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Abstract: Rainfall data have a profound significance for meteorology, climatology, hydrology, and
environmental sciences. However, existing rainfall observation methods (including ground-based
rain gauges and radar-/satellite-based remote sensing) are not efficient in terms of spatiotemporal
resolution and cannot meet the needs of high-resolution application scenarios (urban waterlogging,
emergency rescue, etc.). Widespread surveillance cameras have been regarded as alternative rain
gauges in existing studies. Surveillance audio, through exploiting their nonstop use to record rainfall
acoustic signals, should be considered a type of data source to obtain high-resolution and all-weather
data. In this study, a method named parallel neural network based on attention mechanisms and multi-
scale fusion (PNNAMMS) is proposed for automatically classifying rainfall levels by surveillance
audio. The proposed model employs a parallel dual-channel network with spatial channel extracting
the frequency domain correlation, and temporal channel capturing the time-domain continuity of
the rainfall sound. Additionally, attention mechanisms are used on the two channels to obtain
significant spatiotemporal elements. A multi-scale fusion method was adopted to fuse different scale
features in the spatial channel for more robust performance in complex surveillance scenarios. In
experiments showed that our method achieved an estimation accuracy of 84.64% for rainfall levels
and outperformed previously proposed methods.

Keywords: rainfall estimation; surveillance audio; machine learning; multi-scale fusion

1. Introduction

Rainfall is a key factor in the water cycle and the most important input to hydrological
modeling studies and hydrological calculations. Persistent or short-term heavy rainfall
is the main driving phenomenon of runoff mechanisms, especially in urban areas. The
small size of the urban catchments and the high spatiotemporal variability of rainfall
necessitate the consideration of rainfall at small scales. Hence, rainfall data with a high
spatiotemporal resolution are essential for urban hydrological modeling [1–6] At present,
rainfall observation methods are primarily either rain gauge-based or remote sensing
inversion-based. However, the former only obtain rainfall data at specific observation
stations at regular times, while the latter is restricted by the resolution and update cycle,
and underperforms in specific scenarios, such as urban waterlogging and emergency rescue.
Studies have reported that hydrological applications for urban catchments of the order
of 1000 ha require a temporal resolution of approximately 5 min and a spatial resolution
of approximately 3 km [1]. Therefore, it is difficult for the existing rainfall observation
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methods to obtain high-resolution precipitation data and satisfy the data needs of urban
hydrological studies [4,7–9]. In other words, developing a new platform/sensor to achieve
high-resolution and low-cost rainfall monitoring is needed. According to a survey by
Comparitech, there are approximately 770 million surveillance cameras worldwide [10].
Widespread surveillance cameras have been regarded as alternative rain gauges in existing
studies because they continuously record rainfall events, even though they are mainly
used to monitor moving objects or/and detect change. In contrast to surveillance video
that only plays an important role during daylight to acquire the visual features of rainfall,
surveillance audio can be exploited at all hours to report rainfall acoustic signals and
complement the existing rainfall observation network. Thus, surveillance audio should be
considered as a type of data source to obtain high-resolution, all-weather rainfall data.

Surveillance audio-based rainfall estimation (SARE) can be regarded as a process of
sound classification, which consists of feature extraction and classification [11]. Traditional
sound classification uses classifiers (e.g., Gaussian mixture modeling [12], hidden Markov
model [13], and support vector machine [14]) to classify audio features (e.g., linear predic-
tion coefficient [15], linear predictive cepstral coefficient [16], and mel-frequency cepstral
coefficient [MFCC] [17]), and it is difficult to obtain robust and precise results in a complex
urban acoustic environment. Recently, with the rapid development of deep learning (DL),
an increasing number of acoustic recognition methods based on DL have been proposed
and achieved significant results [18–22]. Because of its powerful generalization ability and
better robustness, DL provides a reliable solution for audio research. However, due to
the specificity of surveillance audio, the combined effects of a complex urban acoustic
environment and variable rainfall sound have brought challenges to current DL meth-
ods [23]. For these reasons, methodologies developed for common acoustic recognition
cannot be directly extrapolated to SARE. Additionally, most of the existing audio-based
rainfall sensing adopts a specific acoustic sensor, which suffers from the limitations of
high-cost and difficult installation conditions. However, a surveillance camera with a
cost-effective sensor has not been extensively studied [11,24,25]. Wang et al., built an auto-
matic rainfall observation system based on surveillance audio-fusing audio features and
adopted a basic convolutional neural network (CNN) as the feature extraction structure to
obtain the precipitation levels, and achieved good results. Nevertheless, the spatiotemporal
representation of rainfall events and the variability of different scales should be considered.
Given the particularity of the problem, we present our technical framework that focuses on
the change rule of rainfall events in surveillance scenarios to classify rainfall levels.

To realize effective rainfall estimation and fully excavate monitoring resources, we
propose a DL algorithm named the parallel network based on attention mechanisms
and multi-scale fusion PNNAMMS, which can learn powerful spatiotemporal features
from surveillance audio for rainfall level classification. PNNAMMS has a dual-channel
architecture, composed of a CNN and a long short-term memory (LSTM) network, to
extract the spatial and temporal features of surveillance audio. Second, in light of the
different effects on the final results of different features, we add an attention mechanism to
give prominence to the key messages. Moreover, to enhance the discriminative power of
the model in different scenarios, we propose a multi-scale fusion method to fuse features
from different scales in the spatial channel (SC). Third, the features of the dual channels are
fused, and the results are predicted. In terms of training and evaluation, the PNNAMMS
is trained and assessed on the Rainfall Audio_XZ (RA_XZ) dataset [11]. The experiments
results indicate that PNNAMMS achieved considerable accuracy on the RA_XZ dataset,
which exceeds those of the existing mainstream DL methods.

This paper’s makes the following contributions:

1. A parallel dual-channel network model called PNNAMMS is proposed for extracting
different features of surveillance audio.

2. A multi-scale fusion block and attention mechanisms are used in the model to bet-
ter select features. Further, the impact of different multi-scale fusion methods and
attention mechanisms on the performance of the model is explored.
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3. The results obtained using PNNAMMS to estimate rainfall levels are presented and analyzed.

The rest of this paper is organized as follows. Section 2 presents Methodology.
Section 3 describes the experimental setup and evaluation criteria. Section 4 implements
and discusses the proposed methodology. Section 5 discusses the different components of
the model. Finally, Section 6 presents concluding remarks.

2. Methodology
2.1. Main Workflow

Raindrops are the basic unit of rainfall. Notably, the surveillance audio of rainfall
is regarded as a continuous superposition and combination of many raindrop sounds.
Sometimes, other sounds, such as wind and the noise of cars, can be heard within a certain
range of perception. For example, Figure 1 shows the soundscape of a rainfall event. On the
whole, the waveform and mel spectrogram show that this rainfall event was successive in
the time domain and that different rainfall intensities followed different patterns. However,
this continuity can be destroyed by the combined effects of noise. Moreover, owing to
the complexity of surveillance scenes, noises occur randomly, resulting in feature changes
in the audio’s time-frequency domain, creating significant challenges to the modeling of
rainfall events [24,25]. In summary, surveillance rainfall audio has continuity, but it is
vulnerable to noise, which leads to its difficulty in representing rainfall events with a single
domain. Accordingly, we attempt in this study to calculate rainfall in terms of spatial and
temporal audio representations.
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We first designed a general SARE architecture system. As shown in Figure 2, the SARE
system is divided into four sections: data processing, feature extraction, model training,
and rainfall-level estimation. The data processing refers to splitting the surveillance audio
into audio segments according to the specific parameters (audio length and overlap). The
feature extraction section extracts the initial acoustic signal of the audio segments. In
this study, we focus on model training and rainfall level estimation. Based on previous
acoustic analyses, we developed the PNNAMMS data-driven parallel network to extract
the spatiotemporal features of rainfall audio and estimate rainfall level (detailed further in
Section 2.2).

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

We first designed a general SARE architecture system. As shown in Figure 2, the 
SARE system is divided into four sections: data processing, feature extraction, model 
training, and rainfall-level estimation. The data processing refers to splitting the surveil-
lance audio into audio segments according to the specific parameters(audio length and 
overlap).The feature extraction section extracts the initial acoustic signal of the audio seg-
ments. In this study, we focus on model training and rainfall level estimation. Based on 
previous acoustic analyses, we developed the PNNAMMS data-driven parallel network 
to extract the spatiotemporal features of rainfall audio and estimate rainfall level (detailed 
further in Section 2.2). 

 
Figure 2. Surveillance audio-based rainfall estimation (SARE) architecture system based on the 
proposed parallel network based on attention mechanisms and multi-scale fusion (PNNAMMS). 

2.2. PNNAMMS 
Figure 3 shows the architecture of the PNNAMMS. The network comprises spatial 

channel (SC) and temporal channel (TC) sub-networks, a multi-scale fusion block, an at-
tention mechanism, and classification blocks. Specifically, the SC and TC sub-networks 
constitute a parallel network that captures spatial and temporal representations from sur-
veillance audio signals, respectively. Here, MFCC and Log-mel features were extracted 
by Librosa [26] and selected as the input to the dual channels. MFCC is the feature param-
eter with the best representation of the original sound and is used in most application 
scenarios. Log-mel features combine long- and short-term information representing the 
temporal distribution of audio events. For parameter settings, we set the MFCCs to 40, 
and the filter for the Log-mel spectrum to 128. Finally, the generated MFCC feature di-
mensionality was 40 × 173, and the Log-mel feature dimensionality was 128 × 173. 

To extract more representative features, the following strategies were added to 
PNNAMMS. First, considering the different effect weights of the final recognition result 
of different parts of the model, an attention mechanism was added to the parallel network. 
Moreover, we designed various attention mechanisms for the spatial and temporal chan-
nels so that they may adapt to different architectures. Second, high-dimensional features 
pay more attention to worldwide information and tend to ignore shallow features. How-
ever, it is difficult to produce discriminative features from the audio in the light-rain sce-
nario, and, thus, this scenario is easily ignored in the deep network. Therefore, we pro-
posed a multi-scale fusion block to fuse features from different scales to improve the 
model performance in different scenarios Finally, the spatiotemporal vector is sent to the 
fully connected layers for classification. 

Figure 2. Surveillance audio-based rainfall estimation (SARE) architecture system based on the
proposed parallel network based on attention mechanisms and multi-scale fusion (PNNAMMS).

2.2. PNNAMMS

Figure 3 shows the architecture of the PNNAMMS. The network comprises spatial
channel (SC) and temporal channel (TC) sub-networks, a multi-scale fusion block, an
attention mechanism, and classification blocks. Specifically, the SC and TC sub-networks
constitute a parallel network that captures spatial and temporal representations from
surveillance audio signals, respectively. Here, MFCC and Log-mel features were extracted
by Librosa [26] and selected as the input to the dual channels. MFCC is the feature
parameter with the best representation of the original sound and is used in most application
scenarios. Log-mel features combine long- and short-term information representing the
temporal distribution of audio events. For parameter settings, we set the MFCCs to 40,
and the filter for the Log-mel spectrum to 128. Finally, the generated MFCC feature
dimensionality was 40 × 173, and the Log-mel feature dimensionality was 128 × 173.

To extract more representative features, the following strategies were added to PN-
NAMMS. First, considering the different effect weights of the final recognition result of
different parts of the model, an attention mechanism was added to the parallel network.
Moreover, we designed various attention mechanisms for the spatial and temporal channels
so that they may adapt to different architectures. Second, high-dimensional features pay
more attention to worldwide information and tend to ignore shallow features. However, it
is difficult to produce discriminative features from the audio in the light-rain scenario, and,
thus, this scenario is easily ignored in the deep network. Therefore, we proposed a multi-
scale fusion block to fuse features from different scales to improve the model performance
in different scenarios Finally, the spatiotemporal vector is sent to the fully connected layers
for classification.
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2.2.1. Parallel Spatiotemporal Network

The MFCC audio features are fed into the SC to learn the spatial correlation. The
SC consists of a residual structure, a multi-scale fusion block, and an attention layer
(the detailed architecture is shown in Table 1). The residual block makes the training
process of the model more convenient and stable through its skip connection, which
alleviates the declining accuracy phenomenon when the network goes deep [27]. Therefore,
we designed an efficient architecture based on the residual structure to perform MFCC
feature extraction. We first pass the features through a residual network to extract audio
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features (Figure 4). Then, the weighted multi-scale features are extracted by the multi-scale
fusion method described in Section 2.2.2 and the spatial attention mechanism described in
Section 2.2.3. The TC takes the Log-mel features as input to capture the temporal continuity
of surveillance audio. We adopted the LSTM as the main feature extraction structure and
design. Simultaneously, the attention mechanism was added to make the sub-network focus
on useful information. Finally, the features of each channel were merged for classification.

Table 1. Detailed architecture of PNNAMMS.

SC Network TC Network

Layer Output Shape Setting Layer Output Shape Setting
Conv

Max pooling
(38 × 171 × 64)
(19 × 86 × 64)

3 × 3, 64
3 × 3, stride 2 LSTM (128 × 64) 64,

return sequences = True
Residual Block (10 × 43 × 64)

(
3 × 3, 64
3 × 3, 64

)
× 2 Channel attention (128 × 64)

Multiscale Block (19 × 86 × 64) Temporal attention (128 × 64)

Residual Block (10 × 43 × 128)
(

3 × 3, 128
3 × 3, 128

)
× 2 LSTM (128 × 128) 128,

return sequences = True

Multiscale Block (10 × 43 × 128) LSTM (64) 64,
return sequences = False

Residual Block (10 × 43 × 128)
(

3 × 3, 64
3 × 3, 64

)
× 2 FC (64) 64

Spatial attention (5 × 22 × 64) FC (128) 128
Global Average

pooling (64) FC (64) 64

Concatenate &
Classify Result

Total params 1,151,855
Trainable params 1,147,631
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Additionally, to mitigate and suppress overfitting, the following techniques were
employed in the PNNAMMS:

(a) L2 regularization: A regularization penalty term is added to the cost function, reduc-
ing the weights by an order of magnitude and mitigating overfitting.

(b) Batch normalization: A normalization algorithm proposed by Ioffe and Szegedy [28]
is used to speed up the convergence and stability of neural networks by normalizing
every dimension of each batch of data.

(c) Spatial dropout: A dropout method proposed by Tompson et al. [29] in the imaging
field, which randomly sets some regions to zero, which is effective in image recognition.

2.2.2. Multi-Scale Fusion Block

In this study, information on different scales is fused in the SC Network, as shown in
Figures 3b and 4. Given an MFCC feature, X, of surveillance audio as input, [X1, X2, X3, and X4]
represents the feature maps of different scales. The deeper feature maps (i.e., X3 and X4)
capture more semantic information but possess lower resolution and fewer details. To
provide useful supplementary information for classification, the multi-scale block fuses
features from different scales through bottom-up, top-down, and lateral connections. The
bottom-up method reflects the ordinary forward propagation process. The top-down
method up-samples the higher-level feature map, and the lateral connection fuses the
feature maps of the two lines. Moreover, the number of feature-map channels is changed
using a 1 × 1 convolution kernel so that they may be connected with the same feature size.
For example, X2 is convolved by a 1 × 1 filter to match the number of X1 channels; it is
then up-sampled to connect X1 and X2. Afterwards, the fused feature map [X1, X2] has
the information of X1 and X2. Hence, the process of feature fusion can be represented as:

X f used = [ f (X3), f (X2), f (X1)], (1)

where X f used represents the result of feature fusion on the SC, [·] refers to the concatenation
of outputs from different layers, f (·) denotes the function used to change the feature
channels, and Xi, i = 1, 2, 3 refers to the ith feature map of the channel.

2.2.3. Attention Mechanism in PNNAMMS

Attention mechanisms are inspired by the visual system of humans, which tends to
concentrate on interesting areas in view while ignoring other less-useful information. This
method provides an effective means to improve the efficiency and accuracy of information
processing. In this work, we added a spatial attention block (Figure 3c) to the SC network,
which is a combination of channel (Figure 3d) and temporal attentions (Figure 3e) in the
TC network.

Within the spatial attention block, we followed the design of [30]. First, we con-
catenated average- and max-pooling to obtain an efficient feature descriptor. Then, a
convolution layer was used for weight learning and provided an attention mask. Given a
feature map, FM(batch_size, height, width), the output of the spatial attention block, Fs, is
formulated as follows:

Fs = σ( f ([AvgPool(FM); MaxPool(FM)]))⊗ FM, (2)

where ⊗ represents the multiplication of the attention mask and feature map, σ refers to
the sigmoid function, AvgPool refers to the average-pooling operation, MaxPool refers to
the max-pooling operation, and f represents the convolution operation.

The channel attention block focuses on the key information in the channel domain.
Considering that the signals from different channels play different roles in the expression of
temporal units, the channel attention can focus the TC network on the significant channel. Si-
multaneously, average- and max-pooling are used to obtain temporal context descriptors. Dif-
fering from spatial attention, these are merged and provided with an attention mask through
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a sigmoid function. Given a temporal feature, FL(batch_size, time_steps, lstm_units), the
output of the channel attention block, Fc, is formulated as follows:

Fc = σ( f ([Add(AvgPool(FL), MaxPool(FL))]))⊗ FL, (3)

where ⊗ represents the multiplication of the attention mask and feature map, σ refers to
the sigmoid function, AvgPool refers to the average-pooling operation, MaxPool refers to
the max-pooling operation, Add refers to the vector summation operation and f represents
the convolution operation.

The temporal attention block focuses on the selection of important temporal contextual
information in the time domain. We used a fully-connected layer to generate different
weighting factors and applied weight coefficients to each time step. Given a temporal
feature, FL(batch_size, time_steps, lstm_units), the output of the temporal attention block,
Ft, is formulated as follows:

Ft = So f tmax((FL))⊗ FL, (4)

where ⊗ represents the multiplication of the attention mask and feature map.

3. Experiments
3.1. Dataset

The Rainfall Audio_XZ (RA_XZ) is a DL dataset proposed by Wang et al. for SARE.
This dataset comes from Nanjing, China, where cameras were set up at Nanjing Normal
University (Figure 5). The RA_XZ dataset takes the structure of the UrbanSound8K [31]
dataset as a reference to organize dataset formats, which provide the required information
about each audio file (start time, end time, class name, etc.). The labeled surveillance audio
comes from a high-precision siphon rainfall meter (ZJC-V, Zhejiang-Hengda Instrument
& Meter Co. Ltd., Hangzhou, China), sampled at 22,050 Hz with 64-bit resolution and
classified recorded audio to five rainfall intensities [24] (Table 2). In addition, the RA_XZ
contains over 10 types of noise data, such as bird calls and car horns, which not only
increased data richness while ensuring data accuracy but kept away from the underlying
surface that was easy to produce special sounds, such as rain shelter, so that the rainfall
audio data could be representative.

Table 2. Definitions of rainfall levels.

Rainfall Level Rainfall Intensity (r)

No rain r = 0 mm/h
Light rain r ≤ 2.5 mm/h

Middle rain 2.5 mm/h ≤ r ≤10 mm/h
Heavy rain 10 mm/h ≤ r ≤ 25 mm/h
Violent rain r > 2.5 mm/h

3.1.1. Model Training

In the training process of the model, cross-entropy was selected as the loss function.
The Adam optimizer (β_1 = 0.99, β_2 = 0.999) was used [32]. In addition, the initial learning
rate was set to 0.001, the batch size to 128, and the epochs to 200, where the learning rate
decayed by 10% every 50 steps.

The experiments were conducted on a PC with the Windows 10 operating system and:

(1) Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70 GHz,
(2) NVIDIA GeForce GTX 1080 Ti graphics cards,
(3) 32 GB RAM,
(4) Python 3.6.8, and
(5) TensorFlow 1.8.0, Keras 2.1.6, and Librosa 0.8.0 libraries [26].
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3.1.2. Evaluation Metrics

We utilized four evaluation metrics, Accuracy, F1, Precision, and Recall:

Accuracy =
Ccorr

Call
(5)

Precision =
TP + TN

TP + FP + TN + FN
(6)

Recall =
TP

TP + FN
(7)

F1 =
2·Precision·Recall
Precision + Recall

(8)

Accuracy comprised both overall classification accuracy and classification accuracy for
each category. Ccorr represents the number of samples with all correct predictions, and Call
represents the total number of all samples. TP represents the number of samples for which
the target event was available and determined to be correct, FP represents the number of
samples without a target event but determined to have a target event, TN represents the
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number of samples with no target events and correct decisions, FN represents the number
of samples that had a target event but were incorrectly determined. Precision indicates
the proportion of the sample of all judgments with a positive outcome in terms of the
number of correct decisions. Recall denotes the proportion of all positive samples that
were evaluated to be correct. Each metric has its own focus, and F1, which is obtained by
averaging the sums of Precision and Recall, provides a balance between them.

4. Results
4.1. Classification Performance Comparison

To verify the effectiveness of our proposed method, we selected nine state-of-the-art
methods for comparison. All these methods were single-feature or multi-feature input
methods. FPNet-2D [33], CNN [34], Mel-CNN [35] and Baseline system [36] were designed
for mel features, while DSCNN [37] was designed for MFCC features. The multi-feature
input methods took multiple features as input. DS-CNN [38] and MRNet [39] were designed
for raw and mel features, RACNN [40] was designed for Log-mel and raw features, five-
stack CNN [11] was designed for MFCC-Contrast-Chroma features, and PNNAMMS was
designed for MFCC and Log-mel features. Multi-feature input models, such as MRNet [39]
and PNNAMMS, adopt the idea of using a dual-channel network to extract features
and perform classification based on multi-features. In contrast, the five-stack CNN [11]
algorithm adapted the method of using fused features as input. In addition, DS-CNN [38]
used decision-level fusion to fuse classification results of two network branches and obtains
the final result by Dempster–Shafer theory (DS evidence theory).

Table 3 presents results for comparing the performance of the different methods. As
Table 3 shows, PNNAMMS achieved an accuracy of 84.64%. The performances of the other
nine methods fluctuated between 55.2% and 80.82%. The results indicate that the proposed
method is superior to the others. We conclude that our proposed model achieved the best
performance on the RA_XZ dataset.

Table 3. Performance (Accuracy, Precision, Recall, and F1) of different methods on the RA_XZ dataset.

Method Feature Accuracy Precision Recall F1

FPNet-2D Mel 0.6173 0.6141 0.6155 0.6056
CNN Mel 0.6537 0.6511 0.6584 0.6538
Mel-CNN Mel 06383 0.6415 0.6450 0.6385
Baseline system Mel 0.6046 0.5979 0.6056 0.5983
DSCNN MFCC 0.5520 0.5643 0.5585 0.5602
DS-CNN Mel&Raw 0.6271 0.6650 0.6346 0.6105
MRNet Mel&Raw 0.7317 0.7365 0.7342 0.7338
5-stacks CNN MFCC-C-CH 0.8082 0.8203 0.8165 0.8178
RACNN Log-mel&Raw 0.7721 0.7839 0.7794 0.7765
PNNAMMS MFCC&Log-mel 0.8464 0.8543 0.8569 0.8468

Table 3 also shows that the average accuracy of the single-input method was 61.38%,
while most of the multi-feature models achieved an accuracy of over 70%; this shows that
improving multi-feature models are significant. The main reason was that the single-feature
input method adopted the idea of using only a simplex feature to represent rainfall audio,
which made it difficult to capture deep-level information.

In addition, although the depth of other networks was similar to that of PNNAMMS,
most of them extracted features by a simple CNN, resulting in effective spatiotemporal
information existing that could not be integrated. In contrast, PNNAMMS not only devel-
oped a parallel network to integrate spatiotemporal representation but applied attention
mechanisms and multi-scale fusion to obtain significant multi-scale elements. Hence, the
proposed method achieved excellent performance.
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4.2. Rainfall Inversion Validity

Based on the performance in different rainfall scenarios, the classification results of
PNNAMMS have been compared with the five best-performing alternative models using a
confusion matrix (Figure 6). As Figure 6 shows, PNNAMMS had a classification accuracy
for “small” of 77.27%, “middle” of 94.40%, “heavy” of 86.69%, “violent” of 66.66%, and
“no_rain” of 97.19%; thus, it achieved excellent classification performance in the categories
of “middle”, “heavy”, “small,” and “no_rain”. In addition, note that the classification
accuracy for “small” of PNNAMMS was higher than that of the other models. Specifically,
the accuracy of PNNAMMS was 21.08% higher than that of CNN [34], 6.09% higher than
that of five-stack CNN [11], 41.50% higher than that of DS-CNN [38], 18.69% higher than
that of MRNet [39], and 12.93% higher than that of RACNN [40]. With the fusion of different
scales, our model was more robust than other networks.
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However, the “heavy” and “violent” classes were likely to be misjudged. Thus, we
randomly selected 100 “heavy” and 100 “violent” audios for Pearson similarity calculation
for MFCC and Log-mel features (PPMCC). PPMCC [41] is a measure of the correlation
between two sets of vectors; the larger it is, the more similar they are. Table 4 shows the
statistical results. Table 4 shows that the features of “heavy” and “violent” were similar,
with a mean PPMCC value of 0.9496 for the MFCC features and 0.8938 for the Log-mel
features. Moreover, the variance and standard deviation for the MFCC features were
0.0007 and 0.0264, respectively, while for the Log-mel features, it was 0.0016 and 0.0400,
respectively. Hence, due to the similarity between “heavy” and “violent,” there were certain
errors in the discrimination. This was for two main reasons, firstly, the limitations of the
hardware of the surveillance camera and the complexity of the surrounding environment,
which led to the recording of similar sound features and made it difficult to distinguish
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“heavy” from “violent,” and secondly, ambient noise, such as wind, which was responsible
for classification errors.

Table 4. Comparison of PPMCC with different features.

Index PPMCC_MFCC PPMCC_Log-mel

Average 0.9496 0.8938
Variance 0.0007 0.0016

Standard Deviation 0.0264 0.0400

5. Discussion

In the experiments, we found that the attention mechanism and multi-scale fusion
block had different effects on the accuracy of the model, reflected in the combination of
attention mechanisms and hierarchical selection of multi-scale fusion. Therefore, we will
discuss the different performances of the model under the aforementioned conditions.

5.1. Multi-Scale Feature Fusion Performance Analysis

In the proposed rainfall level classification model, multi-scale fusion played an impor-
tant role in performance improvement. In this subsection, a subject-dependent experiment
was conducted to measure its contribution in different conditions. We used the following
method for performance comparisons:

(1) a single baseline network was used for training and evaluating on the RA_XZ dataset;
(2) different combinations of fusion levels were used in the baseline network for training

and evaluation (Figure 7).
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Each baseline network was a parallel neural network based on attention mecha-
nisms (PNNAM).

Table 5 shows the results. We found that although fusion layers might affect the system,
the performance of the PNNAM system still surpassed that of most of the other methods;
this showed the superiority of PNNAM. In addition, in the case of fusion layers 1, 2, and 3,
the model achieved an accuracy of 84.64%, which was superior to those of the other models,
due to its powerful ability of feature extraction. However, the fusion model of layers 1
and 2 had the lowest accuracy, which was only 73.28%, due to the confluent feature that
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contained too much low-scale information and influenced semantic information. Moreover,
the cross-layer fusion models had better performance than others, which demonstrated
that the confounding effect between nearby layers had to be reduced by fusing features
across layers.

Table 5. Comparison of different Multi-level structures in RA_XZ dataset.

Levels Accuracy Precision Recall F1

None 0.7907 0.7951 0.7945 0.7849
Layers(1,2) 0.7328 0.7381 0.7335 0.73647
Layers(1,3) 0.8200 0.8345 0.8279 0.8298
Layers(2,3) 0.7828 0.7934 0.7856 0.7875

Layers(1,2,3) 0.8464 0.8543 0.8569 0.8468

Further, we analyzed the performance of the model in different scenarios (Figure 8).
As Figure 8 shows, system performance varied for different fusion layers. For the model-
Layers (1,2), the system performance was decreased in most scenarios compared with
PNNAM. Specifically, the accuracy values of “small” and “no_rain” were affected. By
contrast, some performance criteria were improved with the fusion of Layers (1,3) and
Layers (1,2,3). Therefore, adopting the method of multi-scale fusion (cross-layer fusion)
was beneficial for the system to be more robust in different scenarios. The main reason
was that the feature of light (“small”) rain audio was less obvious, and it tended to be
ignored after extracting deep-level features of the general neural network. Hence, the
fusion of multi-scale features established a more complete feature map and provided better
descriptions of the audio.
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5.2. Performance Analysis of Models with Different Attention Mechanisms

Although we found that the PNNAMMS extracts robust and significant spatiotemporal
audio features, the question of what happens to the performance when we use different
attention mechanisms remained unanswered. Therefore, we applied the following methods
of performance comparison:

(1) A single baseline network for training and evaluation of the RA_XZ dataset
(2) Only a single attention mechanism in the baseline network for training and evaluation
(3) Different combinations of attention mechanisms in the baseline network for training

and evaluation
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Each baseline network was a parallel neural network based on multi-scale fusion
(PNNMS). Table 6 shows that the PNNMS with an attention mechanism performed better
than the single one with regard to the accuracy, precision, recall, and F1. The single attention
mechanism with a different weighting strategy had a different influence than that of the
baseline network. Specifically, the PNNMS with channel attention (C) achieved an accuracy
of 81.64%, which is higher than that of the PNNMS alone (none), the PNNMS with spatial
attention (S), and the PNNMS with temporal attention (T). Therefore, adopting the method
of adding single-channel attention is beneficial for learning essential information.

Table 6. Classification performance of different attention mechanisms.

Attention Description Accuracy Precision Recall F1

None None 0.8114 0.8109 0.8155 0.8148
S Spatial 0.8092 0.8238 0.8125 0.8057
T Temporal 0.8050 0.8146 0.8168 0.8034
C Channel 0.8164 0.8345 0.8239 0.8198

C-S Channel_Spatial 0.8071 0.8113 0.8165 0.8143
C-T Channel_Temporal 0.8235 0.8468 0.8265 0.8250
S_T Spatial + Temporal 0.8242 0.9135 0.9142 0.9130

C-S_T Channel_Spatial + Temporal 0.8007 0.8188 0.8059 0.8086
S-C_T Spatial + Channel_Temporal 0.8464 0.8543 0.8569 0.8468

C-S_C-T Channel_Spatial +
Channel_Temporal 0.8200 0.8313 0.8243 0.8240

Table 6 shows that not all attention block combinations improve model performance.
For the PNNMS with C-S and C-S_T, performance decreased, compared with PNNMS
(none). In contrast, other combinations improved model accuracy. Specifically, the PNNMS
with S-C_T was the best-performing model with an accuracy of 84.64%. It can be concluded
that choosing the optimal attention strategy is important for SARE tasks.

Relative to the experimental results listed in Table 5, Figure 9 shows how different
attention mechanisms performed individually in different scenarios. For the single attention
block, spatial attention (S) was the best performer for “heavy,” but it was the worst for
“violent.” Temporal attention (T) played an important role in improving “violent,” but it
had a dampening effect on “heavy.” Channel attention (C) had a good impact on most
scenarios, indicating that there should be a certain complementarity and contradiction
between different attentions.
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We also compared the performances of different combinations of attention blocks.
As shown in Figure 9, combining attention mechanisms allowed the model to reduce the
contradiction between different attentions, which improved performance. For example,
although spatial attention (S) was the worst performer for “violent,” C-S and C-S_C-T
achieved higher accuracy than others, demonstrating that single spatial attention (S) could
be improved by the addition of channel (C) and temporal (T) attentions. Additionally, C-T
performed well on “small” and “heavy”, and S-C_T performed well on “small”, “heavy”,
and “violent”; however, the other scenarios were more inhibited. S-T was somewhat
enhanced for each scenario, and S-C_T showed improvements in all scenarios, especially
for “small” and “no_rain”. C-S_C-T obtained acceptable results, but it was not the best
performer and added more parameters to the network. Overall, the best model adopted
the S-C_T block, which achieved considerable accuracy in most scenarios. Moreover, the
S-C_T block was regarded as a spatial, three-dimensional temporal attention that focused
on temporal information in different channels and provided more expressive descriptions
of the audio.

6. Conclusions

In this study, we proposed a DL framework called PNNAMMS that improves the
performance of the SARE system in terms of network architecture and audio features. We
showed that when the spatiotemporal network is combined with attention mechanisms and
multi-scale fusion blocks, the model, as expected, has higher accuracy and lower errors than
when relying on a single CNN only. Having trained and validated the proposed method
on surveillance audio data, we then further show that multi-scale and multi-dimensional
features can better represent a rainfall event by analyzing the acoustic characteristics of
rainfall in urban scenarios. Finally, we demonstrated that surveillance can serve as a
trigger for the rapid assessment of rainfall spatiotemporal distribution when an urban
environment experiences short spells of heavy rainfall. In this regard, the proposed method
gives researchers/decision-makers faster insights into how rainfall effect different areas
within an urban environment.

Despite the encouraging results, our study has a number of limitations that should be
addressed by future research. First, our study focused exclusively on the effectiveness of
surveillance audio to complement the existing rainfall observation network, and cannot
answer the question of whether surveillance audio use is better or worse than other sensors.
That is, it is currently still a coarse-grained classification of rainfall levels that does not allow
for some scenarios that need a quantitative rainfall value. Future research could address
this question by constructing a quantitative dataset and exploring a quantitative model.
An additional limitation of this study is that it only considers common audio features, such
as MFCC, Mel, and Log-Mel. MFCC was selected because of its well-documented excellent
performance on a wide range of problems. We did not explore whether there are audio
features that are more applicable to rainfall in more scenarios (forests, farmland, sea, etc.).
Additional audio features might, however, be explored in future work.

Author Contributions: M.C.: Conceptualization, Methodology, Software, Validation, Writing—original
draft, Writing—review & editing. X.W. (Xing Wang): Software, Data curation, Writing-review &
editing, Supervision. M.W.: Validation, Formal analysis, Supervision, Funding acquisition. X.L.:
Conceptualization, Investigation, Project administration. Y.W.: Validation, Visualization. X.W.
(Xiaochu Wang): Resources, Data curation. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by National Key R&D Program of China (2021YFE0112300),
National Natural Science Foundation of China (NSFC) (41771420), Special Fund for Public Welfare Sci-
entific Institutions of Fujian Province (2020R11010009-2) and Research program of Jiangsu Hydraulic
Research Institute (2020z024).

Data Availability Statement: The source codes and data are available for downloading at the link:
https://github.com/HouZi64/AMPNN.

https://github.com/HouZi64/AMPNN


Remote Sens. 2022, 14, 5750 16 of 17

Acknowledgments: The authors would like to thank the editors and reviewers for their constructive
comments, which improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Berne, A.; Delrieu, G.; Creutin, J.; Obled, C. Temporal and spatial resolution of rainfall measurements required for urban

hydrology. J. Hydrol. 2004, 199, 166–179. [CrossRef]
2. Li, L.; Zhang, K.; Wu, S.; Li, H.; Wang, X.; Hu, A.; Li, W.; Fu, E.; Zhang, M.; Shen, Z. An Improved Method for Rainfall Forecast

Based on GNSS-PWV. Remote Sens. 2022, 14, 4280. [CrossRef]
3. Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.; Wallner, M. Areal rainfall estimation using moving cars—Computer experiments

including hydrological modeling. Hydrol. Earth Syst. Sci. 2016, 20, 3907–3922. [CrossRef]
4. Nakazato, R.; Funakoshi, H.; Ishikawa, T.; Kameda, Y.; Matsuda, I.; Itoh, S. Rainfall intensity estimation from sound for generating

CG of rainfall scenes. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai,
Thailand, 7–9 January 2018; pp. 1–4.

5. Barthès, L.; Mallet, C. Rainfall measurement from the opportunistic use of an Earth–space link in the Ku band. Atmos. Meas. Tech.
2013, 6, 2181–2193. [CrossRef]

6. Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for
receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [CrossRef]

7. Liu, D.; Zhang, Y.; Zhang, J.; Xiong, L.; Liu, P.; Chen, H.; Yin, J. Rainfall estimation using measurement report data from
time-division long term evolution networks. J. Hydrol. 2021, 600, 126530. [CrossRef]

8. Rafieeinasab, A.; Norouzi, A.; Seo, D.; Nelson, B. Improving high-resolution quantitative precipitation estimation via fusion of
multiple radar-based precipitation products. J. Hydrol. 2015, 531, 320–336. [CrossRef]

9. Kuang, Q.; Yang, X.; Zhang, W.; Zhang, G. Spatiotemporal Modeling and Implementation for Radar-Based Rainfall Estimation.
IEEE Trans. Geosci. Remote Sens. 1990, 13, 1601–1605. [CrossRef]

10. Bischoff, P. Surveillance Camera Statistics: Which City has the Most CCTV Cameras? 2022. Available online: https://www.
comparitech.com/studies/surveillance-studies/the-worlds-most-surveilled-cities/ (accessed on 11 July 2022).

11. Wang, X.; Wang, M.; Liu, X.; Glade, T.; Chen, M.; Xie, Y.; Yuan, H.; Chen, Y. Rainfall observation using surveillance audio. Appl.
Acoust. 2022, 186, 108478. [CrossRef]

12. Reynolds, D.A. Gaussian mixture models. Encycl. Biom. 2009, 196, 659–663.
13. Rabiner, L.; Juang, B. An Introduction to Hidden Markov Models. IEEE ASSP Mag. 1986, 3, 4–16. [CrossRef]
14. Temko, A.; Malkin, R.; Zieger, C.; Macho, D.; Nadeu, C.; Omologo, M. CLEAR Evaluation of Acoustic Event Detection and Classification

Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 311–322.
15. Atal, B.S. Automatic recognition of speakers from their voices. Proc. IEEE 1976, 64, 460–475. [CrossRef]
16. Davis, S.; Mermelstein, P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken

sentences. IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 357–366. [CrossRef]
17. Sharan, R.V.; Moir, T.J. An overview of applications and advancements in automatic sound recognition. Neurocomputing 2016, 200,

22–34. [CrossRef]
18. Das, J.K.; Ghosh, A.; Pal, A.K.; Dutta, S.; Chakrabarty, A. Urban Sound Classification Using Convolutional Neural Network and

Long Short Term Memory Based on Multiple Features. In Proceedings of the 2020 Fourth International Conference On Intelligent
Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020; pp. 1–9.

19. Piczak, K.J. Environmental sound classification with convolutional neural networks. In Proceedings of the 2015 IEEE 25th
International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, USA, 17–20 September 2015; pp. 1–6.

20. Karthika, N.; Janet, B. Deep convolutional network for urbansound classification. Sādhanā 2020, 45, 1–8. [CrossRef]
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