlusion between the original and pasted objects.

However, there are three properties of SAR ship detection tasks (considering the SSDD
dataset as an example). (1) Most of the ships are small. (2) The number of target ships in
each image is quite limited. Therefore, most pixels in an image are background, making
each mini-batch less informative. (3) The diversity of backgrounds for SAR images is
extremely less than natural RGB images; hence, SAR images can be easily converted to
gray-scale images. Unlike general object detection tasks, these three features suggest that
using bounding boxes to perform CopyPaste can create more realistic training samples.
We name this method BoxPaste. A clear illustration of the difference between applying
BoxPaste in SAR ship detection and general object detection is shown in Figure 4.

In the following experiment, we demonstrate that although the proposed data aug-
mentation scheme BoxPaste is simple, it substantially improves the SAR ship detection
performance, revealing its great value. To provide a clear image of the training samples
created by BoxPaste, we present more examples in Figure 5.
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(a) CopyPaste

(b) BoxPaste

Figure 4. An illustration of CopyPaste [38] and our proposed BoxPaste. (a) is borrowed from the
original paper. (b) shows a combination of two training images in the SSDD dataset. Note that for
CopyPaste, ground-truth instance masks are required. However, applying BoxPaste in the SAR ship
detection task only requires the bounding box annotations.

Figure 5. Examples of the created training images by BoxPaste. By copying the bounding boxes of
the middle image and pasting them into the top image, we get the bottom image. One can see that
BoxPaste can effectively increase the number of ground-truth ship objects per image.
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4. Experiment

This section evaluates the effectiveness of our proposed SAR-FCOS network and the
BoxPaste data augmentation method on the SSDD dataset.

4.1. Dataset and Training Details

SSDD [5] is a public dataset for SAR ship detection. It contains 1160 images presenting
2540 ships. As we mentioned at the beginning of this paper, the ship objects in this dataset
are sparsely distributed, while according to our calculation, more than 700 images contain
only one object, i.e., over 60% of all images. The average number of ships per image is
2.19. We also measure the overlap between ships using the Intersection over Union (IoU)
metric. The SSDD has an average IoU involving overlapping ships of 0.0048, illustrating
that the dataset’s objects are sparse. We divide the training and test set according to the way
the author of the SSDD dataset divided; that is, the training set and the test set were split
according to the images’ name, i.e., images with their name ending with 1 or 9 belong to the
test set, while the remaining images belong to the training set. To evaluate the detector’s
performance, we adopt average precision (AP) and recall [44]. Precision is the proportion of
accurately predicted ships in all forecasts, and recall is the proportion of accurately predicted
ships in all ground-truth ships, both of which are the most widely used indicators. The AP
metric is used to evaluate the comprehensive performance of the detector. It can be obtained
by sorting the output results in descending order of the detection confidence, drawing the
precision-recall curve, and calculating the area of the curve. In this paper, AP is calculated
when the IoU threshold is 0.5.

Because our work focuses on the network designing strategy and data augmentation
method, which is able to be applied to every detection algorithm, we choose FCOS as a
simple baseline. The trials combine the proposed FCOS with ResNet-50 as our baseline
backbone network, utilizing the pre-trained ones from ImageNet [45] as initial parameters.
All models are trained on one NVIDIA GeForce GTX 1080Ti involving a stochastic gradient
descent (SGD) for 12 epochs. The initial learning rate is 0.01, which reduces by 10 at
the 8th and 11th epochs. The weight decay factor and momentum are set to 0.0001 and
0.9, respectively, while the input images are resized to [512, 512]. In BoxPaste, both the
cropped image patches from the original images and the target images are randomly flipped
horizontally at a ratio of 50%.

4.2. Ablation Study
4.2.1. Experiments on SAR-FCOS

Initially, we investigate the performance of SAR-FCOS from the perspective of evalu-
ating the light detection head, light FPN, and the ASFF feature integration module. Table 1
highlights that the FCOS baseline achieves 90.8% mAP at 53.1 frames per second (FPS).
Then, we reduce the number of the convolution layers in the detection head, i.e., NHead,
from four to two, and find that mAP reduces only by 0.4% while affording a 13 FPS im-
provement, which is an acceptable trade-off between performance and latency. After that,
we reduce the number of channels in both the detection head and FPN, i.e., CHead, from
256 to 128. As expected, reducing the parameters alleviates over-fitting, increasing the
detection performance to 91.1% mAP.

Further reducing the CHead to 64 and 32 indicates that for CHead = 64 we obtain
the best performance of 92.4% mAP at 101.2 FPS. These modifications highlight that
altering only a few hyper-parameters in the detection head almost doubles the SAR ship
detection speed while increasing performance by 1.6% mAP compared to the baseline
network. Such a phenomenon strongly validates our design intuition for an appropriate
SAR ship detector. Namely, the SAR ship detection dataset is easy to get over-fitted,
therefore, it is better to use light models than heavy models. Note that we did not try
different backbones because our goal is to express the key ideology of designing appropriate
detectors for SAR ship detection, not to thoroughly explore every combination of different
components in detectors.
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Table 1. Ablation study on the light detection head and the light Feature Pyramid Network (FPN) in
SAR-FCOS.

NHead CHead FPN AP (%) Recall (%) FPS

FCOS
(baseline) 4 256 P3–P7 90.8 91.1 53.1

Light Head

2 256 P3–P7 90.4 90.5 66.3
2 128 P3–P7 91.1 91.5 96.3
2 64 P3–P7 92.4 92.4 101.2
2 32 P3–P7 89.2 89.4 102.8

Light FPN 2 64 P3–P5 92.3 91.9 119.9
2 64 P3–P4 90.1 90.3 127.6

Light Head
+ ASFF [42] 2 64 P3–P5 93.0 94.4 110.1

As we stated in Section 3, ship objects in the SSDD dataset are relatively small, and
most of them are assigned to P3 to P5 levels during the FCOS label assignment. Hence,
P6 and P7 levels contribute less to the final performance. The last three rows in Table 1
present our ablation study involving different FPN levels. Specifically, by removing the P6
and P7 levels, mAP drops by only 0.1%, but FPS increases by nearly 20. However, further
removing the P5 level, the detection performance drops by 2.2%, indicating that the P5 level
is essential. Affording a detector that is twice as fast as the baseline, we have the option
to add extra modules such as ASFF or attention mechanisms [46,47]. This work enhances
feature integration by adopting ASFF because the parameter reduction occurs in the FPN
and detection head. Indeed, the last row in Table 1 highlights that by employing ASFF, our
final SAR-FCOS model attains 93.0% mAP at 110.1 FPS on the SSDD dataset, which is faster
and more robust than the original FCOS baseline.

4.2.2. Ablation Study on BoxPaste

We also investigate the effect of BoxPaste from two aspects: scale jittering and total
training epochs. Performing scale jittering on two combined images is borrowed from the
original CopyPaste paper. For example, if the scale jittering range is [0.1, 2], i.e., the sampled
image’s size is [int(512× 0.1), int(512× 2)], we perform, if necessary, padding and cropping
to align the image size to 512. It is well known that the greater the data augmentation, the
longer the convergence time during training. Hence, to explore the upper bound of our
BoxPaste on SAR-FCOS, we explore a various number of training epochs. Table 1 shows
that our SAR-FCOS model achieves 93.0% AP and 94.4% recall. However, when applying
BoxPaste, the AP metric improves by 1.1%, reaching 94.1% (Table 2). If we apply scale jittering
from 0.5 to 1.5, the mAP further improves to 94.5%, and for scale jittering within the range
[0.1, 2], our model achieves 94.6% AP and 95.5% recall. It should be noted that BoxPaste is
only used during training. Hence, the testing FPS is not affected.

Then we investigate the effects of the total training epochs. The results demonstrate that
training the detectors for 36 epochs yields the best results, while when exceeding 36 epochs,
the model overfits, reducing performance. Figure 6 visualizes the detection results to provide
an intuitive understanding of the improved performance, highlighting that the SAR-FCOS
model combined with BoxPaste yields fewer missed detections and higher recall.
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GTFCOS SAR-FCOS w/ BoxPaste

Figure 6. Visualization of the detection results of FCOS, SAR-FCOS with BoxPaste, and ground-truth.
The cyan, red, yellow, and green boxes indicate the test results of FCOS, the ship object missed the
test results of ours, and the ground truth.

Table 2. Ablation study on BoxPaste with regard to scale jittering and training epochs.

Scale Jit.
Range

Total
Epochs BoxPaste AP (%) Recall (%) FPS

SAR-FCOS

- 12 - 93.0 94.4

110.1

- 12 X 94.1 95.1
[0.5, 1.5] 12 X 94.5 95.2
[0.1, 2] 12 X 94.6 95.5
[0.1, 2] 24 X 95.2 96.5
[0.1, 2] 36 X 95.5 96.6
[0.1, 2] 48 X 95.0 96.1

4.2.3. Comparing BoxPaste to CopyPaste

Since the SSDD dataset provides segmentation annotation, we also perform CopyPaste
data augmentation on SSDD. The experimental results are shown in Table 3. It shows that
CopyPaste marginally improves AP by 0.3%, which may be due to CopyPaste’s precise
cropping of the object. Meanwhile, because most of the SAR ship database background is
simple and clean, the performance of using BoxPaste is very close to CopyPaste. Since the
segmentation mask is more difficult to obtain than the object box, making BoxPaste more
feasible in the real-world scenario.



Remote Sens. 2022, 14, 5761 12 of 15

Table 3. Performance comparison between BoxPaste+BBox-SSDD and CopyPaste+PSeg-SSDD.

AP (%) Recall (%)

BoxPaste+BBox-SSDD 95.5 96.6
CopyPaste+PSeg-SSDD 95.8 97.0

4.3. Wide Applicability

The trials presented in the previous sub-sections solely relied on FCOS. Hence, we val-
idate our methods’ broad applicability in this sub-section by combining it with RetinaNet
and Adaptive Training Sample Selection (ATSS) [48]. While FCOS is an anchor-free one-
stage detector, RetinaNet is anchor-based, and ATSS adopts an advanced label-assigning
strategy. Because RetinaNet and ATSS leverage different label-assigning strategies that are
probably more suitable in SAR ship detection tasks, therefore, their baseline performances
are higher than FCOS. On these detectors, we apply both the light head/FPN and BoxPaste,
while in any case, ResNet-50 is the backbone model. The corresponding experimental re-
sults are presented in Table 4, highlighting that RetinaNet and ATSS attain 92.6% and 94.4%
AP, far better than FCOS (90.8% AP). Possibly due to RetinaNet being an anchor-based
detector, while ATSS uses an advanced label-assigning strategy. Both detectors increase
the number of positive training samples per mini-batch. Nevertheless, using the light
head/FPN still improves their AP by 0.7% and 0.5%, respectively. After adopting BoxPaste,
the detection performance is further improved to 95.8% and 96.3%, respectively, validating
the applicability of our proposed methods on different detectors. The new detectors, i.e.,
SAR-RetinaNet and SAR-ATSS, are compared against other state-of-the-art SAR ship de-
tectors on SSDD, utilizing ResNet-50 as the backbone network. The counterparts include
one-stage detectors, such as ATSS, as well as powerful two-stage detectors, such as Faster
R-CNN and Cascade R-CNN. The results in Figure 7 show that SAR-ATSS achieves 96.3%
AP, surpassing all other previous work.

Table 4. The effects of light head/FPN and BoxPaste on RetinaNet and Adaptive Training Sample
Selection (ATSS).

RetinaNet ATSS

Baseline +Light +BoxPaste Baseline +Light +BoxPaste

AP (%) 92.6 93.3 95.8 94.4 94.9 96.3
Recall (%) 94.1 94.2 96.5 95.5 95.5 97.0

0.926

0.944

0.959
0.953

0.947 0.946 0.949

0.958
0.963

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

A
P

Figure 7. Combining the proposed methods on RetinaNet and ATSS and comparing them against
current state-of-the-art methods.
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5. Conclusions

The characteristics of the dataset are important for appropriate detection architecture
design and training recipes. In SAR ship detection, object size, density, and background
diversity are essentially different from general object detection, such as VOC and COCO,
motivating us to explore domain-specific techniques in it. In this work, we first present
BoxPaste, a simple but effective data augmentation method for SAR ship detection that
crops the ship objects from one training image using bounding box annotations and pastes
them on another image. Despite its simplicity, BoxPaste significantly improves its baseline
by 4.7% mAP. Given the SAR ship image dataset characteristics, we also introduce a
principle for designing a SAR ship detector, i.e., a larger model does not guarantee better
performance. With this principle, we conduct thorough experiments on FCOS and propose
SAR-FCOS, which runs twice as fast and achieves better detection performance. Thorough
experiments are conducted that validate the effectiveness of our proposed methods.
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