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Abstract: To address the limitations in global seafloor topography model construction, a scheme is
proposed that takes into account the efficiency of seafloor topography prediction, the applicability
of inversion methods, the heterogeneity of seafloor environments, and the inversion advantages
of sea surface gravity field element. Using the South China Sea as a study area, we analyzed
and developed the methodology in modeling the seafloor topography, and then evaluated the
feasibility and effectiveness of the modeling strategy. Based on the proposed modeling approach, the
STO_IEU2020 global bathymetry model was constructed using various input data, including the SIO
V29.1 gravity anomaly (GA) and vertical gravity gradient anomaly (VGG), as well as bathymetric
data from multiple sources (single beam, multi-beam, seismic, Electronic Navigation Chart, and radar
sensor). Five evaluation areas located in the Atlantic and Indian Oceans were used to assess the
performance of the generated model. The results showed that 79%, 89%, 72%, 92% and 93% of the
checkpoints were within the ±100 m range for the five evaluation areas, and with average relative
accuracy better than 6%. The generated STO_IEU2020 model correlates well with the SIO V20.1
model, indicating that the proposed construction strategy for global seafloor topography is feasible.

Keywords: satellite altimetry; gravity anomaly (GA); vertical gravity gradient anomaly (VGG);
seafloor topography (ST); modeling strategy

1. Introduction

The oceans account for about 71% of the earth’s surface area [1], and are extremely
rich in natural resources. On 1 January 2016, the United Nations proposed and launched
the 2030 Agenda for Sustainable Development, recognizing that a clean, healthy, transparent
and predictable ocean is necessary for sustainable human development. However, people’s
understanding of the ocean remains largely insufficient. This vast frontier could offer un-
tapped natural resources and major discoveries in future, which means that observing, mea-
suring and understanding the ocean floor could further strengthen economic development.

The exploitation and utilization of the ocean and marine resources are highly depen-
dent on the detection and cognition of the ocean. As the primary means of observing and
understanding the oceans, seafloor topographic surveys play a fundamental role in the
utilization of subaqueous resources, conservation of the marine ecological environment,
advancements in marine science and technology and the protection of marine rights and
interests. At present, seafloor topographic surveying mainly includes ship-based [2,3],
submarine-based [2], satellite-based [4] and Airborne Lidar Bathymetry (ALB) [5]. Facing
the whole ocean, ship-based hydrographic surveys have high accuracy, but are inefficient,
and result in unevenly distributed surveys—especially in the southern hemisphere. ALB
has high measurement efficiency, and is mainly used to measure shallow sea environments
with good water quality [6]. However, it has limited topographic mapping capabilities in
deep seas or sea areas, which limit beam propagation. Developing approaches and tech-
niques that would accurately, efficiently and economically generate seafloor hydrographic
data, particularly in remote and hard-to-reach sea areas, is incredibly important for manag-
ing and protecting marine resources and constructing the global seafloor topography (ST).
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For more than 100 years, national organizations have been exploring ways to map
the seafloor [7]. It was not until the 1990s when altimetry satellite data (e.g., GEOSAT
and ERS-1), through geodetic missions, were accumulated and applied, and that global
seafloor topographic mapping technology made significant progress and breakthroughs [8].
At present, satellite altimetry has become the primary method in charting the global ST.
Many institutions have released a number of global ST models derived from satellite
altimetry gravity data, such as the ETOPO1 model [9], SIO series model [10], GEBCO series
model [11], SRTM+ series models [8,12] and BAT_WHU2020 model [13]. However, there
are several shortcomings in global ST model construction:

The gravity element for ST construction is usually singular, which means that the
input gravity field elements are limited. In general, the input gravity element used for
almost all global ST construction is either gravity anomaly (GA) or vertical gravity gradient
anomaly (VGG), except in a few cases where multivariate gravity data are applied to
global ST modeling. Previous studies have confirmed that different gravity elements have
their respective advantages in ST inversion depending on bathymetric depths and seafloor
terrain [14,15]). Using Multivariate gravity data could improve the reliability of the ST
construction, particularly in certain subaqueous landforms.

Some bathymetric data used in ST models are highly dependent on other ST models,
causing weak model independence and performance. For example, most depth information
in SRTM30+ are derived from SIO V11.1 ST; depth information in GEBCO_2019 and
GEBCO_2020 are primarily from the SRTM15+ V1.0 model and the SRTM15+ V2.0 model,
respectively. Most bathymetric deep-sea data in the ETOPO1 model are from SIO’s early
ST models.

At present, almost all global ST models only use one inversion method, and the ability
to recover ST in certain complex situations can be weak. Studies have shown that the
applicability and suitability of different ST inversion methods may vary significantly. For
example, regression analysis is more suited for sea areas with more bathymetric data
and uniform distribution than areas with sparse bathymetric data [16,17]. Frequency-
domain inversion (i.e., admittance function) are often applied to ST in regular rectangular
areas [18,19], but have poor results for the boundary areas of sea and land.

To address these limitations in global ST construction, we redesigned the global
ST modeling strategy by considering the efficiency of ST construction, applicability of
inversion methods and inversion advantages of different sea surface gravity elements.
Using part of the South China Sea as the research area, we comprehensively analyzed the
ST modeling strategy and evaluated its feasibility. Using SIO V29.1 GA and SIO V29.1
VGG, we recovered the global ST data (STO_IEU2020) and fused depth measurement
results from multiple sources, including single beam and multi-beam bathymetric data
and depths obtained via the seismic method, the Electronic Navigation Chart (ENC) and
radar sensor. The ETOPO1 model, DTU18 model and SIO V20.1 model were introduced
to evaluate the accuracy of the STO_IEU2020 model with preset external measured depth
data as a reference.

2. Seafloor Topography Inversion Method and Construction Strategy
2.1. Seafloor Topography Inversion Method

The ST inversion method, based on sea surface gravity data, mainly includes
the frequency-domain [18,20], regression analysis [10,21,22], Gravity-Geologic Method
(GGM) [23–25], space domain [26,27] and simulated annealing (SA) [28,29]. Based on
previous studies and our experiments, external bathymetric data is usually required to
supplement non-inversion band ST information. This means that having a dense and
uniform distribution of bathymetric data will significantly impact the final ST construction.
Additionally, the ST inversion method has a specific scope of application, considering the
marine geographical environment. A single inversion method is difficult to efficiently han-
dle, given multiple types of ST modeling environments. Different inversion methods have
their own modeling advantages. In addition, different sea surface gravity field elements
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have their advantages in constructing ST models in different marine environments. The
details on the applicability and limitations of the different inversion methods are as follows:

(1) The regression analysis (single unit regression or multiple regression) may not be
applicable to sea areas with sparse bathymetric data due to the scale factor or grid
process of bathymetric data inversion. The modeling effect would be more suited for
target sea areas with more bathymetric data and uniform distribution [30]. However,
if the whole test area applies one scale factor, regression analysis can be reluctantly
applied to ST construction in areas with sparse (or even absent) bathymetric data.

(2) Frequency-domain inversion is often applied to ST inversion in regular rectangular
areas [18,19], given that its use for land-sea boundaries does not produce good results.

(3) Although nonlinear iterative least-square inversion in the space domain [26,31] and
simulated annealing (SA) inversion [29,32] can be used to recover discrete and ir-
regular bathymetry data in areas without shipborne bathymetric data, their low
computational efficiency restricts rapid large-scale ST estimation.

(4) GGM constantly adjusts and optimizes the density difference between the crust and
seawater based on check results before obtaining the optimal density difference in
the target area. GGM has a better modeling effect for areas with extensive bathymet-
ric data and uniform distribution [33]. This method can also be applied to the ST
construction in irregular rectangular sea areas.

(5) According to their respective topographic spectrum information, GA reflects relatively
low-frequency information, while VGG reflects relatively high-frequency information.
Therefore, the GA inversion is applicable for the deeper portions of the sea, while the
VGG is more suited for the shallower parts [34].

2.2. Seafloor Topography Construction Strategy

When using sea surface gravity data to build a large-scale ST model, the usual pro-
cessing method is as follows: a large sea area is divided into many small grids, and the ST
data in each grid cell is recovered and spliced to obtain a wide range of ST data [13,35].
For large-scale ST modeling, however, there are many types of ST modeling environments,
such as land-sea boundary, full ocean coverage, shallow sea and deep sea. Different gravity
data have varying suitability in ST modeling for different marine environments. For exam-
ple, [34] showed that for sea depths greater than 1500 m, GA offers better inversion effect.
For sea depths of less than 1500 m, the ST inversion using VGG is better.

Based on the above analysis, the ST modeling strategy (see Table 1) was developed,
considering the efficiency of ST construction, applicability of the inversion method and
advantages of sea surface gravity field for different ST modeling environments. Table 1 is
described as follows:

(1) “Many” means that the number of bathymetric survey results is greater than 50% of
the total bathymetric survey results in the target sea area with 1′ grid as the reference.
“Less” means the amount of bathymetric survey results is less than 50%.

(2) “Grid proportion” (under bathymetric survey results) means that the bathymetric
survey results are thinned into 1′ grid intervals. The number of grids containing
bathymetric data accounts for the proportion of the total number of grids.

(3) When the distribution uniformity index of bathymetric data is less than 1.8, the
distribution is uniform; otherwise, the distribution is considered uneven [36]. Note
that during uniformity evaluation, the bathymetric survey results are diluted at
2′ intervals.

Note that the ST modeling sea area is irregular when the ST model is constructed in
the sea-land boundary zone. The regression analysis is used to determine the scale factor
of ST and gravity data for the target sea area. This means that the whole target sea area
shares the same scale factor. In contrast, the scale factor is determined from the moving
window of the target sea area completely covered by seawater, and the whole target sea
area does not share the same scale factor.
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Table 1. Construction strategy of the ST model.

Inversion Environment Average Sea Depth
Bathymetric Survey Results Distribution of

Bathymetric Data Inversion Method Gravity Field Elements
Total Grid Proportion

Sea-land boundary area

>1500 m many/less >30%
uniformity GGM GA

nonuniformity regression analysis GA
<30% uniformity/nonuniformity regression analysis GA

<1500 m many/less >30%
uniformity GGM GA

nonuniformity regression analysis VGG
<30% uniformity/nonuniformity regression analysis VGG

Sea Area completely
covered by ocean

>1500 m

many >30%
uniformity GGM/regression analysis GA

nonuniformity Iterative inversion in frequency domain GA
<30% uniformity/nonuniformity Iterative inversion in frequency domain GA

less
>30%

uniformity GGM/Iterative inversion in
frequency domain GA

nonuniformity Iterative inversion in frequency domain GA
<30% uniformity/nonuniformity Iterative inversion in frequency domain GA

<1500 m

many >30%
uniformity GGM/regression analysis GA/VGG

nonuniformity Iterative inversion in frequency domain VGG
<30% uniformity/nonuniformity Iterative inversion in frequency domain VGG

less
>30% uniformity GGM/Iterative inversion in

frequency domain GA/VGG

<30% uniformity/nonuniformity Iterative inversion in frequency domain VGG

Note: GGM denotes Gravity-Geologic Method. GA denotes gravity anomaly (GA); VGG denotes vertical gravity gradient anomaly.
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3. Seafloor Topography Construction in the South China Sea

We evaluated the feasibility of the proposed ST modeling strategy, using part of the
South China Sea as the research area. In Figure 1, the South China Sea is shown in the red
box, with a sea area of roughly about 19

◦ × 15
◦

(104
◦

E ∼ 119
◦
E, 3

◦
N ∼ 22

◦
N).
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Figure 1. The South China Sea Area is shown in the red box.

3.1. Data Source and Preprocessing

The data for the ST construction comprises two datasets: bathymetric and sea
surface gravity.

3.1.1. Bathymetric Data

The bathymetric dataset included: (1) Multi-source bathymetric survey results released
by GEBCO_2019, including bathymetric survey data from single-beam and multi-beam
echo-sounders, seismic methods, the ENC and radar sensors. The distribution of these
data in the South China Sea is shown in Figure 2a. Using 1′ grid reference, the coverage
area for the bathymetric survey data in Figure 2a accounts for 24.59% of the total study
sea area. (2) The single-beam and multi-beam bathymetric data were obtained from the
National Geophysical Data Center (NGDC). Since the shipborne bathymetric data released
by the NGDC are original survey results prior to data editing for outliers, simple gross error
processing was performed on the bathymetric data using S&S V20.1 bathymetry model as
an a priori model with a 2σ criterion. Gross error processing method is the same as [19].
The statistical results of the original bathymetry data, processed bathymetry data and the
residual are summarized in Table 2. The standard deviation (SD) of bathymetry residual
is generally about 419 m. A total of 12,937 suspicious points were removed from the
original bathymetry data, accounting for 2.19% of the total dataset. Figure 2b presents the
distribution of the bathymetry data after processing. Using 1′ grid reference, the coverage
area of bathymetric data in Figure 2b accounts for 12.60% of the total area.

Comparing Figure 2a,b, the GEBCO_2019 multi-source bathymetric data is signif-
icantly greater than the shipborne bathymetric data from the NGDC. In Figure 2c, the
red tracks represent the NGDC results, while the black lines present the GEBCO_2019
multi-source bathymetric data distribution. Using 1′ grid reference, the area covered by the
GEBCO_2019 multi-source bathymetric data is about 12% larger than the area covered by
the NGDC data.

To evaluate the quality of the constructed ST models, the processed NGDC bathymetric
survey data were randomly and uniformly divided into two groups, about 2/3 (389,535)
were control points, and about 1/3 (188,432) were checkpoints. Control points participated
in ST modeling, and checkpoints were used as independent data to evaluate ST results. The
distribution of control points and checkpoints is shown in Figure 3a; the red dots represent
the control points and the black dots represent the checkpoints.



Remote Sens. 2022, 14, 5744 6 of 21Remote Sens. 2022, 14, 5744 6 of 21 
 

 

  
(a) (b) 

 

(c) 

Figure 2. Distribution of bathymetric data. (a) The black dots represnt bathymetric data from 
GEBCO_2019. (b) The black dots represnt bathymetric data from NGDC. (c) Distribution compari-
son between NGDC and GEBCO_2019, where the black dots represent data from GEBCO_2019 and 
the red dots represent data from NGDC. 

Table 2. Statistical results of NGDC bathymetric data (unit: m). 

Datatype Number Max. Min. Mean SD 
Raw bathymetric data 590,904 0.00 −10,251.50 −2229.43 1305.01 
Bathymetry residual 590,904 4704.52 −10,160.06 −5.87 418.88 

Processed bathymetric data 577,967 0.00 −4997.00 −2250.61 1301.20 
Note: SD denotes the standard deviation. 

To evaluate the quality of the constructed ST models, the processed NGDC bathy-
metric survey data were randomly and uniformly divided into two groups, about 2/3 

Figure 2. Distribution of bathymetric data. (a) The black dots represnt bathymetric data from
GEBCO_2019. (b) The black dots represnt bathymetric data from NGDC. (c) Distribution comparison
between NGDC and GEBCO_2019, where the black dots represent data from GEBCO_2019 and the
red dots represent data from NGDC.

Table 2. Statistical results of NGDC bathymetric data (unit: m).

Datatype Number Max. Min. Mean SD

Raw bathymetric
data 590,904 0.00 −10,251.50 −2229.43 1305.01

Bathymetry
residual 590,904 4704.52 −10,160.06 −5.87 418.88

Processed
bathymetric data 577,967 0.00 −4997.00 −2250.61 1301.20

Note: SD denotes the standard deviation.
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As shown in Figure 2, there were a lot of overlapping areas between the NGDC ship-
borne and the GEBCO_2019 multi-source bathymetry data. To fully utilize the measurement
results from the different platforms, we used the fusion method to deal with the results
at repeated cross measuring points. The integration strategy was implemented using the
following procedure: (1) The South China Sea Area was divided into 15” grids; and (2) The
average sea depth at each grid cell was calculated from the different sources, and was then
used as the new cell value. The fusion results for the control points and GEBCO_2019
multi-source bathymetric data are shown in Figure 3b. The fusion bathymetric data account
for 27.30% of the total area, with a 1′ grid reference.

The sea depths at control points, the GEBCO_2019 multi-source sea depths and the
fusion results of the two datasets, are shown in Table 3. As shown in the table, the shallowest
sea depth in the South China Sea is close to zero, while the deepest is close to 5000 m. The
average sea depth is about 2100–2200 m, with standard deviation of about 1300 m. The
values suggest that the ST in the study area is complex and highly fluctuating, and includes
both shallow and deep-sea regions.

Table 3. Statistics of sea depth in the South China Sea (unit: m).

Datatype Max. Min. Mean SD

Sea depth in control points 0.00 −4997.00 −2246.80 1301.47
GEBCO_2019 multi-source sea depth 0.00 −4979.00 −2107.45 1312.29

Fusion results of depth of control
points and GEBCO_2019 0.00 −4986.00 −2108.16 1300.73

Note: SD denotes the standard deviation.

3.1.2. Sea Surface Gravity Data

Sea surface gravity data includes sea surface GA and VGG from version V29.1 released
by the UCSD SIO (Scripps Institution of Oceanography, University of California San Diego)
on 22 November 2019. The sea surface GA and VGG are referred to as GA_29.1 and
VGG_29.1, and their distributions are presented in Figure 4a,b. The statistical results
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in Table 4 show that the maximum, average and SD for sea surface GA are 209 mGal,
5 mGal and 23 mGal, respectively, while for VGG, the maximum, minimum and SD are
505.99 Eotvos, −656.53 Eotvos and 20.54 Eotvos.
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(b) Vertical gravity gradient anomaly, called VGG_29.1.

Table 4. Statistical results of sea surface gravity data in the South China Sea.

Datatype Max. Min. Mean SD

GA (mGal) 209.79 −170.95 5.00 23.82
VGG (Eotvos) 505.99 −656.53 −0.35 20.54

Note: SD denotes the standard deviation; GA denotes gravity anomaly; and VGG denotes vertical gravity
gradient anomaly.

3.2. Seafloor Topography Model Construction

The specific operation steps for the ST construction are as follows:

(1) The South China Sea was segmented using a 2◦ square grid.
(2) Following the ST model construction strategy in Table 1, we recovered the ST of the

sea area with a side length of 2◦ one by one.
(3) The 2◦ × 2◦ regional ST data were spliced to obtain the ST data set.

Bathymetric survey data (obtained by the fusion processing method), the GA and the
VGG were used as input data for the ST construction. The ST model with a 1′ resolution
was constructed by combining multiple gravity data and integrating multi-class inversion
methods (see Figure 5a). The ST model is hereafter referred to as the BAT_ SCS model.

Based on the statistical results, the integrated bathymetric data only accounts for about
27% of the study area using the 1′ grid reference. This means that nearly three-quarters
of the ST in the South China Sea have been estimated using gravity data, and the results
are summarized in Figure 5b. The SIO V20.1, DTU18 and ETOPO1 ST models were then
generated, and the results are shown in Figure 6a–c. The statistical results of the four ST
models are shown in Table 5.
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Figure 6. ST models. (a) SIO V20.1 bathymetry model; (b) DTU18 bathymetry model; (c) ETOPO1
bathymetry model; and (d) BAT_VGG bathymetry model.

Table 5. Statistics of sea depth model (unit: m).

ST Model Max. Min. Mean SD

BAT_SCS 0.00 −4956.00 −1428.75 1516.78
SIO V20.1 0.00 −4978.00 −1423.49 1519.04

DTU18 0.00 −4959.00 −1418.73 1523.71
ETOPO1 −1.00 −4971.00 −1420.06 1526.57

BAT_VGG 0.00 −4804.00 −1398.21 1486.48
Note: SD denotes the standard deviation.

Comparing Figures 5a and 6, the BAT_SCS model constructed in the paper is highly
consistent with the SIO V20.1 model, the DTU18 model and the ETOPO1 model of the
South China Sea. The statistical results in Table 5 show that the maximum, minimum,
mean and SD for sea depth in the BAT_SCS model are also comparable to the SIO V20.1,
DTU18 and ETOPO1 models. The results suggest that the data processing method for the
ST modeling is correct, and that the calculation results are highly reliable.

3.3. Accuracy Evaluation of Seabed Terrain Model

Two sea areas in the South China Sea (deep sea area and shallow sea area) were
selected and used for quality evaluation, and the scope of verification area A is 5

◦ × 5
◦

(110
◦

E ∼ 115
◦
E, 10

◦
N ∼ 15

◦
N). The distribution of checkpoints in the verification sea area

is shown in Figure 7a, with a total of 19,118 bathymetric points. The verification area B is
3
◦ × 5

◦
(105

◦
E ∼ 110

◦
E, 5

◦
N ∼ 8

◦
N), and checkpoint distribution is presented in Figure 7b,

with a total of 2355 measurement points. Table 6 summarizes the statistical results of the
checkpoints for Areas A and B. The average sea depth for Area A is about 3800 m, and it is
200 m for Area B; the shallowest part is only 24 m.
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Table 6. The statistics of checkpoints in verification sea area (unit: m).

Sea Area Number Max. Min. Mean SD

Sea Area A 19,118 −322.00 −4618.00 −3818.47 789.61
Sea Area B 2355 −24.00 −1936.00 −197.15 276.62

Note: SD denotes the standard deviation.

Using the actual independent bathymetric survey results for Sea Areas 1 and 2 as the
external verification reference, the ST model value was interpolated by the bilinear inter-
polation method. The interpolation results were then compared to the actual bathymetric
values at the checkpoints. The final verification statistical results for the ST models are
presented in Tables 7 and 8. In the tables, “primary checking (PC)” indicates the statistical
results for all checkpoints, while “secondary checking (SC)” represents the results after
eliminating suspicious points according to the 3σ criterion. For example, 98.15% of the
checkpoints in Area A were retained for the secondary check of the BAT_SCS model, which
was also called the data retention rate (DRR). The relative accuracy (RA) indicates the ratio
of the SD of the check results to the average sea depth of the checkpoints.

Table 7. Statistical check results of ST models in Sea Area A (unit: m).

ST Model Max. Min. Mean RMS SD CC RA DRR Remarks

BAT_SCS
1125.47 −1174.22 2.99 84.81 84.76 0.9942 2.22% 100% PC
256.61 −249.97 2.43 51.09 51.04 0.9978 1.33% 98.15% SC

SIO V20.1
970.07 −1521.07 1.72 87.52 87.50 0.9938 2.29% 100% PC
263.99 −260.57 0.68 59.46 59.45 0.9971 1.55% 97.92% SC

DTU18
895.76 −1436.69 −0.20 90.67 90.67 0.9934 2.37% 100% PC
271.78 −271.68 0.09 61.91 61.91 0.9968 1.61% 97.85% SC

ETOPO1
1598.38 −1467.41 −7.57 190.14 190.00 0.9720 4.98% 100% PC
559.75 −575.78 −2.18 135.87 135.85 0.9848 3.53% 97.04% SC

Note: ST denotes seafloor topography; SD denotes standard deviation; CC denotes correlation coefficient; RA
denotes relative accuracy; DRR denotes data retention rate; PC denotes primary checking; and SC denotes
secondary checking.
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Table 8. Statistical check results of ST model in Sea Area B (unit: m).

ST model Max. Min. Mean RMS SD CC RA DRR Remarks

BAT_SCS
577.85 −497.95 −3.22 33.95 33.80 0.9927 17.15% 100% PC
97.34 −102.12 −2.37 15.92 15.75 0.9983 8.23% 98.90% SC

SIO V20.1
424.45 −449.40 −2.14 26.73 26.65 0.9955 13.52% 100% PC
71.94 −82.03 −1.09 11.43 11.38 0.9992 6.00% 98.39% SC

DTU18
411.98 −746.18 −2.39 35.06 34.99 0.9921 17.75% 100% PC
102.24 −105.89 −1.39 12.49 12.41 0.9990 6.46% 98.98% SC

ETOPO1
351.96 −1053.14 −7.66 50.35 49.78 0.9843 25.25% 100% PC
135.95 −156.55 −3.37 20.78 20.51 0.9973 10.96% 98.09% SC

Note: ST denotes seafloor topography; RMS denotes root mean square; SD denotes standard deviation; CC
denotes correlation coefficient; RA denotes relative accuracy; DRR denotes data retention rate; PC denotes primary
checking; and SC denotes secondary checking.

The SD for the BAT_SCS model in Sea Area A (deep-sea area) was 51.04 m, which was
comparatively better than those for the SIO V20.1 and DTU18 models. Compared with the
ETOPO1 model, the BAT_SCS model accuracy was more than two times higher. For Sea
Area B (see Table 8), the BAT_SCS model accuracy was comparable to the SIO V20.1 and
DTU18 models, and significantly better by nearly 30% than the ETOPO1 model. The root
mean square (RMS) for the BAT_SCS model in Sea Area B (shallow-sea area) was 15.92 m.
The results suggest that the ST model construction strategy proposed in this study applies
to multiple marine environments, including sea-land boundaries and open seas, and that
the ST construction results are of high quality.

4. Construction and Accuracy Evaluation of Global Seafloor Topography Model
4.1. Global Seafloor Topography Model Construction

The ST extent constructed using satellite altimetry gravity data was (180
◦

W ∼ 180
◦
N,

60
◦

S ∼ 64
◦
N). The gravity data released by SIO V29.1 for GA and VGG are shown in

Figures 8 and 9, and the bathymetric data distribution is presented in Figure 10. The
International Bathymetric Chart of the Southern Ocean (IBCSO) could be used to supple-
ment ST data in the range of (180

◦
W ∼ 180

◦
N, 60

◦
S ∼ 90

◦
S) [37], while the International

Bathymetric Chart of the Arctic Ocean (IBCAO) could supplement ST data in the range
of (180

◦
W ∼ 180

◦
N, 64

◦
N ∼ 90

◦
N) [38]. Finally, the global ST model was constructed

following the strategy in Table 1 using SIO V29.1 GA and VGG (Figure 11), and is hereafter
referred to as the STO_IEU2020 model.
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4.2. Accuracy Evaluation of Seafloor Topography Model

To evaluate the quality of the STO_IEU2020 model, five sea areas in the Atlantic Ocean,
Indian Ocean and the Pacific Ocean were selected, as shown in Figure 12. The extent of
the evaluation areas are as follows: Sea Area 1, 30

◦ × 30
◦

(20
◦

N ∼ 50
◦
N, 20

◦
W ∼ 50

◦
W);

Sea Area 2, 55
◦ × 25

◦
(10

◦
S ∼ 45

◦
S,5

◦
W ∼ 30

◦
W); Sea Area 3, 40

◦ × 15
◦

(30
◦

S ∼ 10
◦
N,

60
◦

E ∼ 75
◦
E); Sea Area 4, 30

◦ × 20
◦

(10
◦

N ∼ 40
◦
N,150

◦
E ∼ 170

◦
E); and Sea Area 5,

55
◦ × 30

◦
(45

◦
S ∼ 10

◦
N, 100

◦
W ∼ 130

◦
W). Figure 13 shows the distribution of ship-

borne sea depth used as checkpoints in the evaluation areas, and the statistical results are
summarized in Table 9.
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Figure 13. Distribution of checkpoints in the sea area. (a) Sea Area 1; (b) Sea Area 2; (c) Sea Area 3;
(d) Sea Area 4; and (e) Sea Area 5.



Remote Sens. 2022, 14, 5744 16 of 21

Table 9. Statistical results of checkpoints in evaluation area (unit: m).

Sea Area Number Max. Min. Mean SD

Sea Area 1 577,354 −27.70 −7048.00 −3548.38 1152.65
Sea Area 2 187,400 −113.40 −6378.00 −3929.96 868.89
Sea Area 3 132,650 −1.00 −6369.70 −3463.46 1033.02
Sea Area 4 168,163 −30.00 −7551.00 −5170.74 1052.01
Sea Area 5 642,483 −329.00 −5567.00 −3321.48 546.54

Note: SD denotes standard deviation.

As shown in Table 9, a large number of checkpoints were used in evaluating each sea
area: 577,354 for Sea Area 1; 187,400 for Sea Area 2; 132,650 for Sea Area 3; 168,163 for Sea
Area 4; and 642,483 for Sea Area 5. Having high amounts of samples would ensure the
reliability of statistical results. The statistical results for the STO_IEU2020 model, SIO V20.1
model, DTU18 model and ETOPO1 model in each sea area are summarized in Table 10.

Table 10. Statistical checking results of bathymetry models (Unit: m).

Sea Area ST Model Max. Min. Mean RMS SD CC RA DRR Remarks

Sea Area 1

STO_IEU2020
3268.71 −4377.91 7.25 189.08 188.94 0.9865 5.32% 100% PC
573.93 −558.99 1.41 100.26 100.26 0.9961 2.81% 97.88% SC

SIO V20.1
3319.09 −4570.82 12.52 199.38 198.99 0.9850 5.61% 100% PC
609.40 −584.44 4.22 94.89 94.79 0.9965 2.65% 97.78% SC

DTU18
3219.56 −4573.67 9.97 203.98 203.74 0.9843 5.74% 100% PC
621.18 −601.18 1.71 102.13 102.12 0.9960 2.86% 97.77% SC

ETOPO1
3339.18 −4625.06 8.78 250.86 250.71 0.9761 7.07% 100% PC
760.70 −743.28 2.05 178.75 178.74 0.9877 5.01% 97.86% SC

Sea Area 2

STO_IEU2020
1853.36 −1542.87 6.77 79.70 79.41 0.9958 2.02% 100% PC
245.02 −231.44 4.98 63.82 63.63 0.9973 1.62% 98.44% SC

SIO V20.1
2095.37 −1804.35 6.98 69.59 69.24 0.9968 1.76% 100% PC
214.69 −200.71 5.45 51.78 51.49 0.9983 1.31% 98.39% SC

DTU18
2193.93 −1576.47 6.58 88.89 88.64 0.9948 2.26% 100% PC
272.45 −259.34 4.66 62.10 61.92 0.9975 1.58% 98.06% SC

ETOPO1
1991.41 −3119.93 −10.65 191.86 191.56 0.9750 4.90% 100% PC
563.90 −585.04 −5.15 152.42 152.33 0.9841 3.89% 98.06% SC

Sea Area 3

STO_IEU2020
2591.86 −2384.37 1.42 132.09 132.09 0.9918 3.81% 100% PC
397.66 −394.77 0.24 105.97 105.97 0.9947 3.06% 98.47% SC

SIO V20.1
2664.39 −2270.22 −19.62 159.80 158.59 0.9882 4.58% 100% PC
456.09 −495.36 −12.78 122.49 121.82 0.9931 3.52% 97.76% SC

DTU18
2749.27 −2307.27 −19.54 177.08 176.00 0.9854 5.08% 100% PC
508.32 −547.44 −9.42 129.88 129.54 0.9922 3.75% 97.42% SC

ETOPO1
3111.41 −2538.04 −26.13 238.87 237.44 0.9733 6.86% 100% PC
685.98 −738.37 −24.83 210.92 209.45 0.9790 6.04% 98.37% SC

Sea Area 4

STO_IEU2020
2476.39 −5055.21 1.86 108.75 108.74 0.9946 2.10% 100% PC
327.82 −324.33 −0.84 56.48 56.47 0.9985 1.09% 98.54% SC

SIO V20.1
2450.31 −5079.75 1.66 120.59 120.58 0.9934 2.33% 100% PC
363.12 −359.59 0.77 50.04 50.03 0.9988 0.96% 98.55 SC

DTU18
2995.38 −5106.11 3.28 133.15 133.11 0.9920 2.57% 100% PC
402.58 −395.75 0.64 52.46 52.46 0.9987 1.01% 98.58% SC

ETOPO1
2823.45 −5132.19 1.94 181.72 181.71 0.9851 3.51% 100% PC
547.00 −543.00 −0.33 110.79 110.79 0.9940 2.13% 97.43% SC

Sea Area 5

STO_IEU2020
1747.17 −1885.83 12.31 65.41 64.24 0.9932 1.93% 100% PC
205.04 −180.42 11.23 50.66 49.40 0.9960 1.49% 98.31 SC

SIO V20.1
1864.49 −2070.88 14.55 66.15 64.53 0.9931 1.94% 100% PC
208.14 −179.02 13.00 49.00 47.25 0.9963 1.42% 98.24% SC

DTU18
1806.71 −2003.33 10.01 68.29 67.55 0.9924 2.03% 100% PC
212.63 −192.63 8.63 47.83 47.05 0.9963 1.42% 98.44% SC
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Table 10. Cont.

Sea Area ST Model Max. Min. Mean RMS SD CC RA DRR Remarks

ETOPO1
2384.05 −2097.07 14.70 162.39 161.72 0.9561 4.86% 100% PC
499.83 −470.41 9.13 105.72 105.32 0.9812 3.16% 98.11% SC

Note: ST denotes seafloor topography; SD denotes standard deviation; CC denotes correlation coefficient; RA
denotes relative accuracy; DRR denotes data retention rate; PC denotes primary checking; and SC denotes
secondary checking.

In the table, the DRR of SC results in the five evaluation sea areas are higher than
97%. For Sea Areas 1 and 2, located in the North Atlantic and South Atlantic, the CC
between the STO_IEU2020 model and shipborne measured sea depth are higher than 0.99,
with an RA greater than 3%. In Sea Area 1, the SD of the SC for the SIO V20.1, DTU18
and ETOPO1 models were 94.79 m, 102.12 m and 178.74 m, respectively. The SD for the
STO_IEU2020 model was 100.26 m. The STO_IEU2020 had slightly lower accuracy than
the SIO V20.1 model, comparable to the DTU18 model and much higher than the ETOPO1
model (about 78% improvement). In Sea Area 2, the SD of the SC for the SIO V20.1, DTU18
and ETOPO1 models were 51.49 m, 61.92 m and 152.33 m, respectively, while the accuracy
for the STO_IEU2020 model was 63.63 m. The results suggest that for Sea Area 2, the
STO_IEU2020 model has comparable accuracy to the SIO V20.1 and DTU18 models, and is
significantly better than the ETOPO1 model. For Sea Area 3, the STO_IEU2020 model has
an accuracy of 105.97 m, which is slightly better than the SIO V20.1 (122.49 m) and DTU18
(129.54 m) models. Overall, the STO_IEU2020 model strongly correlates with the shipborne
sea depths, with CC greater than 0.99 in the five assessed sea areas. The STO_IEU2020
model has similar accuracy to the SIO V20.1 and DTU18 models, and is much better than
the ETOPO1 model. The results show that the STO_IEU2020 model performs well, and that
the global ST model proposed in this study produces reliable results.

Figure 14 presents the number of checkpoints of the STO_IEU2020, SIO V20.1, DTU18
and ETOPO1 models in the five evaluated sea areas. Most of the differences are concentrated
in the±200 m range. For the STO_IEU2020 model, the checkpoints within± 100 m checking
difference accounted for 78.57%, 87.87%, 72.27%, 92.47% and 93.25% of the total checkpoints
in the five sea areas. Checkpoints within the small value range are more concentrated in
the STO_IEU2020, SIO V20.1 and DTU18 models compared with the ETOPO1 model. The
STO_IEU2020, SIO V20.1 and DTU18 models have comparable numbers of checkpoints at
the various difference ranges. In Sea Areas 1, 4 and 5, the curves of the three ST models
almost coincide. In Sea Areas 3 and 4, the STO_IEU2020 model is slightly better than the
SIO V20.1 and DTU18 models, while in Sea Areas 2 and 5, the SIO V20.1 model performed
better than the STO_IEU2020 and DTU18 models. In general, the SIO V20.1 and DTU18
models produced better accuracy results than the ETOPO1 model, and the SIO V20.1 model
was slightly better than the DTU18 model.

The STO_IEU2020 model was then evaluated using the SIO V20.1 model as reference.
The statistical results between the two ST models are summarized in Table 11. In the table,
the CC between the two models for Sea Areas 1 to 5 were over 0.99. After error processing,
the DRR was about 98% and the mean difference value was less than 6 m. Except for Sea
Area 3, the SD between the two ST models was less than 100 m. In Sea Area 3, the SD
was 131.07 m.

To compare the difference between STO_IEU2020 model and SIO V20.1 model, the
difference histograms of the two models were calculated in five sea areas (Figure 15). As
shown in Figure 15, the differences between the SIO V20.1 and STO_IEU2020 models were
evenly distributed on both sides of the zero value, resulting in normal distribution. About
95.62%, 94.29%, 87.39%, 95.59% and 97.90% of the total sea depth points in the five sea
areas were within the ±200 m difference range. Results presented in Table 11 and Figure 15
indicate that the STO_IEU2020 and SIO V20.1 models have a high degree of consistency.
STO_IEU2020 and SIO V20.1 are so related, we think the reason may be the input data
for constructing the STO_IEU2020 model is from SIO V29.1 data source, so we think that
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the STO_IEU2020 model agrees well with the SIO V20.1. From another perspective, the
findings suggest that the method for global ST model construction proposed in this study
is feasible, and that the STO_IEU2020 model is of high quality.
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Figure 14. Number of checkpoints in different difference ranges (a) Sea Area 1; (b) Sea Area 2; (c) Sea
Area 3; (d) Sea Area 4; and (e) Sea Area 5.

Table 11. Statistical results of difference between SIO V20.1 and STO_IEU2020 (unit: m).

Sea Area Max. Min. Mean SD CC DRR Remarks

Sea Area 1
3254.61 −3029.11 1.10 112.46 0.9950 100% PC
338.48 −336.28 0.68 82.47 0.9973 98.29% SC

Sea Area 2
2063.63 −2669.50 −5.69 114.71 0.9888 100% PC
338.45 −349.82 −4.45 95.10 0.9921 98.07% SC

Sea Area 3
2353.69 −2271.72 −1.30 157.99 0.9855 100% PC
472.67 −475.26 −0.85 131.07 0.9897 98.04% SC

Sea Area 4
2117.37 −4934.82 5.89 130.40 0.9875 100% PC
397.07 −385.30 5.56 78.88 0.9950 97.81% SC

Sea Area 5
2491.16 −3483.85 −0.62 92.51 0.9841 100% PC
276.90 −278.14 0.58 67.81 0.9913 98.02% SC

Note: SD denotes standard deviation; CC denotes correlation coefficient; DRR denotes data retention rate; PC
denotes primary checking; and SC denotes secondary checking.
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5. Conclusions

The current limitations and deficiencies in the global ST construction include insuffi-
cient sea surface gravity input elements, weak independent performance of ST models and
limited options for ST inversion. To address these challenges, this study developed a new
scheme strategy for large-scale ST modeling that considers the construction efficiency of
the ST model, applicability of the inversion method, heterogeneity of ST modeling environ-
ments and inversion advantages of sea surface gravity field elements. We constructed the
STO_IEU2020 global ST model based on the new scheme, and assessed the results using
shipborne-measured sea depth data in five evaluation areas in the Atlantic, Pacific and
Indian Oceans. The evaluation results showed that within the range of±100 m, the number
of checkpoints in the STO_IEU2020 model accounted for 78.57%, 87.87%, 72.27%, 92.47%
and 93.25%, with average relative accuracy better than 6%. The correlation coefficient
between the STO_IEU2020 and SIO V20.1 models was above 0.99, indicating the feasibility
and reliability of the large-scale ST modeling strategy proposed in this paper.
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