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Abstract: Image dehazing is crucial for improving the advanced applications on remote sensing (RS)
images. However, collecting paired RS images to train the deep neural networks (DNNs) is scarcely
available, and the synthetic datasets may suffer from domain-shift issues. In this paper, we propose a
zero-shot RS image dehazing method based on a re-degradation haze imaging model, which directly
restores the haze-free image from a single hazy image. Based on layer disentanglement, we design
a dehazing framework consisting of three joint sub-modules to disentangle the hazy input image
into three components: the atmospheric light, the transmission map, and the recovered haze-free
image. We then generate a re-degraded hazy image by mixing up the hazy input image and the
recovered haze-free image. By the proposed re-degradation haze imaging model, we theoretically
demonstrate that the hazy input and the re-degraded hazy image follow a similar haze imaging
model. This finding helps us to train the dehazing network in a zero-shot manner. The dehazing
network is optimized to generate outputs that satisfy the relationship between the hazy input image
and the re-degraded hazy image in the re-degradation haze imaging model. Therefore, given a hazy
RS image, the dehazing network directly infers the haze-free image by minimizing a specific loss
function. Using uniform hazy datasets, non-uniform hazy datasets, and real-world hazy images,
we conducted comprehensive experiments to show that our method outperforms many state-of-the-
art (SOTA) methods in processing uniform or slight/moderate non-uniform RS hazy images. In
addition, evaluation on a high-level vision task (RS image road extraction) further demonstrates the
effectiveness and promising performance of the proposed zero-shot dehazing method.

Keywords: remote sensing image; convolutional neural network; zero-shot learning; image dehazing

1. Introduction

Remote sensing (RS) imagery has been widely used in meteorology, agriculture, the
military, and other fields. However, compared to ground images, the quality of RS im-
ages is not good even under haze-free conditions due to the light attenuation in the long
imaging distance. In addition, RS imagery has a larger field of view than ground imaging,
resulting in a non-uniform distribution of haze. Due to the much more complex atmo-
spheric conditions than exists for ground photography, the captured RS images are usually
degraded with contrast reduction and detailed information loss. As a result, such degraded
images further constrain the advanced applications of RS images, such as ground object
segmentation, classification, recognition, tracking, etc. Therefore, RS image dehazing, as an
essential image preprocessing step and image quality enhancement technology, has been
extensively researched [1–3]. According to the dehazing principle, the existing dehazing
methods can be roughly divided into two categories: the traditional dehazing method [4–7]
and the learning-based dehazing method [8–12].

Based on the dehazing principles, the traditional image dehazing methods can be
categorized into prior-based methods and enhancement-based methods. The prior-based
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methods use handcrafted hazy image priors for restoration. For example, He et al. [7]
proposed the dark channel prior (DCP), which is simple and effective for image dehazing.
However, since the DCP is based on the statistics of outdoor haze-free images, it fails to
remove the haze in regions of white objects or the sky. In Zhu’s work [4], color attenuation
prior (CAP) was proposed to recover the depth information in greater detail, but the CAP
is inadequate to remove haze thoroughly. Zhao et al. [6] used a bounded channel difference
prior (BCDP) for single image dehazing. The BCDP can effectively suppress the noise
amplification in dehazing, but it may result in uneven brightness of blocks in the dehazed
image. Therefore, since most dehazing priors are based on the properties of ground
images, it is insufficient to use the easily violated hazy image priors when processing hazy
RS images with complex features. Besides using image priors to recover the haze-free
image, many image enhancement techniques are selected for image dehazing tasks, such as
histogram equalization [13,14], wavelet transformation [15], the Retinex method [16], and
homogeneous filtering [17]. Kim et al. [18] proposed an optimized contrast enhancement
strategy for real-time image dehazing, which can optimally preserve the image information.
Wang et al. [19] demonstrated a linear relationship in the minimum channel between the
hazy and the haze-free images, so the input image is dehazed using a linear transformation.
Wang et al. [20] introduced a multi-scale Retinex with color restoration (MSRCR) algorithm
to preserve the image’s dynamic range. However, the enhancement-based methods naively
improve the RS hazy image’s visual effect without considering the hazy degradation
principle, resulting in over-enhancement and undesired artifacts in the dehazed image.

Due to the rapid development of deep neural networks (DNNs), learning-based
methods are being increasingly applied to solve the dehazing problem and have achieved
remarkable performance in recent years. They can be categorized into two groups: one
is model-based dehazing methods that use the convolutional neural network (CNN) to
estimate the parameters of the haze imaging model. The other is end-to-end dehazing
methods that use CNN or a generative adversarial network (GAN) to recover the haze-free
image directly. For model-based dehazing methods, Bie et al. [21] proposed a Gaussian
and physics-guided dehazing network (GPD-Net) by combining the Gaussian process and
physical prior knowledge for single RS image dehazing. Li et al. [8] designed an all-in-
one dehazing network (AOD-Net) that reformulates the atmospheric scattering model to
generate a clean image directly. By integrating learning-based and prior-based methods,
Chen et al. [22] embedded a patch-map-based DCP into the learning network to efficiently
improve the performance of the dehazing network. For end-to-end dehazing methods,
Chen et al. [23] presented a memory-oriented generative adversarial network (MO-GAN) to
find the relationship between the RS hazy domain and the RS clear domain in an unpaired
learning manner. Motivated by the attention mechanism, Qin et al. [10] proposed an end-
to-end feature fusion attention network (FFA-Net) to restore the haze-free image directly.
Using a deep dehazing network based on encoder–decoder architecture, Jiang et al. [24]
eliminated the non-uniform haze of RS hazy images. Engin et al. [25] proposed an enhanced
cycle-GAN to generate visually better haze-free images. In recent years, transformer models
have been applied to RS image dehazing tasks due to their outstanding performance in
visual tasks. For example, Song et al. [26] proposed a DehazeFormer, which obtains
fabulous quantitative results on various hazy datasets. Dong et al. [27] proposed a two-
branch neural network fused with Transformer and residual attention to recover the fine
details of RS hazy images with nonhomogeneous haze.

Although the learning-based methods achieve remarkable performance, they require
large-scale datasets with paired hazy–clear images for training. However, for RS images,
collecting large-scale datasets with paired real-world hazy images is scarcely feasible. There-
fore, most learning-based RS dehazing methods use synthetic RS hazy datasets (RICE [28],
RS-Haze [26], SateHaze1k [29], etc.) for network training, which may result in domain-shift
issues. To prevent labor-intensive data collection and solve the domain-shift issues caused by
synthetic datasets, in recent years, a few zero-shot dehazing methods [12,30–32] have been
proposed. Zero-shot dehazing methods use a single hazy image to perform learning and
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inference. Motivated by the deep image prior (DIP) [33], Gandelsman et al. [30] introduced the
Double-DIP using coupled DIP networks. However, the dehazed image by Double-DIP may
result in noise amplification, especially in the sky region. Li et al. [31] proposed a zero-shot
dehazing (ZID) framework using three joint sub-networks to estimate the atmospheric light,
transmission map, and haze-free image. However, the ZID is unstable and can have over-
enhancement and color distortion due to the poor loss function design. Through controlled
perturbation of Koschmieder’s model, Kar et al. [32] designed a zero-shot image restoration
network model to recover the degraded image (hazy or underwater image). Although Kar’s
method achieves good dehazing performance, certain dehazed images may have color dis-
tortion. Therefore, the existing zero-shot dehazing approaches cannot effectively tackle the
dehazing problem, and few studies on zero-shot RS image dehazing have been proposed.

This work proposes a novel re-degradation haze imaging model for zero-shot RS
image dehazing. Firstly, we design a dehazing framework consisting of three joint sub-
modules: AL estimation, J-Net, and T-Net. The AL estimation module estimates the
atmospheric light using a quad-tree hierarchical search algorithm. T-Net and J-Net are two
neural networks to infer the transmission map and haze-free image. Thus, the dehazing
framework disentangles the hazy input image into three components: the atmospheric light,
the transmission map, and the recovered haze-free image. We then generate a re-degraded
hazy image by mixing up the hazy input image and the recovered haze-free image. Through
the proposed re-degradation haze imaging model, we theoretically demonstrate that the
hazy input image and the re-degraded hazy image follow a similar haze imaging model
with the same scene radiance, the same atmospheric light, and the transmission maps
with known fixed relations. This finding helps us to train the dehazing network in an
unsupervised fashion. Concretely, the dehazing network is optimized in a zero-shot manner
to generate outputs that satisfy the relationship between the hazy input image and the
re-degraded hazy image in the re-degradation haze imaging model. Therefore, given a
hazy RS image, the dehazing network directly infers the haze-free image by minimizing a
specific loss function. Comprehensive experiments demonstrate the effectiveness of the
proposed dehazing method. To summarize, the main contributions of this paper are listed
as follows:

(1) Based on layer disentanglement, we design a dehazing framework consisting of
three joint sub-modules: AL estimation, J-Net, and T-Net. The AL estimation module
estimates the atmospheric light. T-Net and J-Net infer the transmission map and haze-free
image, respectively.

(2) We propose a novel re-degradation haze imaging model to demonstrate the rela-
tionship between the hazy input image and the re-degraded hazy image. A re-degradation
loss is introduced to train the dehazing network in a zero-shot manner; that is, the dehazing
network is optimized using only one hazy RS image.

(3) The proposed network recovers a haze-free image from a single RS image without
large training data, hence avoiding labor-intensive data gathering and resolving the domain-
shift issue brought on by synthetic datasets.

(4) In the experiments, we evaluate uniform RS hazy datasets, non-uniform RS hazy
datasets, and real-world RS hazy images. Results show that our method outperforms
numerous state-of-the-art (SOTA) dehazing methods in processing RS hazy images with
uniform haze or slight/moderate non-uniform haze. In addition, we implement the RS
image road extraction task to further demonstrate the effectiveness of our method.

2. Methodology
2.1. Re-Degradation Haze Imaging Model

According to the atmospheric scattering theory proposed by McCartney [34], the
degradation of a hazy image can be formulated by the haze imaging model as follows:

I = Jt + A(1− t) (1)
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where I is the observed hazy image by the camera sensor, J is the haze-free image needing
to be recovered, A is the global atmospheric light, and t is the medium transmission map.
Generally, t = e−βd, where β is the scattering coefficient of the atmospheric light and d is
the scene depth. The ill-posed dehazing problem is to recover J from I, which indicates that
transmission map t and atmospheric light A should be estimated.

Given a hazy image I1, according to Equation (1), we have:

I1 = J1t1 + A1(1− t1) (2)

where J1, t1, and A1 are the estimated haze-free image, transmission map, and atmospheric
light, respectively. Assuming the error map between the estimated haze-free image J1 and
the ground truth JGT is ε, we obtain:

J1 = JGT + ε (3)

The dehazing process can be realized by a well-designed estimator to minimize the
error map ε. Therefore, substituting J1 in Equation (2) with Equation (3), we have:

I1 = JGTt1 + (1− t1)A1 + εt1 (4)

We now fuse the estimated J1 and original hazy image I1 with a mixing ratio α ∈ (0, 1)
to obtain a re-degraded hazy image I2 as follows:

I2 = αI1 + (1− α)J1 (5)

Substituting I1 in Equation (5) with Equation (2), we have:

I2 = J1(αt1 + 1− α) + α(1− t1)A1 (6)

Let t2 = αt1 + 1− α, then Equation (6) can be reformulated as:

I2 = J1t2 + (1− t2)A1 (7)

Therefore, substituting J1 in Equation (7) with Equation (3), we have:

I2 = JGTt2 + (1− t2)A1 + εt2 (8)

One can find that if the error map ε is close to zero, then εt1 = εt2 = 0. Hence,
Equations (4) and (8) can be modified as follows:

I1 = JGTt1 + (1− t1)A1 (9)

I2 = JGTt2 + (1− t2)A1 (10)

Now, the hazy image I1 and the re-degraded hazy image I2 follow a similar haze
imaging model with the same scene radiance JGT and the same global atmospheric light
A1. Furthermore, as the mixing ratio α is a preset fixed parameter, the relation of t1 and
t2 is known, i.e., t2 = αt1 + 1− α. Therefore, the re-degradation haze imaging model
explained by Equations (9) and (10) can be implemented to regulate the dehazing network.
Assuming a dehazing network, F =

{
FJ , FA, Ft

}
, which estimates the haze-free image by

FJ , atmospheric light by FA, and transmission map by Ft, respectively. Therefore, given the
hazy image I1 and the re-degraded hazy image I2 as inputs, the dehazing network F tries
to output two similar haze-free images (FJ(I1) and FJ(I2)), two similar atmospheric lights
(FA(I1) and FA(I2)), and two transmission maps with fixed relation (Ft(I1) and Ft(I2)).

Therefore, the minimization of the error map ε for the dehazing problem can be
realized by minimizing the following function:

L = ‖J1 − J2‖+ ‖A1 − A2‖+ ‖(αt1 + 1− α)− t2‖ (11)
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where Ji = FJ(Ii), Ai = FA(Ii), ti = Ft(Ii), and i ∈ {1, 2}. ‖·‖ denotes L2-norm regulariza-
tion. J1 and J2 are the recovered haze-free images from I1 and I2, respectively, A1 and A2 are
the estimated atmospheric lights, and t1 and t2 are the estimated transmission maps. Note
that the re-degraded I2 is generated from I1 without any other information, so the whole
dehazing procedure requires only one hazy image I1 as the input. Concretely, the dehazing
network F is optimized to generate outputs that satisfy the relationship between the hazy
input image and the re-degraded hazy image in the re-degradation haze imaging model.
Therefore, the dehazing network F can be trained using a zero-shot training strategy.

2.2. Network Architecture

As shown in Figure 1, the overall framework of the proposed dehazing network
consists of three sub-modules, i.e., the atmospheric light estimation module (AL estimation),
the transmission map estimation network (T-Net), and the haze-free recovery network
(J-Net). Given a hazy image I1 as the input, the three sub-modules disentangle the input
into A1 by AL estimation module, t1 by T-Net, and J1 by J-Net. Based on the haze imaging
model in Equation (1), we can reconstruct the hazy image I1

′ by:

I1
′ = J1t1 + A1(1− t1) (12)
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Figure 1. The schematic illustration of the proposed dehazing network. AL estimation is the
atmospheric light estimation module. T-Net and J-Net represent two joint subnetworks to estimate
the transmission map and haze-free image. I1 is the hazy input image and I2 is the re-degraded hazy
image by mixing up I1 and J1 with a ratio α. MSE denotes minimizing the dissimilarity of two images
by minimizing the mean square error. Note that the two T-Nets and J-Nets have sharing parameters
marked by the red dotted line.

Indeed, I1 and I1
′ should be cycle-consistent, which can be used to self-regulate the

dehazing network. By mixing up the I1 and J1 with a ratio α, we obtain a re-degraded
hazy image I2. The I2 is then fed into the network to obtain another three outputs: A2,
t2, and J2. According to the re-degradation haze imaging model discussed in Section 2.1,
J1 and J2 should be the same, while t1 and t2 have a known fixed relation. This property
poses another regulation for the optimization of the proposed dehazing network. We now
elaborate on the three sub-modules in detail.

AL estimation: For many dehazing frameworks using disentangle–entangle architecture,
they estimate the atmospheric light (AL) by a well-designed network. For example, Li et al. [12]
use a variational auto-encoder (VAE) to infer the global AL. Kar et al. [32] propose an AL
network with multi-scale feature attention. Typically, a hazy image’s AL is constant in a
homogenous medium, which locates in the smoothest patch with the maximum brightness.
Therefore, to reduce the complexity of the whole network, we directly estimate the AL by an
AL estimation module.
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The proposed AL estimation module locates the AL by a quad-tree hierarchical search
algorithm. Firstly, the hazy image I is divided into four blocks, and the score of each block
is calculated by the difference between the mean and standard deviation of the pixel values
within the block. Assuming the i-th block is Ii

n, where n is the degree of subdivision and
i ∈ {1, 2, 3, 4}, the score is calculated as follows:

S(Ii
n) = mean(Ii

n)− std(Ii
n) (13)

The block with the highest score is further divided into four sub-blocks, and we repeat
this process until the size of the block is under a predefined threshold. Therefore, we
attempt to choose the image block as bright and hazy as possible. As shown in Figure 2,
the mean value of the selected block is regarded as the estimated AL.
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AL estimation.

J-Net and T-Net: Inspired by [33,35], we take an encoder–decoder architecture with
skip-connections for J-Net. As shown in Figure 3, in the encoding stage, there are five
down-sampling modules to extract the image’s features in pyramid scales. We use stride
convolution as the down-sampling operation. Five up-sampling modules with bilinear
upscale are implemented in the decoding stage to recover the image. To reduce the
information loss, skip connections using concatenate operation are employed between the
corresponding layers of different levels from encoder and decoder. We use convolution
with 1× 1 filters to reduce the dimension of feature maps to four for concatenation.
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The detailed configuration of J-Net is listed in Figure 4. Given an image with the size
of 256× 256× 3, in the encoding stage, the image’s size is gradually down-sampled from
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256× 256 to 8× 8, while the dimension is increased from 3 to 128. In the decoding stage,
the image’s size is gradually up-sampled from 8× 8 to 256× 256, while the dimension
decreases from 128 to 3. Note that the four skip connection layers are L3, L6, L9, and L12.
The T-Net has the same network architecture as J-Net, with only one difference: the T-Net
has only one output channel in the last layer (L34).
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normalization. ‘L’ denotes Leaky ReLU activation. ‘Upscale’ denotes bilinear upscale layer. ‘S’
denotes Sigmoid activation. ‘Cat’ denotes concatenate operation as the skip connection. ‘K’ denotes
the kernel size. ‘S’ denotes the stride size. ‘P’ denotes the padding size. ‘Input’ denotes the input
image size (h × w × c). ‘Output’ denotes the output image size (h × w × c).

2.3. Loss Function

The following loss function in Equation (14) is formulated to train J-net and T-net jointly.

L = LI + LJ + LT + λ1LTV + λ2LD (14)

where LI is the reconstruction loss, LJ and LT are the re-degradation losses, LTV is the total
variation loss, LD is the dark channel prior (DCP) loss, and λ1 and λ2 are two balancing
weights. In this section, we describe each part of the loss function in detail.

Reconstruction loss. Given a hazy image I1 as input, the network disentangles it into
three parts: atmospheric light A1 by AL estimation module, transmission map t1 by T-Net,
and haze-free image J1 by J-Net. Therefore, we can reconstruct the hazy image I1

′ at the



Remote Sens. 2022, 14, 5737 8 of 21

top layer by the haze imaging model in Equation (1). We then minimize the subsequent
reconstruction loss LI in Equation (15) by the mean square error (MSE) criterion to constrain
the entire network to reconstruct the hazy image by disentanglement.

LI = ‖I1
′ − I1‖

2 (15)

Re-degradation loss. As discussed in Section 2.2, when the error map ε is close to
zero, the two hazy input images I1 and I2 have similar degradation formulation. Therefore,
the re-degradation loss function includes two parts LJ and LT to regulate the two J-Nets
and T-Nets. LJ measures the dissimilarity of the recovered haze-free images J1 and J2, and
regulates the two J-Nets to yield the same output. Thus, we compute the LJ loss as follows:

LJ = ‖J1 − J2‖2 (16)

Similarly, as t2 = αt1 + 1− α in the re-degradation haze imaging model, the T-Nets
are regulated to produce t2 → (αt1 + 1− α) by the following loss function:

LT = ‖(αt1 + 1− α)− t2‖2 (17)

Total variation loss. An image with much noise or abrupt artifacts tends to have a
higher total variation (TV) value. By reducing the total variation of an image, the unwanted
noise can be removed while preserving valuable details. Therefore, in Equation (18), we use
total variation loss to regulate the J-Net generating a natural haze-free image with spatial
continuity and smoothness.

LTV = ‖∇h J1 +∇v J1‖2 (18)

where∇h and∇v denote the horizontal and vertical differential operation matrices, respectively.
Dark channel prior loss. Dark channel prior (DCP) is one of the most significant

image priors for dehazing proposed by He et al. [7]. It is based on a statistical observation
that in most local patches of an outdoor haze-free image, there is at least one color channel
whose pixel intensity is close to zero, as expressed below:

JDark = min
y∈Ω(x)

[ min
c∈{r,g,b}

Jc(y)]→ 0 (19)

where x and y are pixel coordinates, Jc is the c-th color channel of the haze-free image,
and Ω(x) is a local image patch centered at x. Thus, the dark channel of a haze-free image
(JDark) tends to be zero.

Motivated by this principle, DCP loss LD is applied to constrain the dark channel of
the recovered haze-free image close to zero:

LD = ‖J1
Dark‖2

(20)

In this work, we adopt the look-up table scheme proposed by [36] to embed the DCP
loss into the learning network.

3. Experiments and Discussions

In this section, we conduct comprehensive experiments to show the performance
of the proposed method. In Section 3.1, we elaborate on the experimental settings. In
Sections 3.2–3.4, we evaluate the dehazing performance of the proposed method using
uniform RS hazy images, non-uniform RS hazy images, and real-world hazy images,
respectively. In Section 3.5, we apply the proposed dehazing method to an advanced
application of RS images (road extraction) for further investigation. Finally, the selection
of mixing ratio α and the ablation study is explained in Section 3.6.
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3.1. Experimental Settings

Datasets: We conduct experiments on various RS hazy datasets to obtain a com-
prehensive evaluation. According to the purpose of the evaluation, the testing datasets
are separated into five categories: (1) RS hazy datasets with uniform haze. We choose
RICE-I [28] to verify our method’s dehazing performance on uniform RS hazy images.
The RICE-I includes 500 pairs of images with uniform haze or thin clouds. (2) RS hazy
datasets with non-uniform haze. We use the SOTA RS-Haze dataset [26] for non-uniform
dehazing evaluation. The RS-Haze is a large-scale realistic RS dehazing dataset includ-
ing 54,000 RS hazy images covering light, moderate, and dense non-uniform haze. We
randomly select 100 images for each haze density from the test set of RS-Haze, giving us
a total of 300 hazy images for testing. (3) Real-world hazy datasets. We collected some
real-world RS or aerial hazy images from Google and Flickr for real-world dehazing
evaluation. The collected images cover both city scenes and natural scenes. (4) High-
level vision application of RS images. To test the proposed method’s performance on
advanced RS image applications, we employ the DeepGlobe road extraction dataset [37].
(5) Ablation study dataset. Since the proposed method achieves zero-shot dehazing
without large-scale training datasets, we choose the tiny subset (HSTS) of RESIDE for
the ablation study. In Table 1, we list all the datasets used in the experiments.

Table 1. Datasets that are used in the experiments.

Datasets Purpose Brief Description

RICE-I [28] Dehazing evaluation on RS hazy
images with uniform haze.

An RS image dataset that includes
500 pairs of images with uniform haze or

thin cloud.

RS-Haze [26] Dehazing evaluation on RS hazy
images with non-uniform haze.

A large-scale realistic RS dehazing dataset
covering light, moderate, and dense haze

density for highly non-uniform haze
removal evaluation.

Real-world hazy datasets Dehazing evaluation on
real-world hazy images.

Some real-world RS or aerial hazy images
collected from Google and Flickr.

DeepGlobe [37] RS image road
extraction evaluation.

A land cover classification dataset for
CVPR 2018 satellite challenge.

HSTS [38] Ablation study.
A testing subset of the RESIDE dataset,

including 10 real-world hazy images and
10 pairs of synthetic images.

Training details: We train the proposed network on an NVIDIA RTX 3080 GPU using
the PyTorch toolbox. The model is trained with 800 iterations for each hazy image to obtain
the dehazed image. The optimization process is conducted by the ADAM optimizer, with
the learning rate set to 0.001. For the balancing weights of loss function in Equation (14),
we set λ1 = 5× 10−5 and λ2 = 10−6. For the mixing ratio α in Equation (5), we set α = 0.8,
with the impact of α on the dehazing performance discussed in Section 3.6.1.

Baselines: As shown in Table 2, we evaluate the performance against 13 SOTA dehaz-
ing methods, including four traditional dehazing methods, five supervised learning-based
methods, and four zero-shot dehazing methods. To be specific, the traditional dehazing
methods contain DCP, MOF, CAP, and BCDP. The supervised-learning-based methods
are FFA, EMRA, LDN, AESUN, and TBNN, where AESUN and TBNN are non-uniform
dehazing methods. The zero-shot dehazing methods include DDIP, ZID, YOLY, and ZIR. To
better compare the generalizability of different methods, we use official pretrained models
for all the supervised-learning-based methods.



Remote Sens. 2022, 14, 5737 10 of 21

Table 2. Thirteen dehazing methods for comparison are divided into three categories: traditional
dehazing methods, supervised-learning-based dehazing methods, and zero-shot dehazing methods.

Category Method Short Explanation

Traditional

DCP [7] Dark channel prior
MOF [5] Multi-scale optimal fusion
CAP [4] Color attenuation prior

BCDP [6] Bounded channel difference prior

Supervised

FFA [10] Feature fusion attention network
EMRA [39] Ensemble multi-scale residual attention network
LDN [40] Lightweight CNN dehazing network

AESUN [35] Attention enhanced serial Unet++ network
TBNN [41] Two-branch neural network via ensemble learning

Zero-shot

DDIP [30] Coupled deep image prior
ZID [31] Zero-shot dehazing

YOLY [12] You only look yourself
ZIR [32] Zero-shot single image restoration

3.2. Evaluation of RS Images with Uniform Haze

To evaluate the RS image dehazing performance on uniform hazy images, we compare
our method with SOTA dehazing methods on RICE-I [28]. We randomly select two images
covering city scenes and mountain scenes from the RICE-I test set as inputs. The recovered
haze-free images by various dehazing methods are shown in Figure 5. Specifically, Figure 5a
is the hazy input image, Figure 5b–n are the recovered haze-free images by various dehazing
methods, and Figure 5o is the reference ground truth. A close-up indicated by the blue
arrow is shown below the corresponding image for better comparison.

As shown in Figure 5, it can be seen that ZID obtains the worst results with severe color
distortion, whereas the recovered images by FFA and YOLY have plenty of haze. Although
DCP and LDN can remove haze properly, the dehazed images tend to have a darker color
than the ground truth. For the results by MOF and BCDP, obvious over-enhancement
can be found in the close-up of the red rectangle in Figure 5c,d. As shown in Figure 5h,i,
the dehazed images by AESUN and TBNN show slight color distortion compared with
the reference image in Figure 5o. From Figure 5f,j,n, the recovered haze-free images by
EMRA, DDIP, and our method are visually closer to the ground truth. Therefore, from the
qualitative comparison, our proposed method outperforms most of the SOTA dehazing
methods in processing uniform RS hazy images.

In addition, we quantitatively analyze the performance of different methods by eval-
uating three IQA indexes (PSNR, SSIM, and CIEDE2000) on the RICE-I dataset. The
CIEDE2000 [42] measures the color difference between the dehazed image and the ground
truth, with a lower CIEDE2000 value indicating better color consistency. The quantitative
evaluation results for RICE-I are shown in Table 3, where the testing methods are divided
into three categories: traditional dehazing methods, supervised-learning-based methods,
and zero-shot dehazing methods. We mark the best value of the specific metric for each
category in boldface. From Table 3, it can be seen that, for traditional dehazing methods,
DCP has the best CIEDE2000 value and CAP has the best PSNR and SSIM values. For
supervised-learning-based methods, FFA outperforms the other methods in PSNR value
by a large margin. Both FFA and EMRA have the best SSIM value, while TBNN obtains
the best CIEDE2000 value. In the zero-shot dehazing category, our method obtains the
best results for all three IQA indexes. In addition, our method has better PSNR and SSIM
values than most dehazing methods in the traditional and supervised-learning categories.
Moreover, Figure 5 and Table 3 reveal that the supervised-learning-based methods trained
on synthetic ground hazy images achieve comparatively unsatisfactory performance on
the RS uniform hazy dataset (RICE-I). Thus, the zero-shot dehazing methods show better
generalizability than the supervised-learning-based methods.
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Table 3. Quantitative evaluation results for the RS uniform hazy dataset (RICE-I). The best value of
the specific metric for each category is in boldface.

Category Method PSNR SSIM CIEDE2000

Traditional

DCP 11.6 0.58 7.77
MOF 17.54 0.53 16.32
CAP 24.85 0.87 9.39

BCDP 21.2 0.65 18.64

Supervised

FFA 25.81 0.82 7.98
EMRA 16.6 0.82 4.89
LDN 15.46 0.76 5.26

AESUN 18.58 0.67 4.62
TBNN 19.07 0.73 4.04

Zero-shot

DDIP 24.65 0.87 10.69
ZID 19.23 0.53 26.13

YOLY 24.34 0.85 11.31
Ours 24.76 0.88 10.23

3.3. Evaluations of RS Images with Non-Uniform Haze

RS-Haze [26] is a large-scale realistic RS dehazing dataset for non-uniform dehazing
task evaluation. According to the haze density, the images in RS-Haze can be divided into
lightly hazy, moderately hazy, and densely hazy. We randomly select 100 images from the
test set of RS-Haze for each haze density, giving us a total of 300 hazy images for testing.
For comparison, both qualitative and quantitative evaluations are conducted.
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The dehazing results by various SOTA methods on the RS-Haze dataset are shown in
Figure 6, where Figure 6a shows the hazy input images with light haze, moderate haze,
and dense haze. Figure 6b–m are the dehazed results by various methods and our method,
while Figure 6n is the reference ground truth. AESUN and TBNN, as non-uniform dehazing
methods, obtain the best visual results for light and moderate hazy images. As shown
in Figure 6c,k, MOF and ZID have the worst non-uniform haze removal capability and
suffer from severe color distortion. DCP, EMRA, and LDN can remove light and most
moderate non-uniform haze, but darker color and detailed information loss are the main
problems. According to the dehazed results by FFA and DDIP, there is plenty of remaining
haze, especially in moderately hazy images (see Figure 6e,j). BCDP, YOLY, and our method
seem to have comparable dehazing performance for light and moderate haze removal.
For dense non-uniform hazy images, all the dehazing methods fail to remove the haze
properly, even the non-uniform dehazing methods (AESUN and TBNN). In conclusion,
when non-uniform haze is present in the hazy images, most dehazing methods produce
worse dehazing outcomes than when processing uniform hazy images, with the exception
of the non-uniform dehazing approaches (AESUN and TBNN). However, our proposed
method still obtains competitive results when processing light and moderately hazy images.
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The quantitative evaluation results on RS-Haze are shown in Table 4. We calculate
PSNR, SSIM, and CIEDE2000 indexes for different haze densities, with the average results
compared. In Table 4, the best value of the specific metric for each category is marked in
boldface. For traditional dehazing methods, BCDP obtains the best results followed by CAP.
For supervised-learning-based methods, AESUN and TBNN outperform other methods in
the SSIM index by a large margin, while TBNN has the best SSIM and CIEDE2000 values
on average. In the zero-shot dehazing category, our method obtains the best results in
both light and moderate haze density, while DDIP has the best results in processing dense
hazy images. On average, our method outperforms the other zero-shot dehazing methods
with the best IQA metrics values. Moreover, even compared with the dehazing methods
in traditional and supervised categories, our method shows better results for PSNR and
CIEDE2000 values.

Table 4. Quantitative evaluation results on the RS non-uniform hazy dataset (RS-Haze). The best
value of the specific metric for each category is in boldface.

Category Traditional Supervised Zero-Shot

Density Metrics DCP MOF CAP BCDP FFA EMRA LDN AESUN TBNN DDIP ZID YOLY Ours

Light
PSNR 15.88 12.42 21.23 19.85 20.96 17.14 16.77 19.48 20.13 21.25 15.22 19.84 21.48
SSIM 0.22 0.27 0.39 0.43 0.45 0.29 0.33 0.65 0.73 0.43 0.25 0.39 0.49
CIEDE 6.48 7.96 4.24 4.71 4.07 5.79 5.75 3.94 3.09 4.19 6.79 4.70 4.26

Moderate
PSNR 15.51 10.28 16.97 17.22 14.67 16.48 17.53 16.48 15.57 17.65 15.40 15.83 17.77
SSIM 0.13 0.13 0.25 0.26 0.36 0.23 0.30 0.62 0.68 0.33 0.25 0.28 0.38
CIEDE 6.71 9.81 5.52 5.82 6.08 6.09 5.32 4.86 4.56 5.15 6.68 5.97 5.15

Dense
PSNR 14.34 9.01 13.64 15.27 9.95 14.30 14.17 11.00 10.52 14.48 13.88 12.21 14.38
SSIM 0.19 0.10 0.22 0.21 0.32 0.26 0.33 0.48 0.56 0.30 0.19 0.27 0.28
CIEDE 6.72 10.52 6.71 6.22 9.28 6.46 6.19 7.57 7.83 6.12 7.13 7.58 6.12

Average
PSNR 15.24 10.57 17.28 17.45 15.19 15.97 16.16 15.65 15.41 17.79 14.83 15.96 17.88
SSIM 0.18 0.17 0.29 0.30 0.38 0.26 0.32 0.58 0.66 0.36 0.23 0.31 0.39
CIEDE 6.64 9.43 5.49 5.58 6.48 6.11 5.75 5.45 5.16 5.15 6.87 6.08 5.18

3.4. Evaluations of Real-World RS Hazy Images

In order to analyze the real-world dehazing performance, we collected real-world RS
and aerial hazy images from Google and Flickr for testing. As shown in Figure 7, the testing
images are labeled ‘image 1’ to ‘image 5’, where all five images have uniform haze except
for ‘image 3’ which has a slight non-uniform haze. Figure 7a is the input hazy images,
Figure 7b–m are the dehazed results by various SOTA dehazing results, and Figure 7n is
our dehazed results.

As shown in Figure 7k, ZID presents the worst results with severe color distortion,
especially in the sky region of ‘image 2’ and ‘image 4’. According to ‘image 2’, ‘image 4’,
and ‘image 5’ in Figure 7b,g, the dehazed images by DCP and LDN result in dark color and
detailed information lost. FFA, YOLY, and ZIR cannot remove haze thoroughly, especially
the non-uniform haze in ‘image 3’. AESUN and TBNN, as trained on non-uniform hazy
datasets, suffer from severe domain-shift issues in processing real-world RS hazy images.
Thus, they obtain poor results with color distortion and undesired artifacts (see ‘image 2’
and ‘image 4’ in Figure 7h,i). Although BCDP achieves good haze removal capability,
over-enhancement can be found in ‘image 4’ of Figure 7d, while slight color shift occurs in
‘image 3’ of Figure 7d. MOF and EMRA show good haze removal capability, but there is
slight color distortion in ‘image 1’ and ‘image 5’ of Figure 7c, while ‘image 2’ of Figure 7f
loses the shadow details. DDIP and our method obtain visually better results than the
other methods, but there is more residual haze in Figure 7j than in Figure 7n. Therefore,
compared with the SOTA dehazing methods, our proposed method shows better dehazing
results on processing RS hazy images with uniform haze or slight non-uniform haze. In
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addition, the results also show the better generalizability of our method due to the zero-shot
learning manner.
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3.5. Application of Dehazing on RS Image Road Extraction

To further investigate the dehazing algorithms for improving the performance of
advanced RS image applications, we compare the results of RS image road extraction
by using different image dehazing methods as prepossessing. To this end, we select the
DeepGlobe road extraction dataset [37] to generate the testing data. Firstly, we randomly
select 30 haze-free images from DeepGlobe. Note that each image has a corresponding
ground truth road mask for evaluation. For each haze-free image, we then generate four
hazy images of different densities by the haze imaging model defined in Equation (1).
Finally, we obtain 120 hazy images in total for testing. Samples of the generated hazy RS
image from the DeepGlobe dataset are shown in Figure 8, where Figure 8a is the original
haze-free image, Figure 8b is the ground truth road mask, and Figure 8c–f are the four
generated hazy images of different haze densities defined as slightly hazy, moderately hazy,
highly hazy, and extremely hazy, respectively.
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Given the generated hazy images as inputs, we obtain the recovered haze-free images
by different dehazing methods. We then use a pre-trained D-LinkNet [43] to extract road
masks from the dehazed images. As shown in Figure 9, the D-LinkNet can extract the road
when the haze density is slight. However, as the haze density increases, the D-LinkNet can
hardly obtain good results using the hazy images and fails to extract any road tracks under
an extremely hazy situation. As shown in the third row of Figure 9b–e, our method removes
the haze effectively and recovers the full road details. Using the dehazed images obtained
by our method, the D-LinkNet can accurately extract the road, even for extremely hazy
images. Therefore, our proposed dehazing method can greatly boost the road extraction
accuracy of the D-LinkNet.
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Figure 9. D-LinkNet [43] road extraction results using the dehazed images by the proposed dehazing
method, where (a) is the reference clear image and the corresponding road extraction result. The
first and second rows of (b–e) are the hazy images of different densities and the corresponding
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method and the corresponding road extraction results.

To quantitatively compare with the other dehazing methods, we select four standard
road extraction evaluation metrics [44] for comparison, i.e., Precision, Recall, IoU, and
F1-Score. The representations of the four metrics are as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, IoU =
TP

TP + FN + FP
, (21)

F1− Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(22)

where TP, FN, and FP are the true positive, false negative, and false positive values,
respectively. We first use the dehazed images from various dehazing methods to extract
the road mask by D-LinkNet. We then calculate the four metrics using the ground truth
road mask and the extracted road mask. Finally, the average value of the testing images
is compared.

As shown in Table 5, the results of D-LinkNet road extraction using clear images are
much better than those using hazy images, indicating that haze dramatically reduces the
road detection accuracy of the D-LinkNet. Quantitative comparisons of D-LinkNet road
extraction accuracy using the dehazed images of different dehazing methods are shown in
Table 6. For traditional dehazing methods and supervised-learning-based methods, DCP
and EMRA obtain the best results, respectively, while for zero-shot dehazing methods, our
method has the best results. Although DCP and EMRA have better results than ours in
Table 6, our method outperforms many SOTA traditional dehazing methods (CAP, MOF,
and BCDP) and supervised-learning-based methods (FFA, LDN, AESUN, and TBNN).
Therefore, our proposed dehazing method has more promising results than the other
methods in improving the performance of the high-vision RS image task.



Remote Sens. 2022, 14, 5737 18 of 21

Table 5. Quantitative comparisons of D-LinkNet road extraction accuracy using clear images and
hazy images.

Input Precision Recall IoU F1-Score

Clear 0.935 0.914 0.859 0.924
Hazy 0.387 0.384 0.239 0.385

Table 6. Quantitative comparisons of D-LinkNet road extraction accuracy using the dehazed images
of different dehazing methods. The best value of the specific metric for each category is in boldface.

Category Method Precision Recall IoU F1-Score

Traditional

DCP 0.895 0.884 0.801 0.890
MOF 0.640 0.657 0.480 0.648
CAP 0.689 0.683 0.522 0.686

BCDP 0.772 0.791 0.641 0.781

Supervised

FFA-Net 0.796 0.779 0.649 0.787
EMRA 0.890 0.880 0.793 0.885
LDN 0.767 0.764 0.620 0.766

AESUN 0.547 0.568 0.386 0.557
TBNN 0.653 0.665 0.491 0.659

Zero-shot

DDIP 0.790 0.786 0.651 0.788
ZID 0.647 0.671 0.491 0.659

YOLY 0.652 0.653 0.484 0.652
Ours 0.805 0.813 0.679 0.809

3.6. Discussions
3.6.1. Selection of the Mixing Ratio

As discussed in Section 2.1, the value of the mixing ratio (α) is between 0 and 1. In
order to investigate the impact of α on the performance of the re-degradation haze imaging
model, we vary α from 0.1 to 0.9 at a step of 0.1, and calculate the average PSNR and SSIM
on the HSTS dataset [38] for comparison. Testing results with different mixing ratios (α) on
the HSTS dataset are shown in Figure 10. The values of PSNR and SSIM with different α
are slightly different. The standard deviation of PSNR and SSIM values are 0.747 dB and
0.009, respectively. Therefore, we observe that the dehazing performance is not sensitive to
the selection of α.
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3.6.2. Ablation Study on the Loss Function

To verify the effectiveness of the loss function, we compare the dehazing results on
the HSTS dataset by removing parts of the loss function, i.e., LI , LJ , LT , LTV , and LD. A
qualitative ablation study for the loss function on a real-world hazy image dehazing is
shown in Figure 11. It can be seen that the dehazed result by our method is better than
the results of removing any part of the loss function. In addition, from the results of the
quantitative ablation study for the loss function in Table 7, our method obtains the best
PSNR and SSIM on the HSTS dataset, which further demonstrates the effectiveness of our
loss function.
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Table 7. Quantitative ablation study for the loss function on the HSTS dataset [38]. ‘w/o’ is the
abbreviation of ‘without’. The best value of the specific metric is in boldface.

Metrics w/o LI w/o LJ w/o LT w/o LJ & LT w/o LTV w/o LD Ours

PSNR 21.236 22.954 19.517 19.284 23.570 22.820 23.917
SSIM 0.895 0.926 0.871 0.869 0.925 0.931 0.933

4. Conclusions

In this paper, we propose a re-degradation haze imaging model for zero-shot RS
image dehazing. Motivated by layer disentanglement, we design a dehazing framework
consisting of three sub-modules: AL estimation for atmospheric light estimation, T-Net
for transmission map estimation, and J-Net for haze-free image recovery. A re-degraded
hazy image is obtained by mixing up the hazy input image and the inferred haze-free
image. We propose a re-degradation haze imaging model to theoretically demonstrate
that the hazy input image and the re-degraded hazy image follow a similar haze imaging
model. This finding helps us to design a re-degradation loss to train the dehazing network
in a zero-shot manner; that is, the dehazing network is optimized using only one hazy
RS image. We conduct qualitative and quantitative evaluations on both uniform and non-
uniform RS hazy image datasets to show the effectiveness and promising performance of
the proposed method. The results show that, in processing uniform and slight/moderate
non-uniform RS hazy images, our method outperforms all zero-shot dehazing methods, and
obtains better results than many traditional dehazing methods and supervised-learning-
based methods. A benefit from the zero-shot learning manner is that our method shows
better generalizability than the supervised-learning-based methods in the real-world image
dehazing task. In addition, the evaluation on a high-level vision task (road extraction)
also proves the effectiveness of our method. However, for the hazy images with dense
non-uniform haze, our method fails to recover the haze-free image, which remains a task
for our future research.
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