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Abstract: Higher-resolution wall-to-wall carbon monitoring in tropical Africa across a range of
woodland types is necessary in reducing uncertainty in the global carbon budget and improving
accounting for Reducing Emissions from Deforestation and forest Degradation Plus (REDD+). This
study uses Sentinel-2 multispectral imagery combined with climatic and edaphic variables to estimate
the regional distribution of aboveground biomass (AGB) for the year 2020 over the Cross River State,
a tropical forest region in Nigeria, using random forest (RF) machine learning. Forest inventory
plots were collected over the whole state for training and testing of the RF algorithm, and spread
over undisturbed and disturbed tropical forests, and woodlands in croplands and plantations. The
maximum AGB plot was estimated to be 588 t/ha with an average of 121.98 t/ha across the entire
Cross River State. AGB estimated using random forest yielded an R2 of 0.88, RMSE of 40.9 t/ha,
a relRMSE of 30%, bias of +7.5 t/ha and a total woody regional AGB of 0.246 Pg for the Cross River
State. These results compare favorably to previous tropical AGB products; with total AGB of 0.290,
0.253, 0.330 and 0.124 Pg, relRMSE of 49.69, 57.09, 24.06 and 56.24% and −41, −48, −17 and −50 t/ha
bias over the Cross River State for the Saatchi, Baccini, Avitabile and ESA CCI maps, respectively.
These are all compared to the current REDD+ estimate of total AGB over the Cross River State of
0.268 Pg. This study shows that obtaining independent reference plot datasets, from a variety of
woodland cover types, can reduce uncertainties in local to regional AGB estimation compared with
those products which have limited tropical African and Nigerian woodland reference plots. Though
REDD+ biomass in the region is relatively larger than the estimates of this study, REDD+ provided
only regional biomass rather than pixel-based biomass and used estimated tree height rather than the
actual tree height measurement in the field. These may cast doubt on the accuracy of the estimated
biomass by REDD+. These give the biomass map of this current study a comparative advantage
over others. The 20 m wall-to-wall biomass map of this study could be used as a baseline for REDD+
monitoring, evaluation, and reporting for equitable distribution of payment for carbon protection
benefits and its management.

Keywords: above ground biomass (AGB); REDD+; Nigeria; Sentinel-2; random forest

1. Introduction

Tropical forests encompassing less than a fifth of the Earth’s terrestrial area [1] are one
of the most important components of global terrestrial ecosystems, accounting for around
55% of total aboveground biomass (AGB) [2–4], hold two-thirds of global biodiversity [5,6],
sustain the economy of millions of rural populations and contribute to climate regulation [7].
However, a recent analysis revealed that the tropics are now a net carbon source rather than
a carbon sink, attributed mainly to anthropogenic land cover changes [8–10]. In addition,
changes in climate patterns and variability will also begin to have a serious impact on
tropical forested landscapes, especially those of Africa [11].
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African land cover encompasses diverse types of woody and forested landscapes
as well as a patchwork of undisturbed and disturbed forests, and wood species present
within heterogeneous farmed lands [12]. These diverse land cover types have varied AGB
densities even within a landcover type [13]. For instance, Saugier et al. [14], Knelling
et al. [15], IPCC [16] and Gibbs et al. [17], estimated mean AGB of 390 mg/ha, 190 mg/ha,
400 mg/ha and 198 mg/ha, respectively, in African intact forests. Bouveta et al. [13]
summed the varied estimates of AGB in Africa and concluded that the region’s savanna
and woodlands contained 52% of the total AGB while intact forests contained 48% of the
AGB. One of the reasons for this variation is that tropical forests do not have a universally
agreed definition, and in Africa, there are a variety of tropical landscapes from wooded
savannas, to humid tropical, to closed tropical and dry tropical forests [18]. In effect, nearly
75% of Africa’s forests are considered woodland savannas and dryland forests [19], with
carbon storage in African tropical forests only accounting for around 48% of the total [20].
Another reason is the paucity of forest inventory plots available in Africa to estimate AGB
and calibrate/validate remote sensing derived biomass products [21], compared to other
tropical regions.

Different tropical-wide AGB maps have been produced in the last decade using a
combination of satellite data and ground-based plots. Saatchi et al. [22] first produced
a biomass map using satellite LiDAR and MODIS data and a machine learning spatial
extrapolation method at a fine resolution of 1 km. They used 75 calibration forest inventory
plots over Africa, producing a total AGB estimate of 124 Pg with an uncertainty of ±32%.
Baccini et al. [23] also used satellite LiDAR and MODIS data within the random forest
framework to predict AGB over the tropics at a 500 m resolution. They calibrated their
product using 283 plots throughout the tropics, producing a total Africa AGB estimate of
129 Pg and an average RMSE of 38 t/ha. In a more recent study, Avitabile et al. [24], fused
the Saatchi and Baccini products at 1 km, producing AGB over Africa of 96 Pg with an
RMSE of 83.7 t/ha (a reported improvement of around RMSE 20–30 t/ha compared to the
Saatchi and Baccini products). Furthermore, they used 953 reference points over Africa
out of over 14,000 in the tropics. Therefore, the Saatchi et al. [22], Baccini et al. [23] and
Avitabile et al. [24] studies produced their products with limited calibration and validation
plots in Africa. Similarly, Santoro and Cartus [25], henceforth referred to as the European
Space Agency Climate Change Initiative (ESA CCI) Biomass project, estimated total tropical
AGB to be 331.3 Pg and Africa having AGB stocks of 84.4 Pg. These varied estimates over
the same region from different authors derived from various remote sensing instruments
and protocols with little timelapse contributions to the high AGB uncertainty and lack of
effective carbon stock tracking and management.

Article 2.1 of the Kyoto Protocol highlighted the need for individual countries to
reduce GHGs to ‘a level that would prevent dangerous anthropogenic interference with
the climate system’ [26,27]. The articulation of the Kyoto Protocol was the seed that led to
the formation of the Reducing Emissions from Deforestation and Degradation (REDD) [28].
REDD, created by the UNFCCC Conference of Parties, encourages countries to contribute
to climate change mitigation through reducing emissions from deforestation and forest
degradation, and increasing the removal of greenhouse gases (GHGs) through sustainable
management of forests and the conservation and enhancement of forest carbon stocks.
To attain this goal, developed countries were encouraged to focus on fossil fuel related
emissions while tropical developing economies were commissioned to concentrate on
LULCCs linked emissions especially from the forestry sector [29,30]. More so, tropical
country AGB quantification supports the monitoring of biodiversity status [31], protects
carbon pools [32] and increases social and environmental ecosystem services to forest
communities who largely depend on natural resources for daily subsistence [33].

In addition, studies determining AGB density in Nigeria, and specifically tropical
Nigeria, have not used local forest inventory plots to calibrate biomass estimation [22–24,34].
In these studies, reference points from the Republic of Congo, Uganda, Ghana, Cameroon,
etc. were used for model calibration and results were extrapolated to Nigeria without
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any point dataset collected from there despite the differences in vegetation disturbance
history, plant functional types, soils and climate which affect biomass density [34]. In
addition, the IPCC biomass estimation guide [35] advised that for better biomass estimation
accuracy, tier three level (which is country or subnational) estimation of biomass should be
encouraged. These sub country regional biomass estimations can then be agglomerated to
obtain national biomass density and spatial variations for effective verification, reporting,
monitoring (MRV) and subsequent payments of subventions under the REDD+ initiative.

Cross River State has more than 50% of Nigeria’s remaining tropical intact forest and
is one of the 25 biodiversity hotspots of the world [36]. However, the ecological integrity
of the region is under threat from anthropogenic destruction [37]. In 2020, Global Forest
Watch [38] revealed the state had lost 12.7 Kha of its tree cover. The rate of land-cover
change (at 3.7%) in Nigeria per year remains among the highest in the world [36]. The
destruction of tracks of forest cover leads to biomass loss, but REDD+ in 2018 [39] estimated
0.267 Pg of above ground biomass in the state. The REDD+ project in Cross River State
did not carry out wall-to-wall AGB estimation and the field campaign was restricted to
tropical forested zones. Other land cover types, such as disturbed forests, mixed agroforest
areas and savanna landscapes, were left out of the UN-REDD+ Nigeria study [39]. Tree
heights were not measured in the field but were derived using the Feldspausch et al. [40]
height-diameter tropical forest allometry.

In these contexts, the aim of the study is to derive high spatial resolution (20 m) AGB
for the whole of the Cross River State, Nigeria, using Sentinel-2 data, climatic and edaphic
variables and with local reference forest inventory plots taken from undisturbed, disturbed
and cropland areas. We use Sentinel-2 data and forest inventory plots collected concurrently
in 2020 to produce a regional AGB map. Specifically, the study planned to (1) establish
a network of forest inventory plots in a variety of forest and woodland landscapes for
AGB estimation and (2) use Sentinel-2, climate and soil variables to predict and spatially
extrapolate AGB to the Cross River State using random forest machine learning, and
(3) compare the AGB map of this study with well-known products from Baccini, Saatchi,
Avitabile and ESA CCI as well as comparing to the REDD+ AGB estimates published
regarding the Cross River State.

2. Materials and Methods
2.1. Study Area

The study area is the Cross River State in southeast Nigeria, with an area of 20,156 km2

(Figure 1). The area covers an elevation range from 1800 m in the extreme north to 103 m
above sea level in the southern part of the state [39]. It shares boundaries with Benue State
in the north, Akwa Ibom, Ebonyi and Abia States in the west and the Atlantic Ocean to the
south. Cross River State has five different vegetation types: mangrove, swamp and tropical
rainforest which dominate the southern and central parts of the region, montane vegetation
and savanna woodlands are dominant in the northern portion of the study area [37]. It is
recognized as one of the biological hotspots in the world [41] and two locations—Oban and
Okwangwo—are marked out as conservation spots. The Oban Division (OD) covers an
area of 2800 km2 with 1568 identified plant species while the Okwangwo Division (OkD)
has a land area of 800 km2 with 1545 plant species located in the area [42]. Analysis of the
extent of land cover types in the region shows that mangroves occupy 480 km2, swamps
520 km2, tropical rainforest 7290 km2, plantations 460 km2, other forests 216 km2 and other
land uses 12,300 km2 [43].

Rainfall in the Cross River State is bimodal with differences across the three agroeco-
logical zones (AEZs). The rainfall gradient is largely influenced by relief and nearness to
the coast. The southern AEZ has a tropical monsoon climate with an annual mean rainfall
of 3500 mm, which sometimes peaks at 4000 mm around the Oban Massif [44]. The climate
of the region is within the tropical monsoon (Am) classification scheme of Koppen [45].
The mean annual air temperature of the zone averages around 27 ◦C with little variation
throughout the year, and with humidity between 78% and 91% [46]. In the central AEZ,
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the mean annual rainfall varies from 2300 to 3000 mm. The zone records mean annual air
temperature ranging from 26.9 to 30 ◦C and the humidity of the zone in most parts of the
year is about 68% [44]. In the northern AEZ, the savanna ecosystem is common with a
mean annual rainfall of 1120 mm and air temperature ranging from 15 to 30 ◦C [47]. The
zone has two climate seasons: the rainy season, which lasts for about eight months, and the
harmattan, which lasts for about four months. In the montane ecoregion of the Obanliku
Mountains within the northern AEZ, climatic conditions are markedly different from other
parts of the region. Air temperature have a mean annual range of 4–10 ◦C. The terrain is
rugged with hilly escarpments, steep valleys and mountains that peak at about 1800 km2

above sea level with an elongation into the southwest region of Cameroons [44].
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Figure 1. Forest inventory plots throughout the Cross River State were established with Forestry Com-
mission guidance following their land cover classification (Cross River State Forestry Commission
Forestry Manual 2019 [48]).

2.2. Forest Inventory Survey

A land cover map (Figure 1) developed by the Cross River State Forestry Commis-
sion [48] was used in establishing the forest inventory plots. The study area was classified
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into: undisturbed forest (UF), disturbed forest (DF) and croplands (CF) based on the Cross
River State Forestry Commission staff guide and with modification of Gautam and Mandal
delineation [49]. The undisturbed land covers considered in this study were unbroken
stretches of land covered with diverse tree species with little or no human interference in
the ecological structure while those with evidence of anthropogenic activities, such as tree
stumps and patches of logging, roads, pronounced footpaths, banana and cocoa farmland
patches, farm huts and any gap in the forest land, were attributed to human activities [50].
On the other hand, croplands or agroforestry areas are woodlands with different species of
crops cultivated in them at the same time. Photographs providing examples of measured
plots are given in the Supplementary Materials S1.

The GPS points of purposively chosen locations were overlaid on a map of the Cross
River State across the landcover types identified for this study. Thereafter, GPS coordinates
of each chosen sample point were inserted into the GPS Garmin eTrex model (with accuracy
of 3 m), and on the ground, the Goto function was used to locate the plot for the inventory.
In all sample locations, entry point was through a known community [39]. Accordingly,
29 plots were established in undisturbed landcover, 18 in disturbed land cover and 25 were
established in croplands. It should be noted that chosen plots that were difficult to assess
on account of geomorphic features, such as river, flooded streams, steep slopes or security
challenges, such as intercommunity or interstate clashes, resulted in other alternative
locations being chosen.

The field campaign commenced in March 2020 and ended in November of the same
year. In this study, 72 nested square plots of 20 m × 20 m were established. Trees of
sizes >50 cm, 20–50 cm and <20 cm diameter at breast height (1.3 m) were inventoried in
the 20 m × 20 m plots and subplots of 15 m × 15 m and 7 m × 7 m, respectively [50]. In
each of the 72 plots, all tree species were identified, numbered and DBH measured using a
measuring tape and the total height was taken with a Trupulse Criterion RD 1000. Given
that the wood density of tropical trees species is erratic [51], the study extracted wood
density of each tree species identified from the African Wood Density Database provided
by the World Agro-forestry Centre [52,53] and the African Wood Density of the Food and
Agricultural Organization [54]. However, where the tree species wood density was not
found in either of these databases, the mean wood density of the plot was used as the wood
density of the tree species [50].

The allometric equation of Chave et al. [53] was used to estimate the AGB of each
tree in each forest inventory plot. Chave’s allometric equation requires total height, H (m),
species wood density, ρ (g/cm−3), and diameter at breast height, DBH (cm), to estimate
tree-level AGB. Chave et al.’s AGB estimation equation is given as:

AGBest. (kg) = 0.0673 × (ρ × DBH2 × H)0.976 (1)

The biomass of each tree within a plot was summed to obtain the total biomass per
400 m2 plot in kilograms (kg/m2) [55]. This is converted to tons per hectare. Figure 2
provides a synopsis of the dataset sources, analytical procedures and final AGB product of
the study.

2.3. Regional Aboveground Biomass Estimation

This section presents the relevant spatial variables used in predicting regional above-
ground biomass in the Cross River State, Nigeria, from the different sources and techniques
used in the acquisition of Sentinel-2 vegetation indices, mean air temperature and the mean
rainfall data over the study area.
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Figure 2. Methodological workflow showing data sources, analytical procedures, final output and
accuracy assessment. Climate variables used were air temperature, precipitation, relative humidity
and soil moisture. Vegetation indices are given in Section 2.3.1 below.

2.3.1. Satellite, Climatic and Topographic Variables

In this study, we utilized a total of eight Sentinel-2A multispectral images (hereafter
called S2) alongside climatic and topographic variables. The S2 data were downloaded from
the United States Geological Survey (USGS) Earth Explorer site at: https://earthexplorer.
usgs.gov/ (accessed on 20 November 2020). The downloaded S2 level-1C (LIC) images were
then transformed from radiance to surface reflectance aided by the dark object subtraction
(DOS) method based on the semi-automated classification plugin in QGIS version 2.14
software [56]. With this process, all the darkest pixels caused by atmospheric scattering
that may reduce the image quality are reduced [14]. The S2 images were atmospherically
modified, orthorectified and spatialized on the global reference system UTM/WGS 84, 32N
Minna datum on the SEN2COR tools of SNAP (Sentinel Application Platform) toolbox of
the European Space Agency. Top-of-atmosphere (TOA) reflectance was converted to top-of-
canopy (TOC) reflectance [57,58]. Sub-setting and mosaicking were carried out to produce
a single image for the study area [59]. The S2 MSI (10 m) images were resampled to 20 m
resolution to match the plot size (20 m) and this was done using the nearest neighbored
resampling technique in ArcMap [59]. This interpolation method was used because its
processes are faster, the algorithm has less rigorous implementation procedures and it is
suitable for discrete data such as AGB [60–63]. The benchmarked image was then subjected
to a geometric preprocessing protocol. All the images were downloaded from the last
month (November 2020) of the field data campaign where weather conditions over the
region are often less cloudy.

The various signal bands and vegetation indices were considered in this study and are
shown in Table 1. The vegetation indices include the Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index 2 (EVI 2), Optimized Soil Adjusted Vegetation
Index (OSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), Atmospherically Re-

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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sistant Vegetation Index (ARVI), Inverted Red-Edge Chlorophyll Index (IRECI), Modified
Red-Edge Normalized Difference Vegetation Index (MRENDVI), Modified Red-Edge Sim-
ple Ratio (MRESR) and Red-Edge Normalized Difference Vegetation Index (RENDVI). In
each of the delineated plots, the spectral reflectance values at the center point of the plot
were extracted using the ‘Extract Values to Points’ spatial analytical tool in ArcGIS. This
tool extracts the cell values of the raster dataset based on the plots (point features taken at
the center of the plot). The equations used to calculate the above vegetation indices and
their references are shown in Table 1. These vegetation indices were used because previous
studies [22,24,25,34] established that these VIs are sensitive to phenological dynamics in
vegetation, hence they can be used as proxies of forest biomass. More so, 30 m elevation
data from the Shuttle Radar Topography Mission (SRTM) was downloaded from the United
State Geological Survey’s Earth Explorer (https://earthexplorer.usgs.gov/ (accessed on
20 November 2020) and subsequently resampled to 20 m spatial resolution using ArcMap’s
nearest neighborhood method [58].

Thirty-five years (1985–2020) mean annual air temperature, precipitation, relative
humidity and soil moisture data over the Cross River State, Nigeria, were obtained from
the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset,
downloaded from the Copernicus Climate Change Service (S3C) Climate Data Store
(https://cds.climate.copernicus.eu/ (accessed on 30 December 2020) [64]. The ERA5
are 5th generation elite model-based data produced on ECMWF Integrated Forecasting
System (IFS). The ERA5 merged model-derived data with historical in situ and space-
borne observational data under a robust quality control protocol. The ERA5 data are
presented with a resolution of around 30 km. Subsequently, these climate parameters were
upscaled to 20 m spatial resolution using the nearest input grid points as provided by
Digital Earth Africa user guide (https://docs.digitalearthafrica.org/en/latest (accessed on
12 March 2021).

Table 1. Vegetation indices calculated from Sentinel-2 used in the study. Blue, Red, RE1, RE2 and
NIR correspond to the Sentinel-2 bands 2,4,5,6 and 8.

Vegetation Indices Equations References

NDVI (NIR − Red)/(NIR + Red) [65]
EVI 2.5 × ((NIR − Red)/(1 + NIR + 6Red − 7.5Blue) [66]

OSAVI (NIR-Red)/(NIR + Red + 0.16) [67,68]
MSAVI (2 × NIR + 1 − sqrt[(2 × NIR + 1 2 − 8 × (NIR − Red)])/2 [69]
ARVI (NIR − (2Red − Blue))/(NIR + (2Red − Blue)) [70]
IRECI (NIR − R)/(RE1/RE2) [71]

MRENDVI (RE2 − RE1)/(RE2 + RE1 − 2 × Blue) [72]
RENDVI (RE2 − RE1)/(RE2 + RE1) [73,74]
MRESR (RE2 − Blue)/(RE1 − Blue) [75]

2.3.2. Regional AGB Estimation Using Random Forest

Estimation of AGB across the Cross River State was based on Breiman’s [76] random
forest (RF) model. The RF is an ensemble decision tree algorithm used in both classification
and regression analysis [77]. In regression analysis, the algorithm builds a series of decision
trees on bootstrap samples and then takes the average of the output of each tree. The
averaging reduces the variance of the model and improves its prediction accuracy. The
accuracy of the prediction increases with an increasing number of trees [78–80]. The
inherent ease of manipulation, the capacity to be executed with small sample sizes [81,82]
and most importantly, overcoming overfitting and collinearity of variables challenges
associated with complex data domains [76,83,84], make this method very appropriate
in determining aboveground biomass [23,85,86] in this study. RF has two important
features: Ntree and Mtry. Ntree is the number of decision trees formed based on the
bootstrap samples of the observation which by default is 500, while Mtry is the number of
variables used as potential candidates at each split [84]. Furthermore, to optimize model

https://earthexplorer.usgs.gov/
https://cds.climate.copernicus.eu/
https://docs.digitalearthafrica.org/en/latest
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performance, given the field samples and input layers, Ntree and Mtry were tested in the
ranges of 250–1000 and 1–16, respectively. The optimal combination of Ntree and Mtry
for AGB prediction was 400 and 3, respectively. The Ntree and Mtry used were enough to
stabilize the error as too many Ntree may over correlate the ensemble and subsequently
lead to over overfitting [79].

Concerning training and testing, 70% of the data (in bag sample) were used to train
the model while the remaining 30% of the data (out-of-bag sample-OOB) were used for the
internal cross-validation procedure for estimating the OOB error [80,86]. The R2, RMSE
and relative RMSE (relRMSE) of the model were used to interpret the relationship between
the field obtained AGB and predicted AGB [87,88]. The relRMSE is defined in this study
as the RMSE divided by the mean of the observed values. In addition, the selection of
important features becomes crucial because of the interconnectedness and high dimensional
properties of biophysical parameters [87,89]. Feature selection in random forest can be
conducted using the filter, wrap or embedded method [90,91].

In this study, the recursive feature selection wrap method was used [92]. This method
searches for the best subset of variables by adding (forward selection), eliminating (back-
ward selection) or searching for the optimal subsets of variables (recursive selection) and
ordering them based on their performance. This aided us in the reduction of the com-
putational time, improvement in model performance with the right subset combinations,
reducing overfitting and increasing the ease of data interpretation, among others [93]. The
random forest algorithm has an inbuilt capacity to calculate the contribution of each of
the explanatory variables to the model. The increased percentage in mean square error
(%inMSE), computed as the prediction error of each tree on the out-of-bag samples as
the data are randomly shuffled [76], is one measure that revealed the contribution of a
variable to the model. Variables with higher values are indicative of their robustness in
the model [94]. Node impurities tell us how well the variables split. It expresses the total
decrease in impurities as the variables are divided during permutation and averaged over
all the trees. In other words, it is the residual sum of squares as the features are divided [76].
MSE and node purities in random forest algorithms are the most widely used variable
scores of importance in ecological studies [65,78]. The model parameter optimization
process of the RF model is provided in the Supplementary Material.

To evaluate the effectiveness of the random forest model, the coefficient of determi-
nation (R2), root mean square error (RMSE) and the percentage mean square error (i.e.,
relRMSE) were used to determine the general error of the AGB estimation. Generally, a
high R2, with low RMSE and relRMSE, is an indication of a good predictive model [70].

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

relRMSE% = 100 .
(

RMSE
Ŷ

)
(3)

where yi is the predicted value series, ŷi is the observed value series, n is the sample size
and Y is the average value of the observed series. In addition, the field plot data were
compared with the extracted AGB values from Saatchi, Baccini, Avitabile and ESA CCI
AGB maps using the Willmott’s agreement index, as shown in Equation (4).

d = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1
(∣∣Pi − O

∣∣+ ∣∣Oi − O
∣∣)2 , 0 ≤ d ≤ 1 (4)

where Oi is the AGB from field plots, Ō is the observed mean AGB and Pi is the AGB
values from each of the maps used in this study [95]. An index of 1 implies a perfect
agreement between a pair of datasets. The Willmott index (d) is a standardized statistical
technique used to establish the extent of prediction error which varies between 0 and 1 [95].
Willmott [95] reported that the index of similarity is not sensitive to errors concentrated
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around outliers. In addition, it is simple to implement and dimensionless, hence, the unit of
data collection does not count. The Willmott index was used to support traditional model
evaluation measures of R2, RMSE and bias [96,97].

Errors in the AGB estimation could filter in at any stage of the research process: plot
design, data collection, model formulation and parameterization or analysis [18]. To create
the AGB uncertainty we assumed that the identified error sources are independent and
random, and we propagated these errors to the pixel level using the formula [23]:

εAGB =
(

ε2
measurement + ε2

allometry + ε2
sampling + ε2

prediction

)1/2
(5)

This study uses Chave’s et al. [53] pan tropical allometric equation to estimate the AGB
and is associated with an error margin of 5%. The measurement errors of wood density,
tree height and diameter at breast height in the region are estimated to be 10, 2.5 and 4.47%,
respectively [22]. Similarly, the sampling error was taken from Saatchi [22] to be 22.8% for
the tropics.

RF is a non-parametric ensemble technique, which does not require direct quantifica-
tion of prediction error such as traditional regression approaches [78]. We therefore rely on
the Monte Carlo model in quantifying the prediction uncertainty. The underlying principle
of the Monte Carlo model is the repeated simulation of the occurrence of a random event
and the subsequent estimation of its probability features based on the frequency of the said
random event [98]. With repeated simulations of the Monte Carlo samples (in our case,
500 iterations), the probability distribution of biomass estimates, and errors are obtained
from the series of iterations which resulted in a stable and reliable quantification of biomass
and the error map [99].

These diverse error sources are propagated during the geospatial modelling pro-
cess assuming all errors were independent and random; hence it is imperative to know
their size and the pattern of distribution in accordance with IPCC and the Carbon Fund
Methodological Framework [39].

2.4. Comparisons to Other Regional to Global AGB Products

A few tropical and global remote-sensing-based AGB maps have been produced in the
past decade. In this study we will compare our AGB product over the Cross River State with
that of Saatchi et al. [22], Baccini et al. [23], Avitabile et al. [25] and the ESA CCI [25]. These
studies are summarized below. Furthermore, details of the Nigeria UNREDD+ project
which has estimated AGB for the whole CRS in 2018 are also provided.

Saatchi: Saatchi integrated plot based AGB and GLAS (Geosciences Laser Altimeter
System) LiDAR Lorey heights derived AGB with MODIS (NDVI and Leaf Area Index),
QSCAT (NDVI and LAI) and SRTM (topography) to extrapolate AGB over the tropics at
1 km spatial resolution using the Maxent machine learning tool. Saatchi used 75 plots of
0.1 ha in size (493 in all tropics) scattered across tropical African forests, wood savanna
and dry forests of Cameroon, Uganda, Liberia and Gabon and inventoried trees with DBH
of 10 cm and above. Saatchi used an allometric equation that included tree DBH and
wood density in estimating the AGB plot. The model predicted the total AGB for Africa
to be 62 Pg. In addition, 40% of the point dataset were reserved for model testing while
field plot datasets were bootstrapped and used with GLAS LiDAR to account for pixel per
pixel error through the Maxent model. Saatchi examined the model performance based
on two parameters: the segment of predicted area and extrinsic omission rate at a selected
threshold and the area under the receiver curve (AUC). The Maxent model revealed that
the AUC ranged between 0.86 and 0.98, indicating that the prediction did not happen
by chance. The overall uncertainty averaged over all continents was also reported to be
between ±30% and ±32% over Africa.

Baccini: Baccini determined a pan-tropical map using similar methods to Saatchi,
but with the use of RF. Baccini measured all trees with DBH of 5 cm and above and
produced the AGB map at 500 m spatial resolution. The AGB over the study area was
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predicted and mapped using a random forest learning algorithm. Baccini used an allometric
equation that includes tree DBH, height and wood density in estimating plot level AGB
and 10% of the data were used to test the RF model. Additional spatial layers used as input
data included surface temperature from MODIS bands, EVI2, NDVI2 and all land bands.
Baccini produced a total AGB of tropical Africa at 64.5 Pg. Validation using their testing
dataset resulted in an RMSE of around 50 t/ha for all tropical regions, with 38 t/ha for
tropical Africa.

Avitabile: The AGB products of Saatchi and Baccini were combined into a pan tropical
AGB map at 1 km resolution, using an independent reference dataset of field observations
and locally calibrated high-resolution biomass maps. The data fusion approach used bias
removal and weighted linear averaging incorporating the biomass patterns indicated by
the reference data. Avitabile screened and selected 14,477-point data across the tropics
and 953 were taken from Africa (DRC, Tanzania, Ghana, Ethiopia, Sierra Leone). Trees
with a DBH range of 5–10 cm were used in model calibration and subsequently estimated
84 Pg as the total carbon stocks over Africa. The plots and GLAS LiDAR-derived AGB were
spatialized using a random forest model. This fused product compared to the Saatchi and
Baccini product, using its own validation dataset, reported RMSEs of 89, 104 and 112 t/ha
and bias of 5, 21 and 28 t/ha, respectively.

ESA CCI: Here, the authors estimated growing stock volume (GSV) obtained mainly
from radar data with a spatial resolution of 1 km. The GSV was converted to AGB using
wood density and a stem-to-total biomass expansion factor. A total of 110,897 plots scattered
across the globe were used in model validation. ESA CCI-derived AGB was integrated
with CCI Land Cover datasets and using the Forest Resources Assessment (FRA) ecological
zones of 2010. The ESA CCI estimated total AGB of 84.8 Pg for Africa against FRA estimates
of 95.5 Pg with a mean AGB of 108 t/ha and 142 t/ha, respectively. The large variance
between the two studies was attributed to the use of more forest area in the ESA CCI studies
compared to FRA. AGB was predicted with a standard deviation around 50% for tropical
forests and tropical mountain forests. RMSEs were provided with a range of AGB values,
giving RMSEs of 30–50 t/ha for AGB > 100 t/ha and 50–100 t/ha for AGB < 100 t/ha.

Nigeria UNREDD+ project: Nigeria secured approval for the REDD+ project implemen-
tation in 2010 with Cross River State as a demonstration model. Cross River State holds
50% of the remaining 9.6 million hectares of Nigeria’s forest area but is under threat of
deforestation [39]. In addition, the region was selected for the first REDD+ implementa-
tion in the country based on the streams of forest governance structures and its carbon
sequestration potentials [28]. The project established 77 nested plots of 35 m × 35 m across
13 land cover types for tree parameters inventory. Tree DBH was measured in the field
while height and wood density were derived from the equations of Feldpauch et al. [40]
and Zanne et al. [100]. The Chave et al. [18] allometric equation was used to estimate tree
AGB. Tree AGB was summed to obtain plot-based AGB. Using a biomass conversion factor
of 0.47, the estimated AGB of the region was given as 2544 t/ha.

Extracting AGB from the regional products: The four AGB products of Saatchi, Baccini,
Avitabile and the ESA CCI were evaluated against the 22 testing forest inventory plots
collected as part of this study. The Saatchi, Baccini, Avitabile and ESA CCI products were
downloaded, the study area cropped, and projection parameters selected to conform with
the coordinate system of the study area (UTM/WGS 84, 32N Minna datum) using the
SEN2COR tools of the SNAP (Sentinel Application Platform) toolbox of the European
Space Agency. To ensure effective comparison, each of the products’ native resolution was
used [25]. The forest inventory plots of this study were then overlaid on the subset AGB
maps of Saatchi, Baccini, Avitabile and ESA CCI and compared to the extracted AGB values
from each product.
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3. Results
3.1. Summary Analysis of Plots AGB

Descriptive characteristics of the forest stands’ features are presented in Table 2.
Overall, there were 28 plots collected in undisturbed forests (Figure 1), 18 plots collected
in the disturbed forests and 26 plots collected in crop field plots (henceforth UF, DF and
CF). The mean number of trees in the UF, DF and CF plots were 38.8, 4.02 and 25.2 cm,
respectively, while the mean heights of trees in these three land cover types were 23.6, 22.0
and 8.2 m, respectively. Basal areas on average were 35.5, 28.8 and 15.9 m2/ha and average
AGB was 222.5, 106.5 and 24.4 t/ha in the UF, DF and CF plots, respectively. Specific wood
density (g/cm3) ranged from 0.20 to 0.93 across all sites, with average wood densities of
0.71, 0.55 and 0.50 g/cm3 in UF, DF and CF plots, respectively.

Table 2. Descriptive statistics of forest inventory plots.

Landcover Type
Parameters

Undisturbed Forest (n = 28) Disturbed Forest (n = 18) Crop Fields (n = 26)
Max Min Mean Max Min Mean Max Min Mean

DBH (cm) 164.4 5.1 38.8 164 5.1 40.2 82.6 5.1 25.2
Tree height (cm) 67.0 2.8 23.6 45 4.1 22.0 30.0 1.5 8.2

BA (m2/ha) 77.4 6.3 35.5 105.4 5.9 28.8 43.6 2.7 15.9
WD (g/cm3) 0.51 0.23 0.71 0.93 0.20 0.55 0.87 0.23 0.50
AGB (t/ha) 588.3 11.5 222.5 203.3 14.4 106.5 107.3 3.0 24.4

3.2. Predicting AGB Using Random Forest Algorithm

The result of the random forest training performance using all the explanatory vari-
ables (n = 16) results in a coefficient of determination of 0.85, an RMSE of 28.71 t/ha and
MAE of 30.02 t/ha. As stated in the methodology, performing feature elimination is an im-
portant step in reducing the effects of multicollinearity and overfitting. The random forest
algorithm has an inbuilt capacity to calculate the contribution of each of the explanatory
variables to the entire model through the variable importance measures (VIMs). This is
achieved using IncMSE and IncNodePurity (Figure 3). The MSE and node purity are filters
used to rank and removed irrelevant variables from the model.
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As shown in Figure 3, top parameters that made significant contributions to predicting
AGB include topography, rainfall, NDVI, RENDVI, minimum yearly air temperature and
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OSAVI. For instance, the elimination of topography and RENDVI as a predictive variable
reduces the model performance to 55% compared to 85% when all the explanatory variables
are included in the model. Conversely, variables, such as minimum relative humidity, ARVI,
MSAVI, EVI, maximum relative humidity, MRESR, soil moisture and maximum yearly air
temperature, may not have large effects on the model performance as shown in Figure 3.
However, as revealed in Figure 3, considering both the %IncMSE and node purity, the
important parameters exhibit instability in ranking.

In view of this, the top six parameters of the %incMSE were used to spatialize the
AGB of the study area. The importance of these variables is further discussed in Section 4.1
of this paper. The application of these top six variables in AGB prediction saw a change in
the model training accuracy yielding an R2 of 0.78, an RMSE of 54.7 t/ha and an MAE of
34.89 t/ha compared to the training accuracy of the full predictors yielding an R2 of 0.85
and an RMSE of 28.7 t/ha.

AGB from the testing forest inventory plots were used to determine the predictive
accuracy of the final constrained RF model (Figure 4). The scatter plot of observed forest
inventory AGB versus predicted RF AGB shows that the observed AGB aligned with pre-
dicted AGB with an R2 of 0.88, an RMSE of 40.9 t/ha and a relRMSE of 29.96%. Separating
this into 100 t/ha bins, AGB < 100 t/ha is predicted with an RMSE of 21.7 t/ha (66.5%
relRMSE/10.1 t/ha bias), AGB between 100 and 200 t/ha is predicted with an RMSE of
47.5 t/ha (29.3% relRMSE/22.8 t/ha bias) and AGB >300 t/ha is predicted with an RMSE
of 57.25 t/ha (18.5% relRMSE/−19.3 t/ha bias).
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using the six most important predictor variables of %incMSE shown in Figure 2.

The spatial distribution of predicted AGB values and associated uncertainty over
the Cross River State are presented in Figure 5. Over the Cross River State, high AGB is
concentrated in two pockets: the south-eastern areas of the state (Oban area) and the north-
eastern areas (Okwango area) coinciding with much of the CRS National Park. This area
sees AGB above 200 t/ha and up to 500 t/ha. Areas around the Cross River to the south of
the state, and scattered areas to the west of the state see AGB values of 150–350 t/ha. Areas
to the far south, far west and north of the state have the lowest AGB below 100 t/ha.
Average uncertainty over the CRS is estimated to be 34.6%, with lower percent uncertainty
(0–50%) in higher biomass areas.
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3.3. Comparison with Other Aboveground Biomass Products

The Cross River State AGB product developed in this study was compared to the
products from Saatchi, Baccini, Avitabile and ESA CCI+. We also included the REDD+
estimate of total AGB over the whole of Cross River State. Here, we compare distribution
patterns, model performances of the four products as well as the mean, maximum and total
AGB estimated over the Cross River State (Table 3). The average and total woody plot AGB
estimated for the region in the current study is 121.98 t/ha and 0.246 Pg. Baccini’s product is
the closest to these results, with mean and total biomass at 86.87 t/ha and 0.253 Pg, respec-
tively, within 29 and 3% of the current study’s values, respectively. Saatchi’s product has
mean and total biomass values of 93.86 t/ha and 0.290 Pg, respectively, within 23 and
18% of the current study’s values, respectively, and Avitabile’s product has mean and total
biomass values of 109.69 t/ha and 0.330 Pg, respectively, within 10 and 34% of the current
study’s values, respectively. The ESA CCI+ product is the most different with around 50%
underestimated total biomass. Furthermore, the UN-Nigeria REDD+ estimate in 2018 also
produced a close total biomass estimate of 0.267 Pg (8% larger than the current study’s
estimates). The distribution patterns of the regional estimates of AGB between the four
products and the current study are given in Figure 5.

All the regional aboveground biomass products over the Cross River considered in
this study are presented in Figure 6. The Saatchi map aligned with most regions of the AGB
map of this study. The Saatchi product has similar magnitude AGB in the central (Figure 6,
boxes B) and north-eastern highland areas, with high AGB values reaching 350–500 t/ha in
these areas for both products. In addition, the Saatchi product contained low AGB along
the western (Figure 6, boxes A), southern and north-western areas of the CRS with many of
the predicted AGB values < 50 t/ha. The Baccini product has more consistent AGB to the
current study in the western (Figure 6 boxes A), southern and north-western edge, but has
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lower AGB in the central and north-eastern highland areas with AGB values from 250 to
350 t/ha (e.g., see boxes B).

Table 3. Mean, maximum and total AGB by products and study over Cross River State, Nigeria.

Product/Study Mean AGB t/ha Maximum AGB t/ha. Total AGB (Pg)

Saatchi et al. 2011 [22] 93.86 365.9 0.290

Baccini et al. 2012 [23] 86.87 244 0.253

Avitabile et al. 2016 [24] 109.69 443.1 0.330

UN-Nigeria REDD+ 2018 - - 0.267

ESA CCI+ 2021 71.71 205 0.124

Current Study 121.98 588 0.246
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Figure 6. AGB products over the Cross River State of this current study and the Saatchi [22], Bac-
cini [23], ESA CCI+ [25] and Avitabile [24] at their respective resolutions. Zoom in areas showing
an area of transition from high to lower AGB areas (A) and high biomass areas in the center of the
state (B) are also given.Boxes A and B indicate locations and so have the same name for all
five AGB products.

The Avitabile product qualitatively compares most favorably to the AGB map of
this current study in the central (Figure 6 boxes B) and northeastern highlands with
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AGB values > 350 t/ha. Yet, as with Saatchi, southern, western and northwestern ar-
eas contained lower biomass values regularly below 50 t/ha. The current AGB map of the
Cross River State by ESA CCI shows more homogenized AGB across much of the CRS. For
instance, in the central (boxes B) and north-eastern parts of the study area, the ESA CCI
product shows biomass only up to 350 t/ha with a gradual drop in AGB in the southern,
western (boxes A) and north-western regions. Note that the dates of each product are
10 years apart (2011–2021) and thus biomass may be affected by anthropogenic and climate
disturbances as well as natural ecological growth and mortality processes (see Discussion
Section 4.2).

The performance of the four regional biomass maps is assessed against the 22 testing
forest inventory plots with resulting metrics given in Table 4. The product that is closest
to the observed forest inventory plots is the Avitabile product resulting in an RMSE of
32.89 t/ha and a relRMSE of 24.06%. The Saatchi AGB product contains errors of RMSE
67.62 t/ha with a relRMSE of 49.69%. The Baccini and ESA CCI products performed worse
compared to others as they recorded an RMSE of 78.03 t/ha and a relRMSE of 57.09%
and 78.87 and 56.24, respectively. These results are also confirmed using the similarity
agreement index of Willmott, with the Saatchi and Baccini products yielded indices of
0.89 and 0.85, while the Avitabile and ESA CCI products yielding indices of 0.98 and 0.85
compared to the 0.97 obtained for this study. Concerning the bias and MAE, all products
performed worse than the current study, with the Avitabile product being the closest (bias
of −17.3 t/ha compared to +7.5 for the current study).

Table 4. Predictive mean errors of the AGB products of the Saatchi, Baccini, Avitabile and ESA CCI
products over the Cross River State, Nigeria.

AGB Product RMSE (t/ha) MAE Bias (t/ha) RelRMSE% Willmott Index

Saatchi 67.93 41.35 −40.9 49.69 0.89

Baccini 78.03 48.41 −48.4 57.09 0.85

Avitabile 32.89 23.57 −17.3 24.06 0.98

ESA CCI 78.87 59.52 −49.9 56.24 0.85

This study 40.95 23.14 +7.5 29.95 0.97

4. Discussion

Nigeria, with over 200 million people and a land area of 923,768 km2, has the highest
rate of deforestation in Africa. According to Global Forest Watch [38], in the last 20 years
Nigeria has lost 11,415 km2 of tree cover, equivalent to 587 Mt of carbon dioxide emissions
and 1530 km2 of humid primary forest. Around 10% of this total tree cover loss and 23% of
the primary forest loss has happened in the Cross River State. To halt this trend, Nigeria
keyed into REDD+ in 2008 and formally received approval to kick start the project in the
Cross River State in 2009. The decision to start with CRS was informed by the fact that
50% of the nation’s remaining tracks of forest are found in the region, a valuable part of
the Guinean forest biodiversity global hotspot [49]. The Paris agreement recognized forest
protection as part of the strategy to counteract global carbon dioxide emissions, hence the
need to quantify and track changes in biomass in forest and woodlands [16]. To achieve this,
the IPCC [35] places emphasis on tier 3 level carbon accounting: reliance on local reference
plots, tracking changes in activity data and institutionalization of monitoring, reporting and
verification (MRV). However, existing efforts by the Cross River State REDD+ and other
regional products fall short of internationally recognized standards due to a lack of local
reference biomass data in both space and time in the region and across Africa, and a lack in
consistency of data collection for monitoring and reporting on carbon dynamics at regional
scales within the framework of REDD+ [101]. Subsequently, global, and regional attempts
at carbon accounting [22–24] are characterized by large uncertainties attributed to this lack
of, or inadequate, reference plots for the region. Coupled with the need for better forest
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inventory reference data, new higher resolution remote sensing techniques such as Sentinel-
2 and non-parametric machine learning methods can aid in reducing uncertainties in the
prediction of tropical forest biomass pertinent to national carbon accounting, sustainable
forest management, strategic policy making and REDD+ payment.

In view of these, the study aimed at deriving a high spatial resolution (20 m) above-
ground biomass map for the year 2020 for the whole of the Cross River State, Nigeria, using
Sentinel-2 data, climatic and edaphic variables and local reference forest inventory plots
taken from undisturbed, disturbed and cropland areas. In addition, the constraining of
predictor features in the random forest model helped in improving biomass prediction
over the Cross River State while reducing predictor feature multicollinearity [90]. This
study predicted spatially resolved AGB over the Cross River State of 0.246 Pg (average of
121.98 t/ha) with an RMSE of 40.9 t/ha, a bias of 7.5 t/ha, a relRMSE of 30% and an overall
uncertainty averaged at 34.6%. REDD+ produced a single AGB estimate over the Cross
River State of 0.268 Pg. The AGB prediction of this study is better compared to the regional
products of Saatchi, Baccini and ESA CCI which yielded relRMSEs of 49.69%, 57.09% and
56.24%, respectively (bias of −41, −48, −50 t/ha), and similar to the Avitabile product
(relRMSE of 24% and bias of −17 t/ha).

4.1. Aboveground Biomass Estimation over the Cross River State

Using all 16 predictor features including Sentinel-2 derived indices, climate variables
and edaphic conditions resulted in a predicted AGB with a training RMSE of 28.7 t/ha and
an R2 of 0.85. Subsequently, the feature selection process was down to six features resulting
in final training accuracy with an RMSE of 54.7 t/ha and an R2 of 0.78. Of the 16 features,
two climatic features were the most important: mean annual rainfall and minimum yearly
air temperature and three Sentinel-2 derived indices were selected: NDVI, RENDVI and
OSAVI and topography.

Topography exerted a very high influence on the distribution of AGB in the Cross
River State (Figure 3), with higher AGB coinciding with areas of the CRS with higher
topography. A principal reason for this is anthropogenic drivers of land cover change at
lower elevations globally, but also around the Cross River State [13,39]. Deforestation and
a history of agricultural use results in a loss of above ground biomass from agroforestry
areas to larger-scale commercial cropland with limited tree cover. Most croplands identified
by the CRS Forestry Commission are in the lower elevation areas of the state (Figure 1).
Second, much of the upland areas of the CRS are occupied by forest reserves, such as the
Cross River National Park separated into the Okwango (northeast) and Oban (southeast)
sections consisting primarily of high biomass moist tropical forest. Third, topography itself
can be a driver of higher biomass and biodiversity. Topography can shape climate regimes
and influence diversification [102] as well as being linked to a range of abiotic conditions,
such as soil water and nutrient availability, soil texture, exposure and flood regimes [7].

Rainfall and minimum yearly air temperature also exerted a strong influence on
the distribution of AGB over the Cross River State. Climate heterogeneity is among the
leading drivers of forest structure, biodiversity and aboveground biomass of tropical
forest ecosystems [103,104]. Precipitation has a positive correlation with AGB [105,106]
and over Africa has been estimated to be more important than other tropical continents
due to lower average rainfall and larger water limitation over Africa [106]. Temperature
has been shown to be negatively correlated to tropical forest AGB [105,106] with the
temperature of the coldest month also negatively correlated with AGB [106]. Studies in
western Africa, including Balima et al. [107] and Maukonen and Heiskanen [108] have also
shown that within the west African region, mean annual rainfall from 800 to 1200 mm has
a positive correlation with AGB and is negatively correlated with mean air temperature
from 27 to 29 ◦C. Similarly, Poorter et al.’s [104] study revealed that lower air temperature
supports soil fertility increase, and subsequently plant growth. Conversely, higher air
temperature may reduce the rate of biomass growth. The Cross River State agroecological
zones are characterized by varying climatic conditions [50]. The density of AGB across the
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three ecological zones (north, south and central) possibly reflects the gradients of air
temperature and precipitation conditions of the area. In the northeast and southeast
flanks where rainfall often exceeds 2500 mm in most parts of the year, AGB is observed to
reached 200 t/ha, whereas in northwest and southwest areas with less precipitation, AGB
is generally below 150 t/ha (Figure 5, left panel).

Sentinel-2-derived NDVI, RENDVI and OSAVI were important predictors identified
in this analysis to predict regional AGB over the study area (Figure 3). Specifically, the use
of the red edge in the RENDVI has recently been shown to be effective in predicting forest
AGB relaying issues with saturation at high biomass values and reducing uncertainties
in complex and dense tropical forest [106,109]. Adan [110], for instance, compared the
strength of red-edge and broad band-based VIs derived from Sentinel-2 in predicting total
AGB in the tropical forest of Malaysia, concluding that the red-edge Vis, such as REDNVI,
performed better than the non-red-edge VIs in predicting AGB. OSAVI was also used in
this study to predict AGB. OSAVA is a known VI that enhances the contrast between soil
and vegetation but aids in reducing the brightness effects of the soil [108].

4.2. Comparison to Other Regional AGB Products

As with this study, prior pan-tropical and global aboveground biomass products
shown in Figure 6 have used a combination of satellite data and machine learning methods
calibrated and validated using available forest inventory reference data. The total AGB
predicted in this study over the CRS is closest to the Baccini and UN REDD+ estimates, and
furthest away from the ESA CCI product (Table 3). Concerning the accuracy assessment
(Table 4, this study performed better than the Saatchi, Baccini and ESA CCI products with
around a 20–27% reduction in relRMSE and around a 27–38 t/ha reduction in RMSE. The
Avitabile product has a similar but lower relRMSE (~6% better) but larger bias compared to
our study (Table 4).

The Saatchi [22], Baccini [23] and Avitabile [24] products used the GLAS satellite
sampling LiDAR (i.e., not wall-to-wall), calibrated using reference plots over the tropics
to predict AGB, and then used MODIS multispectral data and satellite topography data
to spatially extrapolate to the tropics using a machine learning algorithm. Avitabile is an
improved product fusing Saatchi and Baccini using over 14,000 reference datasets (953 in
Africa) to create a nearly unbiased product with a published mean bias of +5 t/ha and
<+10 t/ha bias over Africa. The Avitabile product achieved prediction of higher AGBs
in dense tropical forests >400 t/ha in Africa, around 100 t/ha more than the Baccini and
Saatchi products [24] (see also Figure 6 and boxes B). Yet, Avitabile over the CRS still has an
overall negative bias of −17 t/ha compared to our study with a +7.5 t/ha bias. The method
developed here over the Cross River State has used localized forest inventory reference
data collected explicitly for this purpose using the REDD+ Nigeria field team and spatially
extrapolated using higher resolution multispectral Sentinel-2 data at 20 m as well as topog-
raphy and climate data. Recent studies have begun to use Sentinel-2 to produce AGB maps
for forests in Nepal (Pandit et al. [93]), Indonesia (Dube et al. [111]), Senegal (Soto-Navarro
et al. [112]) amongst others. The ability in these Sentinel-2 studies, and the current study
over the CRS, to predict AGB using various VIs outweighs the use of similar Landsat spa-
tial resolution [113]. The ESA CCI+ biomass product included over 110,000 forest inventory
reference plots from various global ecosystems and has largely used C and L-band radar
data to determine global biomass [25]. Given the use of radar, the ESA CCI product begins
to saturate at AGB values > 200 t/ha with a bias at 300 t/ha greater than −50 t/ha [25].
This study over the CRS predicts large AGB values (regionally >400 t/ha) with a bias from
200 to 400 t/ha at −19 t/ha and a relRMSE of 18.5%.

These biases and uncertainty within biomass products, emphasized the necessity
for spatial extrapolation using field plots and remote sensing [88], and the uncertainties
when comparing between products is likely responsible for the reluctance of the IPCC to
recommend Saatchi et al. [22], Baccini et al. [23] and Avitabile et al. [24] biomass maps,
hence its reliance on national forest inventories for subregional and regional biomass
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spatialization [18]. However, all the regional products and our AGB map clearly identified
similar areas—north-eastern and south-eastern flanks of the Cross River State—as areas
with high biomass density. The differences observed in other locations of the study area
and in the magnitude of the high AGB areas supports the need for better localized reference
data [18] with higher resolution spatial imagery.

We do recognize that comparing our AGB map with these four products may incur er-
rors associated with the differences in time scales between AGB products. In primary forests,
AGB growth in tropical rainforests in Africa has been estimated at 0.5–2.1 Mg ha−1 y−1 [114].
In disturbed and secondary African tropical forests, AGB growth has been estimated to
−0.1 to 5.5 Mg ha−1 y−1 [114] but can be counteracted by selective logging or other partial
disturbances (see Section 2.2). Yet, this temporal issue cannot explain the large regional
differences in the products, namely, the magnitude in AGB and sharpness of gradient of
AGB decline west of the two high biomass regions in the central and northeastern CRS (see
Figure 6 box inlets).

4.3. REDD+ Implications and Future Work

The leading mandates of REDD+ are to facilitate robust forest carbon quantification
at different jurisdictional levels and maintain and improve on carbon status for carbon
emissions reduction [28]. Because of this, nations are granted financial benefits based on
their performances; judged on demonstrable evidence at slowing, halting or reversing
forest cover destruction and carbon loss [28,115]. Therefore, the accurate estimation of
aboveground biomass and mapping is pertinent, and this will reduce uncertainty in carbon
stocks and cycle models especially in this part of the world where airborne LiDAR and field
data remain a challenge [116]. The integration of AGB derived from satellite remote sensing
and field measurements in our study increases confidence in our aboveground biomass
estimation, unlike the UN-Nigeria REDD+ team, Saatchi, Baccini and ESA CCI products
that either estimated AGB from field measurements alone or estimated AGB regionally with
limited forest inventory plots over Nigeria. The method presented in this current study also
does not rely on the improvement or fusing of prior products as with the Avitabile product.
The disparity in the estimated AGB from these products has been linked to the different
empirical modelling tools, calibration datasets and extrapolation techniques [25,88,116].
The IPCC Tier 3 Good Practice Guidebook emphasized accurate AGB reference data as vital
in sustainable forest management and climate mitigation [37]. In addition, the accurate
quantification of AGB is a requisite for meeting the four pillars of REDD+: National REDD+
strategy, national forest monitoring system and system of tracking REDD+ impacts on
safeguards [117]. The Cancun Agreement outlined the social and environmental safeguards
in Appendix 1 that implementing partners need to uphold [117]. Factual AGB estimation
and monitoring of carbon stocks is one fundamental pathway to achieving this. In addition,
with accurate AGB quantification in the region, land use policies will be put in place towards
meeting the land degradation neutrality target 15:3:1 of UNEP/CBD/SBSTTA [118] and
better the livelihood of forest dependent communities.

Future work may improve the AGB prediction of the CRS. First, the Global Ecosystem
Dynamics Investigation (GEDI) satellite LiDAR has recently been attached to the Interna-
tional Space Station providing samples of forest structure globally. These LiDAR samples,
coupled with on-the-ground biomass validation, could provide updated AGB maps with
spatial extrapolation similar to Baccini and Saatchi. Furthermore, a new 1 km AGB product
is being released by GEDI, which may provide improved estimates [119]. Second, Sentinel-1
radar could also be used to estimate biomass in isolation or using a fusion approach with
Sentinel-2. Third, a better disaggregation of forest and land cover types over the region
could have improved this work. These could include undisturbed tropical rainforests vs.
dryer tropical forest and sparse forests, various managed plantation forests, mangroves,
forest disturbance history and trees in non-forest environments, such as urban, agroforestry,
pastures, etc.
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This study faced challenges of adequate forest inventory plots. The cost of gathering
data on trees limited the numbers of plots in this study to 72 despite the size of the study
area. We recognize that a higher sample size may have improved the accuracy of the AGB
estimates. In addition, management of forest communities’ expectations was tricky; to
achieve results, we remained upright with all community opinion leaders as previously
similar exercises exaggerated the benefits of forest protection through promises of handouts
from government.

5. Conclusions

Reduced uncertainty high-resolution carbon monitoring in tropical Africa across a
range of woodland types is crucial to REDD+ improving carbon accounting, facilitating
robust quantification at all jurisdictional scales and understanding areas of high biomass
and biodiversity importance. The lack of reliable tree structure parameters for wall-to-wall
aboveground biomass estimation and validation in Cross River State, Nigeria, as in other
parts of the tropics, remain an immediate factor for high AGB uncertainty. In view of
this, the study integrated in situ forest inventory plots collected over the whole state, and
selected reanalysis climate data with Sentinel-2 derived vegetation indices to estimate
regional aboveground carbon using random forest at 20 m resolution. The result revealed
that Sentinel-2, climate variables and local forest inventories effectively predicted AGB
over the whole of the Cross River State, Nigeria, with an RMSE of 40.9 t/ha, R2 of 0.88,
relRMSE of 30% and bias of +7.5 t/ha.

More so, the uncertainty and bias values obtained here, unlike the relatively high
uncertainty of the Saatchi, Baccini and ESA CCI AGB products, reinforces Chave’s et al. [18]
call for the establishment of sampling plots across the tropics to improve biomass estima-
tions. REDD+ in Nigeria provided only regional biomass rather than pixel-based spatially
resolved biomass and used estimated tree height rather than the actual tree height mea-
surement in the field. The AGB product derived from this study can serve as a baseline for
REDD+ implementation, boost confidence in investment in tree carbon stocks, increase the
conservation value of natural resources, reduce climate change impacts, and enhance the
living standards of forest buffer communities.
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