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Abstract: The accuracy with which a neural network interprets a point cloud depends on the quality 
of the features expressed by the network. Addressing this issue, we propose a multi-level feature 
extraction layer (MFEL) which collects local contextual feature and global information by modeling 
point clouds at different levels. The MFEL is mainly composed of three independent modules, in-
cluding the aggregated GAPLayer, the spatial position perceptron, and the RBFLayer, which learn 
point cloud features from three different scales. The aggregated GAPLayer aggregates the geometry 
features of neighboring points in a local coordinate system to centroid by graph convolution. Then, 
the spatial position perceptron independently learns the position features of each point in the world 
coordinate system. Finally, the RBFLayer aggregates points into pointsets according to the correla-
tion between features, and extracts features from the pointset scale through the quantization layer. 
Based on the MFEL, an end-to-end classification and segmentation network, namely the MFNet and 
MFNet-S, is proposed. In the proposed network, the channel-attention mechanism is employed to 
better aggregate multi-level features. We conduct classification and semantic segmentation experi-
ments on four standard datasets. The results show that the proposed method outperforms the com-
pared methods on the multiple datasets, resulting in 93.1% classification accuracy in ModelNet40. 
Furthermore, the mIoU of part semantic segmentation in ShapeNet is 85.4%, and the mIoU for se-
mantic segmentation in S3DIS and Semantic3D is 62.9% and 71.9%, respectively. 

Keywords: large-scale point cloud; graph convolution; multi-level features; attention mechanism; 
classification 
 

1. Introduction 
Point clouds contain rich three-dimensional (3D) spatial information and have broad 

application prospects in areas such as autonomous driving, virtual reality, and power grid 
inspection [1,2]. However, the automatic extraction of interesting information from point 
clouds, especially in large-scale scenes, remains a huge challenge [3]. This is because ob-
jects in a large scene usually exit a lot of occlusions. Moreover, objects of different classes 
but with a similar local geometry structure will cause interference for segmentation. 
Therefore, it is necessary to describe the objects in the large-scale scene from different 
scales to achieve the effect of efficient extraction [4]. 

Deep learning methods based on convolutional neural networks (CNNs) have 
achieved great success in the field of two-dimensional (2D) image processing. However, 
directly migrating these image processing networks to 3D point cloud processing tasks is 
usually infeasible because point clouds are disordered and structurally irregular. Moreo-
ver, point clouds contain a large amount of object geometry information, which does not 
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exist in 2D images. In addition, the point cloud collected in the real scene has a large cov-
erage and uneven density of point, but the resolution of the image is fixed. Therefore, how 
to utilize the geometric features and multi-granularity features of point clouds are two 
challenges in the field of point cloud interpretation [5]. 

The disorder of the point cloud is the problem to be considered primarily in point 
cloud processing networks based on deep learning. The disordered point clouds can be 
transformed into a regular form by some strategies, e.g., voxelization [6] and multi-view 
projection [7,8]. Another idea is to design a symmetric function (such as max-pooling) to 
counteract the disorder of point clouds. The representative work is PointNet [9] and its 
successor, PointNet++ [10]. PointNet learns the point-wise features using a shared multi-
layer perception (MLP) but fails to capture local geometry patterns among neighboring 
points. PointNet++ tries to learn local contexts by aggregating per-point features in a 
neighborhood. However, it still deals with each point separately within each neighbor-
hood, and the geometric relations between points are not fully utilized. 

In order to obtain more geometric structure information from local neighborhoods, 
some researchers have proposed some neighborhood-based feature extraction methods. 
For instance, A-CNN [11] and KPConv [12] define convolution kernels within the neigh-
borhood to extract features such as the spatial location of each neighborhood point, and 
then aggregate the features to the center point. GAPNet [13] proposes the GAPLayer 
(namely a multi-head graph attention-based point network layer) which convolves edges 
to extract the geometric features of a graph. Then, it generates local attention weights and 
self-attention weights according to local features and assigns attention weights to each 
edge. The GAPNet has made great contributions to graph attention, but it mainly focuses 
on point-to-point relationships within neighborhoods and performs poorly on large-scale 
datasets. We boil it down to three reasons. 

Firstly, as shown in Figure 1, some point clouds may have similar geometries, but 
they may belong to different categories, as shown by the rectangles ② and ③. As men-
tioned above, the GAPLayer can only identify the geometric features of a local region but 
cannot effectively correlate them with the wider contextual information of the region. 
Therefore, the situation shown in Figure 1 may be a hindrance when interpreting point 
clouds. 

 
Figure 1. Illustration of similar local structure with different semantic information. Region ① indi-
cates the global coordinate system. Regions ② and ③ indicate the local coordinate system, where 
the wing and the fuselage are connected and have similar geometric structures, although two wings 
come from two different semantic wing parts. In our work, features of local region are associated 
with world coordinate system by embedding the coordinates of world coordinate system. 
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Secondly, the GAPLayer processes each local region independently, regardless of the 
correlation between regions, as shown in Figure 2.  

 
Ground truth Ours GAPNet 

Figure 2. An illustration of pointset similarity. The parts in the red and yellow boxes in the figure 
are pointsets with similar geometric structures. While GAPNet correctly predicts the part in the 
yellow box, the prediction in the red box is wrong because it does not exploit the relationship be-
tween pointsets. 

Finally, global features play an important role in classification and part segmentation. 
Although the GAPLayer does mention global feature extraction, it does not blend well 
with features at other scales. 

In order to address the above problems and avoid the loss of information caused by 
down-sampling, we propose the MFEL for the multi-scale feature extraction of point 
clouds. Further, two end-to-end networks (namely, MFNet and MFNet-S) are proposed 
for point cloud classification, including object semantic segmentation and part segmenta-
tion. The experimental results show that our method achieves significant improvement. 
Given that our approach builds on previous work, we explicitly point to the contributions 
of this study: 
• We propose a new module MEFL that extends the GAPLayer to extract features at 

three different scales, namely, single point scale, point neighborhood scale, and 
pointset scale, enabling the network to extract multi-granularity features of point 
clouds. 

• We introduce an end-to-end framework named the multi-level feature fusion neural 
network (MFNet) for the tasks of classification and part segmentation, which effec-
tively fuse features of different scales and levels. 

• Furthermore, we design a network MFNet-S for semantic segmentation tasks and 
conduct comparative experiments on large indoor and outdoor datasets. 
The remainder of this paper is organized as follows. Section 2 reviews the related 

work. Section 3 gives the details of the proposed methodology. Section 4 introduces the 
setting of the experiments, the datasets (including ModelNet40 [14], ShapeNet [15], S3DIS 
[16], and Sementic3D [17]), and discusses the experiment results. Section 5 summarizes 
our research. 

2. Related Work 
In this section, we briefly summarize related work on point cloud processing, includ-

ing deep learning-based frameworks, attention mechanisms, and feature representation 
methods.  

2.1. Deep Learning-Based Methods for Point Cloud Processing 
Deep learning-based point cloud processing methods can be classified into two cate-

gories according to the input form, namely, regularized input and input that is direct from 
the original point clouds. 
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2.1.1. Regularized Representation 
Regular data (such as images) can easily extract context features by using a shared 

convolution kernel. Thus, one approach to process a point cloud by CNN is to transform 
the point cloud to the regularized form. Voxelization and multi-view projection are two 
common regularization methods. 

Voxelization is to represent the point clouds with regular 3D voxel grids, and each 
grid represents a spatial unit. For example, VoxNet [6] uses a supervised 3D CNN-based 
occupancy grid to extract voxel features. The computational cost of voxel-based models 
increases dramatically with increasing resolution. To reduce the computational and 
memory overhead, Wang et al. [18] used an unbalanced octree to divide the space hierar-
chically, so that computational resources are concentrated on content-dense regions. 

Another method is to project the point cloud onto the planes of multiple views and 
express 3D point cloud information using 2D images of the multiple planes. The challenge 
of this approach is how to efficiently aggregate features from multiple views. For example, 
GVCNN introduces a grouping strategy to consider the content relationship and discrim-
ination between views, and then the group level features are aggregated into the shape 
descriptor according to their discriminative weights [7]. Ma et al. used long short-term 
memory and a sequence voting layer to aggregate view-wise features into a shape de-
scriptor [8]. The multi-view method only preserves 2D information within a limited num-
ber of perspectives and has relatively high computational efficiency [19]. It is often used 
for classification or retrieval tasks. However, due to the loss of geometric information in 
the projection process, the performance of semantic segmentation in large-scale scenes 
needs to be improved further. To reduce the quantization loss after projecting, ASCNet 
[20] employs a module named PSCFE (pillar-wise spatial context features encoding) be-
fore projecting, which can capture the context features as vertical-wise within the pillars 
and the neighborhood geometric information between pillars. 

2.1.2. Direct Representation of Original Point Clouds 
Point cloud data are unordered and unstructured. Thus, it is not feasible to directly 

apply CNNs to point clouds. In order to reduce the loss of information and directly pro-
cess point clouds, some researchers have proposed a series of point-based frameworks, 
and these works can be roughly divided into point-wise MLP methods and graph-based 
methods.  

(1) Point-wise MLP methods. PointNet [9] is a pioneering work of applying deep 
learning directly on point clouds. Specifically, it applies the MLP on each point, and then 
uses the max-pooling to aggregate features of all points to achieve permutation invari-
ance. PointNet is computationally efficient, but its learning process aims to encode each 
point individually, regardless of the contextual relationship between points. PointNet++ 
[10] is an extension work of the PointNet. It hierarchically samples and groups the input 
and applies the PointNet pipeline on each group. Then, the features of the local region are 
aggregated into the centroid as local features. PointNet++ still encodes each local point 
independently, which makes it hard to utilize the local geometric information. To capture 
the local patterns better, KPconv [12] proposes the kernel point convolution. It uses the 
kernel function to calculate the weight matrix of the points that fall within the range of a 
sphere, and the matrix is used to transform the features of this point. Aggregating the 
neighborhood features of points onto a point inspired us to construct local neighborhood 
graphs and gather the graph features to the central point. To further capture additional 
local geometric information, PointVGG [21] defines operations of convolution and pool-
ing, i.e., Pconv and Ppool, respectively. The Pconv could pay attention to the relations 
between neighbors, and the Ppool makes the network abstract the underlying shape in-
formation. LGS-Net [22] proposes a local geometric structure representation block to 
model fine-grained geometric structures by fully utilizing relative and global geometric 
relationships in the neighborhood. 
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(2) Graph-based methods. This kind of approach attempts to process non-Euclidean 
structured data (e.g., 3D point clouds or social networks) through deep neural networks 
[23,24]. Relevant works on graph convolution can be divided into spectral-based and non-
spectral (or spatial)-based methods [25].  

Spectral-based graph neural networks perform Fourier transformation and eigen de-
composition in the Laplace matrix of the graph. The spectral convolution can be defined 
as the element-wise product of Fourier variations of two signals on the graph [26]. For 
example, Yi et al. [27] parametrized the convolution kernel in the spectral domain and 
constructed a spectral conversion network to share the network parameters. The disad-
vantage of spectral-based graph CNN methods is that the entire point cloud needs to be 
loaded into memory for graph convolution. Since the Laplacian matrix eigen decomposi-
tion is time-consuming, the spectral-based CNNs consume a lot of computational re-
sources. To solve this problem, Defferrard et al. [28] reduced the computational complex-
ity through the Chebyshev polynomials and their approximate calculation scheme. Fur-
thermore, Wang et al. [29] designed graph convolution on local pointsets and applied re-
cursive clustering and pooling operations to gather spectral information from neighbor-
ing nodes to reduce computation. Spectral-based methods can effectively capture the local 
geometric features. This also means that the feature construction method based on a graph 
may directly affect the feature extraction.  

Spatial-based graph neural networks usually define a neighborhood to perform 
graph convolution operations on the spatial relationships of nodes within the neighbor-
hood. For instance, Duvenaud et al. [30] computed local features by summing the weight 
matrix of adjacent vertices and multiplying by its neighboring nodes, thus sharing the 
same weights between all edges. DGCNN [31] applies convolution to each edge where 
the local neighborhood is connected to the query points and dynamically updates the 
graph. Wang et al. [26] introduced a graph attention convolution (GAC) that assigns dif-
ferent attention weights to different neighboring points according to local information. 
Thus, the kernel of GAC can adjust dynamically to accommodate different objects with 
different structures.  

2.2. Attention Mechanism 
In recent years, an attention mechanism has been used to spotlight the important 

parts of features [32]. In order to adaptively adjust the weights between channels, SENet 
[33] builds feature maps with the help of the inter-channel correlations. The GATs [34] can 
assign different weights to different neighboring nodes in graph convolution operations. 
RandLA-Net [3] takes a similar strategy to SENet in each neighborhood. That is, neighbor 
features are fed into a shared MLP followed by softmax to generate attention scores. Then, 
the neighbor features are weighted summed according to the score to update the center 
point features. The difference is that RandLA-Net produces edge weights without dimen-
sion compression. SCF-Net [35] has improved RandLA-Net in the attention mechanism. 
Specifically, SCF-Net introduces the distance of geometric space and feature space in ad-
dition to the neighbor feature itself to generate the attention coefficient. This allows the 
attention coefficient to contain more information.  

A point transformer [36] introduces the self-attention transformer based on the en-
coding decoding structure in the NLP (natural language processing) field into the point 
cloud processing field, and it has achieved remarkable results. However, Zhang et al. [37] 
proposed that the calculation cost of existing point transformers is very high because they 
need to generate a large attention map. Therefore, they proposed Patch attention (PAT) to 
adaptively learn a much smaller set of bases and calculate attention mapping on this basis. 

Inspired by these methods, our model learns the attention weight of each edge in the 
graph structure through the neighborhood features, to extract local features, so that the 
model can focus on the edge features in the neighborhood and better facilitate semantic 
understanding. In addition, SENet is used to filtrate the fused multi-level features to high-
light important parts and suppress redundant features. 
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2.3. Feature Representation Methods 
Many feature descriptors are designed based on human experience in point cloud 

processing. For example, Salti et al. [38] proposed signatures of histograms of orientations 
(SHOT), which use local histograms to extract descriptors on the surface of an object. This 
descriptor is similar to the classic spin image [39], point feature histograms (PFH) de-
scriptor, and fast point feature histograms (FPFH) descriptor [40], etc. However, these fea-
ture descriptors rely on the stable surface information acquisition of objects, which limits 
their broad applications. Arandjelov et al. [41] proposed NetVLAD, which converts non-
differentiable functions in VLAD vectors [42] into differentiable functions in a clever way. 
It successfully applies BoF-based (bag of feature) [43] feature descriptors to deep learning 
networks. Further, PointNetVLAD [44] combines PointNet with NetVLAD to build an 
end-to-end model of point cloud retrieval. 

In order to make our feature extraction module more robust, similar to the feature 
descriptor construction process of VLAD, this research uses the radial basis function (RBF) 
to learn cluster centers to extract pointset level features. 

3. Methodology 
In this section, we introduce the MFEL and our network architecture for point cloud 

classification and segmentation. As show in Figure 3, MFEL exploits the aggregated 
GAPLayer, spatial position perceptron (SPP), and RBFLayer to capture more complete 
geometric features of 3D point clouds. 

  
Figure 3. The structure of the proposed MFEL module. The aggregated GAPLayer extracts features 
from individual point and its k neighboring points. The RBFLayer takes neighbors’ features as input 
and extracts the pointset features. The spatial position perceptron extracts coordinate features rela-
tive to the entire point cloud. 

The aggregated GAPLayer and the SPP are two parallel branches, which directly ex-
tract features from the input (original input or feature maps). The aggregated GAPLayer 
uses the K-nearest neighbors (KNN) to find the respective neighborhood for each point 
and extract the local geometric features from each neighborhood, since the local geometric 
features contain contextual information that is more conducive to describe the similarity 
between pointsets. Thus, the local geometric features are fed into the RBFLayer to obtain 
the enhanced local features to distinguish the features of pointsets. The SPP is designed 
to extract features at a global level. 

3.1. Aggregated GAPLayer 
The GAPLayer only extracts geometric features in the local coordinate system of ② 

or ③ in Figure 1. To address this problem, we propose the aggregated GAPLayer, which 
contains an aggregated coordinate channel to associate the local coordinate system with 
the world coordinate system shown in ① in Figure 1. 
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As shown in Figure 4, the input of the aggregated GAPLayer is 𝐼𝐼𝑙𝑙 = {𝑥𝑥1 ,𝑥𝑥2 ,… , 𝑥𝑥𝑁𝑁} ∈
ℝ𝑁𝑁×𝐶𝐶𝑙𝑙

𝑖𝑖𝑖𝑖, where N is the number of the input point clouds, and 𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖 is the number of input 
channels of the l-th MFEL. The local structure of the point cloud can be denoted as a di-
rected graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 = {𝑣𝑣1 ,𝑣𝑣2 , … , 𝑣𝑣𝑁𝑁} is the set of N point nodes, and 𝐸𝐸 ⊆
𝑁𝑁 ×𝑁𝑁 are edges of a local graph. We employ KNN to construct G in the feature space. 
Edge features 𝑦𝑦(𝑥𝑥) can be calculated as 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖 , where 𝑖𝑖 ∈ 𝑉𝑉, and 𝑗𝑗 ∈ 𝑘𝑘, and k is the 
number of neighbors. 

 
Figure 4. Aggregated GAPLayer based on graph convolution. The input data are divided into three 
branches after performing the KNN algorithm. 

The edge features 𝑦𝑦(𝑥𝑥) contain the geometric structure information of the neighbor-
ing points corresponding to the query point. Then, we apply a shared convolution kernel 
to 𝑦𝑦(𝑥𝑥) to extract the depth-level local geometric edge features 𝑦𝑦′(𝑥𝑥). Assuming that 𝑦𝑦 ∈
ℝ𝑁𝑁×𝑘𝑘×𝐶𝐶𝑖𝑖𝑖𝑖, 𝑦𝑦′𝑖𝑖𝑖𝑖 can be calculated as follows: 
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where W is the parameters of the shared convolution kernel, l represents the l-th MFEL, 
and 𝜃𝜃 is a bias term. Equation (1) can be represented as 𝑦𝑦′𝑖𝑖𝑖𝑖 = ℎ(𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜃𝜃). That is, we want 
to find a nonlinear function ℎ(⋅) with at least 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑙𝑙1 parameters, which can map edge 
features to a high-dimensional space. The effects of the values of k will be discussed in the 
Section 4. 

In addition, each edge has a different contribution to the representation of local ge-
ometry. As shown in Figure 5, there are strong dependencies between neighboring points 
(i.e., 𝑥𝑥𝑖𝑖1 or 𝑥𝑥𝑖𝑖2) and center point 𝑥𝑥𝑖𝑖, which belong to the “wing”. Thus, the model should 
pay more attention to the edges 𝑦𝑦𝑖𝑖1 and 𝑦𝑦𝑖𝑖2, while ignoring the edge 𝑦𝑦𝑖𝑖3 and connecting 
the “fuselage” point. This varying degree of dependency is influenced by both the central 
point and the neighboring points. Therefore, we design an attention pooling layer to learn 
the nonlinear interaction from the perspective of the central point and neighboring points, 
respectively. The pooling layer is constructed by self-attention channels and neighbor-
attention channels. Specifically, the self-attention layer uses the convolution kernel with-
out bias to extract the spatial information of the query point itself and generate the self-
attention coefficient. Then, the neighbor-attention layer uses a nonlinear function to 
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extract the neighbor-attention coefficient from the edge features. To fuse these two atten-
tion coefficients, we employ a simple sum function. Finally, the fused coefficients are nor-
malized to generate a weight 𝛼𝛼𝚤𝚤𝚤𝚤�  for each edge as shown in Equation (2). 

𝛼𝛼𝚤𝚤𝚤𝚤� = 𝛼𝛼𝑖𝑖𝑖𝑖
∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁𝑖𝑖

⊆ ℝ𝑁𝑁×1×𝑘𝑘, (2) 

where 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝜎𝜎(ℎ(𝑥𝑥𝑖𝑖) + ℎ(𝑦𝑦′𝑖𝑖𝑖𝑖 ,𝜃𝜃)) is the edge weight before normalization, and 𝜎𝜎(∙) is the 
activation function. Here, the LeakyReLU was chosen. The weighted edge features 𝑦𝑦′𝚤𝚤𝚤𝚤�  
are calculated as follows: 

𝑦𝑦′𝚤𝚤𝚤𝚤� = 𝛼𝛼𝚤𝚤𝚤𝚤� × 𝑦𝑦′𝑖𝑖𝑖𝑖 ⊆ ℝ𝑁𝑁×𝐶𝐶𝑙𝑙
1, (3) 

 
Figure 5. Illustration of graph attention mechanism. This is a neighborhood graph of the center point 
𝑥𝑥𝑖𝑖. If 𝑥𝑥𝑖𝑖 and its neighboring points 𝑥𝑥𝑖𝑖1 and 𝑥𝑥𝑖𝑖2 belong to the wing, the neighboring point 𝑥𝑥𝑖𝑖3 be-
longs to fuselage, and the y is the edges formed by connecting each neighborhood point and the 
center point. To strengthen the connection between points of the same category, the attention mech-
anism will impose larger weight to the edges 𝑦𝑦𝑖𝑖1 and 𝑦𝑦𝑖𝑖2 than the edge 𝑦𝑦𝑖𝑖3. 

To better describe the contextual information of a local region, we add a channel to 
GAPLayer to aggregate the absolute position information of the neighborhood relative to 
the entire point cloud. We apply a set of shared convolution kernels on each point in the 
neighborhood and aggregate the feature 𝑥𝑥′𝑖𝑖𝑖𝑖  of each point with a pooling layer: 

𝑥𝑥′𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑥𝑥{ℎ(ℎ�𝑥𝑥𝑖𝑖𝑖𝑖�)} ∈ ℝ𝑁𝑁×𝐶𝐶𝑙𝑙
2, (4) 

where the function Max{∙} means max-pooling function. Then, 𝑥𝑥′𝑖𝑖𝑖𝑖  is concatenated with 
the attentive edge feature 𝑦𝑦′�  as shown in Equation (5):  

𝐸𝐸 = [𝑦𝑦′�‖𝑥𝑥′] ∈ ℝ𝑁𝑁×𝐹𝐹1, (5) 

where the 𝐹𝐹1 = 𝐶𝐶𝑙𝑙1 + 𝐶𝐶𝑙𝑙2 is the final output dimension of the proposed module. 

3.2. RBFLayer 
As shown in Figure 2, pointsets with similar geometric structures usually have simi-

lar spatial distribution characteristics. Such a pointset often has a large spatial range, and 
its distribution characteristics are less affected by noise, which can express the character-
istics of objects more comprehensively. 

The radial basis function (RBF) only responds to the distance between the input var-
iable and the center point, and the response is monotonic. Therefore, it is suitable to de-
scribe the distribution of points in space. The RBF can be defined as: 

φ(𝑥𝑥,𝑣𝑣) = φ(‖𝑥𝑥− 𝑣𝑣‖), (6) 

where x and v are the input and center, respectively. We expect the points in the pointset 
to have similar characteristics. Thus, a kernel function whose output is inversely propor-
tional to the distance (namely, ‖x − v‖) is designed, e.g., the Gaussian function: 

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖2

𝑦𝑦𝑖𝑖1

𝑦𝑦𝑖𝑖3

Fuselage
Wing

𝑥𝑥𝑖𝑖1

𝑥𝑥𝑖𝑖2
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𝑘𝑘(𝑥𝑥,𝑣𝑣′) = exp (−‖𝑥𝑥−𝑣𝑣‖2

2𝛿𝛿2
), (7) 

where δ is a hyperparameter that adjusts the width of the Gaussian function. Such RBF 
can well reflect the spatial distribution in a large range, and the distribution characteristics 
are explicitly modeled. Inspired by the RBF, we propose a pointset feature extraction mod-
ule called the RBFLayer, which can extract pointset features that contain richer context 
information. In addition, the feature extraction method based on point clusters can aggre-
gate some scattered points into an overall representation. Therefore, the RBFLayer can 
extract statistical features and reduce the influence of point density changes. 

In our work, the RBF is used as a feature extractor to generate statistical features in 
the scale of the pointset. The intermediate features are fed into the RBFLayer to model the 
distribution in the feature space. Specifically, the RBFLayer learns a predetermined num-
ber of cluster centers from the feature maps. As shown in Figure 6, the RBFLayer consists 
of two sub-layers, namely, the computing layer and accumulation layer. 

 
Figure 6. Illustration of RBFLayer. The RBFLayer takes neighbor features from aggregated 
GAPLayer as input, to learn t RBF neuron parameters. 

Assuming that the extracted feature map has N feature vectors, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝐹𝐹(𝑖𝑖 = 1, … ,𝑁𝑁), 
the computing layer calculates the similarity between the input feature vectors and the 
feature vectors of cluster centers. Then, the results of the computing layer are sent to the 
accumulation layer. The accumulation layer quantifies the similarity into a histogram. To 
normalize the output, we use Equation (8) as the kernel function: 

[𝜑𝜑(𝑥𝑥)]𝑡𝑡 = 𝑒𝑒𝑥𝑥𝑒𝑒(−‖𝑥𝑥−𝑣𝑣𝑡𝑡‖2/𝛿𝛿𝑡𝑡)
∑ 𝑒𝑒𝑥𝑥𝑒𝑒(�𝑥𝑥−𝑣𝑣𝑞𝑞�2/𝛿𝛿𝑡𝑡)𝑁𝑁𝑡𝑡
𝑞𝑞=1

, (8) 

where v is a learnable cluster center with the same dimension as the input vector. The 
output 𝑠𝑠𝑖𝑖 of the accumulation layer is calculated as follows: 

𝑠𝑠𝑖𝑖 = 1
𝑁𝑁𝑖𝑖
∑ 𝜑𝜑(𝑥𝑥𝑖𝑖𝑖𝑖)𝑡𝑡
𝑖𝑖=1 , (9) 

where φ(𝑥𝑥𝑖𝑖𝑖𝑖) is the output of the i-th feature 𝑥𝑥𝑖𝑖 on the j-th radial neuron. The RBFLayer 
outputs the statistical histogram of the entire point clouds, denoted as 𝑆𝑆 = (𝑠𝑠1 ,𝑠𝑠2 , . . . , 𝑠𝑠𝑡𝑡). 
Finally, S replicates N times to concatenate with the output of the aggregated GAPLayer. 

3.3. Spatial Position Perceptron 
To enrich the feature hierarchy, another module is introduced, i.e., the spatial posi-

tion perceptron (SPP), to extract the global features of the whole point clouds. As shown 
in Figure 7, the SPP can obtain a larger receptive field than a pointset consisting of K-
nearest neighbors. All points are directly fed into the shared convolutional layer, and the 
interconnection between all points is established to form the global feature of the entire 
point cloud. The global features are denoted as U: 
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𝑈𝑈 = ℎ(𝑥𝑥𝑖𝑖,𝜃𝜃 ) ∈ ℝ𝑁𝑁×𝐹𝐹2, (10) 

In the aggregated GAPLayer mentioned in Section 3.1, we use a similar method on 
the neighborhood with k points. The difference is that the aggregated GAPLayer just ag-
gregates the spatial information in a local region, and the SPP is concerned with all input  

 

Figure 7. Schematic diagram of multi-level features. The Aggregated GAPLayer extracts the local 
scale features within the red box, the RBFLayer extracts the point set scale features within the blue 
box, and the Spatial Position Perceptron extracts the global features of the entire input within the 
black box. 

data. We note that some related works embed raw coordinates (x, y, z) into each feature 
extraction layer. Our purpose is to make the model learn the location information of points 
in different dimensions in the space. Therefore, the input of the first MFEL is the raw co-
ordinates, while the input of the second MFEL is the feature maps output by the previous 
MFEL, and so on. 

3.4. The Proposed MFNet and MFNet-S 
As shown in Figure 8, an end-to-end point cloud classification network, namely, 

MFNet, is constructed based on the MFEL. The MFEL is used to extract features of three 
different scales, including neighborhood features, pointset features, and global features, 
as shown in Figure 2. In the part segmentation network, the middle-level features and the 
deep-level features are also connected by means of the skip connection. Finally, the multi-
scale and multi-level semantic features are extracted. 
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Figure 8. The proposed MFNet framework for classification and part segmentation. MFNet uses 
MFEL to extract features. Channel attention is added to assign attention coefficients for the fusion 
features. 

3.4.1. Classification Network 
As shown in the bottom pipeline of Figure 8, to keep the results robust to the changes 

of the input (such as rotation, zoom, etc.), our classification and part segmentation net-
works implement the spatial transformation network, and the classification network uses 
one MFEL as an encoder. As the geometric structure information in a neighborhood is 
abundant and the information collected by one neighborhood feature extraction module 
is limited, we adopt the multi-head mechanism to learn more information independently 
by using the aggregated GAPLayer in different subspaces. Then, the outputs of multi-
heads are concatenated. We set the head number h = 4 and the neighboring point number 
k = 20 in the classification network. The channel-attention mechanism SENet is used to 
assign weights to the merged feature channels. Finally, we apply three fully connected 
layers with drop-out to convert the global features obtained by max-pooling into classifi-
cation scores of 40 categories. Furthermore, each fully connected layer is nonlinearly trans-
formed with the help of the batch normalized activation function ReLU. 

3.4.2. Part Segmentation Network 
As shown in the top pipeline of Figure 8, the part segmentation task requires richer 

context and deeper information. Thus, the part segmentation network sets k = 30 and uses 
two MFELs. As the network depth and neighbor nodes increase, the consumption of com-
puting resources also increases. Thus, we reduce the number of heads, and set h = 2. The 
output intermediate features of the first MFEL are fed into the second MFEL. Then, the 
salient edge features in each MFEL with the output of the two MFELs are concatenated 
and fed into the SENet. We use the tiling function to restore the pooled features to the 
feature size before pooling. Finally, the fully connected layer is used to generate the  
prediction score for each point. In this research, the cross-entropy loss is used in classify 
training. 

3.4.3. Semantic Segmentation Network 
In the task of semantic segmentation, the MFEL is embedded in the U-Net frame-

work, namely, MFNet-S, as shown in Figure 9. The input is fed to the encoder after the 
fully connected layer. The encoder consists of four down-sampling layers. Each layer 
equips an MFEL with two heads to extract the multi-level features. As the number of 
points decreases, the feature channel dimension is continuously increased. The output of 
the last down-sampling layers is directly fed into the first up-sampling layer of the de-
coder. The decoder consists of four up-sampling layers, and the up-sampling algorithm is 
the nearest neighbor interpolation. Additionally, the skip connection is used to concate-
nate the features of the same size between the encoder and decoder. The final semantic 
label of each point is obtained through three shared fully-connected layers and a dropout 
layer. The dropout ratio is 0.5. The output is the predicted semantics of all points with a 
size of 𝑁𝑁× 𝑛𝑛𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐 , where 𝑛𝑛𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐  is the number of classes. Furthermore, the cross-entropy 
loss is used to train the model. 
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Figure 9. Illustration of MFNet-S. Note that FC is a fully connected layer, RS is random sampling, 
US is up-sampling, DP is dropout, and MLP is a multi-layer perceptron. 

4. Results and Discussion 
To verify the effectiveness of the proposed algorithm, we perform a qualitative and 

quantitative analysis of the proposed algorithm on four indoor and outdoor point cloud 
datasets. We first conduct ablation study experiments on the ModelNet40 to verify the 
effectiveness of each part of the MFEL. Then, we implement the MFNet to conduct the 
part segmentation experiments on the ShapeNet. Finally, the MFNet-S is used to perform 
semantic segmentation experiments on different point cloud datasets. The comparisons 
and analysis for the experiments are also provided. 

4.1. Datasets 
ModelNet40: The ModelNet40 is a synthetic dataset. Compared with the real datasets 

collected by laser scanning, each object in the ModelNet40 has a complete shape and does 
not contain noise. The ModelNet40 has 40 common man-made categories, such as cups, 
hats, and chairs, and contains 12,311 objects in total. We use about 80% (9843) for training 
and the remaining 20% (2468) for testing. 

ShapeNet: The ShapeNet is also a synthetic dataset. The ShapeNet contains 16 cate-
gories and 16,881 samples. Each sample contains 2–5 parts, such as an aircraft contains 4 
parts, namely, fuselage, wings, engines, and tail. All objects have a total of 50 different 
parts. As usual, we use 80% of the samples as training data and the remaining 20% as test 
data. 

S3DIS: The S3DIS is a large-scale indoor point cloud dataset developed by Stanford 
University. The S3DIS is reconstructed from six large indoor areas (Area 1–Area 6) 
scanned by Matterport camera. The S3DIS is further divided into 271 rooms. Each point 
in the dataset is semantically labeled by one of the 13 common indoor objects, such as 
chair, table, and floor. Each point is represented by a 9-dimensional vector, i.e., X, Y, Z, R, 
G, B, and the normalized X, Y, and Z. Note that the normalized coordinates X, Y, and Z 
are between 0 and 1. 

Semantic3D-8: The Semantic3D is a large-scale outdoor scene dataset scanned by ter-
restrial laser scanning. The Semantic3D contains different natural and artificial scenarios 
such as rural areas, sport fields, and urban squares. Each scene contains tens of millions 
of points, with a total of more than one billion points for the whole dataset. The Seman-
tic3D-8 has 8 categories, such as plant, building, vehicle, etc. Each point contains 3D coor-
dinates, R/G/B color information, and intensity. Compared with the above dataset and 
indoor dataset, its density distribution is more uneven. The Reduce-8 training set is the 
same as the Semantic3D-8, but the test set is a uniformly down-sampled sub-dataset with 
an interval of 0.01 m. 

4.2. Evaluation Metrics 
On the ModelNet40, we employ overall accuracy (OA) and mean class accuracy 

(mAcc) as our classification task evaluation indicators. If we suppose l is the number of 
categories (the number of labels in the semantic segmentation task), OA is calculated as 
follows: 
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𝑂𝑂𝑂𝑂 = ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙
𝑖𝑖=0

∑ ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙
𝑖𝑖=1

𝑙𝑙
𝑖𝑖=1

, (11) 

where 𝑃𝑃𝑖𝑖𝑖𝑖 represents the point predicted to be of class j but actually of class i. The OA 
reflects the overall classification ability of the network, as it represents the proportion of 
the number of correctly classified samples to the total number of samples. However, sam-
ple balance may affect the OA value and reduce the generalization of the network. mAcc 
calculates the OA value of the prediction results for each class of objects, and then aver-
ages the OA values of all classes: 

𝑚𝑚𝑂𝑂𝑚𝑚𝑚𝑚 = 1
𝑙𝑙
∑ 𝑃𝑃𝑖𝑖𝑖𝑖

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙
𝑖𝑖=0

𝑙𝑙
𝑖𝑖=0 , (12) 

For the ShapeNet, S3DIS, and Semantic3D, the evaluation metrics are the same as 
most of the references to facilitate the comparison of experimental results. Here, mIoU 
(mean IoU) and mAcc are used on the ShapeNet. OA and mIoU are used on the S3DIS and 
Semantic3D. The 𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖 is calculated as follows: 

𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖 = ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
∑ 𝑃𝑃𝑖𝑖𝑖𝑖+∑ 𝑃𝑃𝑖𝑖𝑖𝑖−𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙

𝑖𝑖=1
𝑙𝑙
𝑖𝑖=1

𝑙𝑙
𝑖𝑖=1 , (13) 

The mIoU evaluates the semantic segmentation results for all classes, which are cal-
culated by Equation (14): 

𝑚𝑚𝐼𝐼𝐼𝐼𝑈𝑈 = 1
𝑙𝑙
∑ 𝑃𝑃𝑖𝑖𝑖𝑖

∑ 𝑃𝑃𝑖𝑖𝑖𝑖+∑ 𝑃𝑃𝑖𝑖𝑖𝑖−𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙
𝑖𝑖=1

𝑙𝑙
𝑖𝑖=1

𝑙𝑙
𝑖𝑖=0 , (14) 

4.3. Ablation Studies and Parameter Sensitivities Analysis 
In this section, we conduct ablation experiments on the MFNet by comparing it with 

the GAPNet. We also conduct sensitivity experiments on several key hyperparameters. 
These experiments are conducted on RTX 2080Ti with Tensorflow v1.12. 

4.3.1. Ablation Studies 
The training parameter settings are the same as the GAPNet: 1024 points as the input, 

learning rate = 0.001, and training epoch = 250. Data augmentation operations include ran-
dom rotation and jitter. For optimization, we use Adam to train the model for 250 epochs 
with batch size = 32. The initial learning rate is set to 0.001. We will sequentially add our 
proposed modules into the GAPNet. The experimental steps are as follows.  

Step 1: The feature extraction module GAPLayer in the GAPNet is replaced by our 
improved aggregated GAPLayer. The MLP channel numbers in SPP are 8, 16, and 16, re-
spectively. Step 2: The RBFLayer is added to the network after step 1. Here, we choose the 
number of RBF neurons t = 40. Step 3: The spatial position perceptrons with convolution 
channels of {32, 64, 64} are added to the network after step 2. Step 4: We embed the SENet 
channel-attention mechanism into the network. The attention coefficients for all feature 
channels can be assigned according to the feature map, to highlight significant features 
and suppress redundant features.  

The experimental results of the ablation studies are shown in Table 1. With the addi-
tion of modules, the OA and mAcc show an upward trend, indicating that each module 
has played an active role. When all modules are loaded, the proposed MFNet is formed. 
OA and mAcc reach 93.1% and 91.4%, respectively, which are 0.7% and 1.7% higher than 
the original GAPNet, respectively. Further comparison can find that the improvement of 
mAcc in step 1 is the largest, which is increased by 0.8%, and the improvement of OA in 
step 4 is the largest, which is increased by 0.4%. This proves that for small-scale point 
cloud classification tasks, adding rich geometric features and global features can help the 
network to distinguish object categories more accurately. 
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Table 1. Ablation studies on ModelNet40 dataset. 

Component Base  
Model 

Step 1 Step 2 Step 3 Step 4 

GAPLayer √     
Aggregate GAPLayer  √ √ √ √ 

RBFLayer   √ √ √ 
Spatial Position Perceptron    √ √ 

SENet     √ 
OA (%) 92.4 92.5 92.6 93.0 93.1 

mAcc (%) 89.7 90.4 90.6 90.9 91.4 
Note: “√” means that the module has been added to the network. In all tables in this article, bold 
font indicates best results. 

4.3.2. Parameter Sensitivities Analysis 
We conduct parameter sensitivity experiments in the classification and segmentation 

networks of the MFNet, respectively. The training strategy of parameter sensitivity anal-
ysis in the classification network is the same as the ablation experiments. In this experi-
ment, we discuss the influence of neighboring point number k and RBF neuron number t 
on the classification results. According to Table 2, when k = 20 and t = 40, the MFNet per-
forms best on the ModelNet40. In addition, there is no obvious correlation between the 
neighboring point number or RBF neurons’ number with classification accuracy because 
the size of the neighborhood may affect the model’s perception of fine-grained geometric 
features. According to the experiments, the number of RBF neurons should be approxi-
mately equal to the number of categories in the dataset, which will make the RBF neurons 
describe the characteristics of the pointset best. 

Table 2. Parameter sensitivity analysis on the classification network. 

 t = 40 k = 20 
 k = 10 k = 20 k = 40 t = 20 t = 40 t = 80 

OA (%) 92.5 93.1 92.8 92.9 93.1 92.8 
mAcc (%) 90.3 91.4 90.2 90.7 91.4 90.3 

For the part segmentation task, each object is sampled with the 2048 point as the in-
put. The initial learning rate is set to 0.005 with the Adam optimizer. The model is trained 
in 200 epochs with the batch size of 16. Since the part segmentation task is more sensitive 
to parameters, we further discuss the influence of the head number (h) and the number of 
output channels (C) of each aggregated GAPlayer on the results here. The RBF neurons (t) 
are set to 40. The results are shown in Table 3. By comparing configurations (3), (4), and 
(6), the three sets of experiments, it can be found that when k = 30, increasing the number 
of output channels can improve performance to a certain extent. Increasing the number of 
channels can compensate to a certain extent for the decrease in accuracy due to the reduc-
tion of the head number. On the other hand, reducing the head number will reduce the 
memory usage to further increase k to 40; the mAcc and mIoU of (2) are 0.1% and 0.6% 
higher than those in configuration (6), respectively. According to the comparisons of (1), 
(2), (3), and (4), we find that when the head number drops to 1, the expression capacity of 
the features cannot be improved even if the number of output channels is greatly in-
creased. Thus, we finally choose the parameter setting of (2). 
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Table 3. Parameter sensitivity analysis on ShapeNet dataset. 

  (𝑪𝑪𝟏𝟏𝟏𝟏,𝑪𝑪𝟏𝟏𝟐𝟐) (𝑪𝑪𝟐𝟐𝟏𝟏,𝑪𝑪𝟐𝟐𝟐𝟐) mAcc (%) mIoU (%) 
head = 1 (1) k = 30 (64, 16) (256, 128) 94.3 84.7 

head = 2 

(2) k = 40 (32, 16) (128, 128) 94.5 85.4 
(3) k = 30 (32, 16) (128, 128) 94.3 84.8 
(4) k = 30 (16, 16) (128, 32) 94.1 84.6 
(5) k = 10 (32, 16) (128, 128) 94.1 84.4 

head = 4 (6) k = 30 (16, 16) (128, 32) 94.4 84.8 
Note: 𝐶𝐶𝑙𝑙1 and 𝐶𝐶𝑙𝑙2 mean the number of edge feature and local spatial aggregation feature output 
channels of the l-th module, respectively. 

4.4. Comparison with Other Methods 
To further verify the validity of the proposed model, in this section, we will make a 

detailed comparison of experimental results on four common datasets between our model 
and other methods. 

4.4.1. Classification on ModelNet40 
Table 4 shows the comparison results. Referring to the research [45], we divide the 

compared methods into three categories, i.e., point-wise MLP methods, convolution- 

Table 4. Classification results comparing on ModelNet40 dataset. 

Methods OA (%) mAcc (%) 
PointNet [9] 89.2 86.0 

PointNet++ [10] 90.7 - 
DGCNN [31] 92.2 90.2 

Point2Sequence [46] 92.6 90.4 
A-CNN [11] 92.6 90.3 
KPConv [12]  92.9 - 
GAPNet [13] 92.4 89.7 

LDGCNN [47] 92.9 90.3 
PointASNL [48] 92.9 - 
Point2Node [49] 93.0 - 
Grid-GCN [50] 93.1 91.3 

PointView-GCN [51] 95.4 - 
HAPGN [2] 91.7 89.4 

MFNet (ours) 93.1 91.4 
Note: “-” means that the value of the item is not available. 

based methods, and graph-based methods. In Table 4, our method achieves a remarkable 
performance on both OA and mAcc. Compared with graph-based methods such as Grid-
GCN [50], our method achieves the same OA value, but we improve the mAcc value by 
0.1%. Note that compared to the baseline (GAPNet), we improve 0.7% and 1.7% on OA 
and mAcc, respectively, despite the model size increase of 10 MB. In addition, for convo-
lution-based methods, i.e., methods that focus on efficiently aggregating context within 
local regions, we also obtain competitive results over them. Compared to the KPconv, we 
lead by 0.2% in OA. In comparison with homogeneous methods (namely, the graph-based 
methods), our method has achieved remarkable results. For example, the PointView-GCN 
51] is a state-of-the-art method, with an OA of 95.4%. However, the method has only been 
tested on small-scale datasets. Our method can be applied to semantic segmentation tasks 
on large-scale datasets as well as achieve remarkable results in the classification tasks on 
small-scale datasets.  
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4.4.2. Part Semantic Segmentation on ShapeNet 
As shown in Table 5, we divide the compared methods into four categories: struc-

ture-based, voxel-based, point-based MLP, and graph-based. Our method achieves the 
best mAcc and mIoU values among the four types of methods, reaching 83.2% and 85.4%, 
respectively. Compared with the baseline network, namely GAPNet, we improve mIoU 
by 0.7%. Experiments show that the feature extraction layer can extract semantic infor-
mation very well in the task of part segmentation with a small amount of data. In com-
parison with homogeneous methods (namely the graph-based methods), our method has 
achieved the best results. The PatchFormer [37] achieves the best results on mIoU with 
86.5%, but our method remains ahead on mAcc. In addition, the PatchFormer has also not 
been verified on large-scale datasets. 

Table 5. Part semantic results on ShapeNet dataset. 

Methods mAcc (%) mIoU (%) 
Kd-Net [52] 77.4 82.3 

PointNet++ [10] 81.9 85.1 
PCNN [53] 81.8 85.1 
RS-Net [54] 81.4 84.9 
KCNet [55] 82.2 84.7 

DGCNN [31] 82.3 85.2 
GAPNet [13] - 84.7 

Point-PlaneNet [56] 82.5 85.1 
PatchFormer [37] - 86.5 

MFNet (ours) 83.2 85.4 

Figure 10 shows the visualization results of ShapeNet semantic segmentation. By 
comparison, it can be found that our method performs better on both flat and complex 
structures (such as red rectangles). Thanks to the geometric features extracted from the 
aggregated GAPLayer and pointset features of the RBFLayer, our network can better dis-
tinguish the shapes of various parts of the object, such as the armrest of the chair, the wing 
of the airplane, and the beam of the earphone. Since the RBFLayer can extract the object 
features of the pointset, when processing the object parts in Figure 10c, the connection 
between the upper and lower beams can be established, and the beams will not be erro-
neously segmented as with the GAPNet. However, our method incorrectly identifies a 
part of the line as the earmuffs, possibly because there is a gap in the line. Furthermore, 
the model mistakenly judges that the two parts separated by a certain distance are the 
earmuffs, as the distance between the misidentified part and the true earmuff is similar to 
the distance between the two true earmuffs. 
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(a) (b) (c) (d) (e) 

Figure 10. Visualization of part semantic results on ShapeNet dataset. The columns (a–e) are chair, 
airplane, table, earphone, and table, respectively. The first row is the ground truth, and the second 
and third rows are our results and GAPNet results, respectively. Obviously, the segmentation result 
of our method in the red box is better than that of GAPNet. 

4.4.3. Semantic Segmentation on S3DIS 
For the semantic segmentation task on the S3DIS and the Semantic3D, the MFNet-S 

network is employed. The Adam optimizer with an initial learning rate of 0.01 is used to 
train our model for 100 epochs. The batch size is set at 6 and 4, respectively, and the num-
ber of neighbors is set to 32 and 16, respectively, when training on the S3DIS and Seman-
tic3D, and the decay rate of learning is set to 0.98. These two experiments are conducted 
on an NVIDIA Quadro RTX 6000 GPU. 

Table 6 provides the experimental results. The OA and mIoU of our method reach 
86.6% and 62.9%, respectively, which are better than most compared methods. Compared 
with the GAPLayer, the OA and mIoU of our method are improved by 0.9% and 3.5%, 
respectively, and the segmentation results of each category are improved. Since our 
method integrates multi-scale features and can expand receptive fields, it has obvious ad-
vantages to segment large objects such as a column, bookcase, and board. 

Table 6. OA (%) and mIoU (%) on S3DIS dataset. 

Method OA mIoU Ceiling Floor Wall Beam Column Window Door Chair Table Bookcase Sofa Board Clutter 
PointNet [9] - 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.4 

PointCNN [57] 85.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7 
TangentConv [58] 82.5 52.8 90.5 97.7 74 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8 

PointWeb [59] 87.0 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5 
HPEIN [60] 87.2 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4 

DGCNN [31] 59.8 51.5 93.0 97.4 77.7 0.0 12.2 47.8 39.8 67.4 72.4 23.2 52.3 39.8 46.6 
GAPNet * [13] 85.7 59.4 89.1 97.0 79.4 0.0 28.8 57.6 35.3 76.0 80.0 50.9 66.2 63.2 48.3 
Grid-GCN [50] 86.9 57.8 94.1 97.3 77.7 0.0 16.6 32.9 58.53 72.2 81.3 36.5 48.7 64.5 50.5 

TGNet [61] 88.5 57.8 93.3 97.6 78.0 0.0 9.3 57.0 39.4 83.4 76.4 90.6 41.8 58.7 55.3 
MFNet-S (Ours) 86.6 62.9 91.2 98.2 80.4 0.0 35.1 57.2 46.6 77.4 86.0 65.6 65.4 66.2 47.6 
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Note: Testing on Area 5 and training on the rest. Note that * is the result of replacing the feature 
extraction module of RandLA-Net with GAPLayer. Boldface indicates the method with the highest 
performance value. 

Compared with the local feature extraction network PointWeb, although the ob-
tained OA is the same, the mIoU of our method is 2.5% higher, and it is better than the 
PointWeb in the segmentation results of most categories. In the graph-based approach 
(such as TGNet [61] and Grid-GCN [50]), our method takes the lead in both mIoU and 
mAcc. 

Figure 11 shows the semantic segmentation visualization results of several typical 
scenes in the S3DIS. Compared with the ground truth and baseline model GAPLayer, our 
network has a strong recognition ability for large-area connected areas such as doors and 
window frames on the wall, and also has a good segmentation effect for objects with com-
plex geometric structures (such as indoor furniture). This proves that the RBFLayer in our 
MFEL can better construct similar features of pointsets and can fully consider the 
geometric and spatial attributes of adjacent points. However, the boundary prediction of 
some large-area connection areas is not clear or complete. This is mainly because the lim-
ited receptive field limits its ability to learn geometric features to distinguish connected 
objects. 

4.4.4. Semantic Segmentation on Semantic3D 
For a fair comparison, we submit our prediction results on the Reduced-8 to the sever 

and evaluate the mIoU and OA. Table 7 provides a quantitative comparison with several 
methods. The mIoU and OA of our network are 71.9% and 93.7%, respectively, which are 
significantly better than most existing methods. Compared with the baseline network, the 
results of our method are improved by 2.6% and 1.3%, respectively. The segmentation of 
our network in 4 of the 8 categories achieves the highest score in the compared methods. 
From the prediction results of the visualization in the real large-scale scene shown in Fig-
ure 12, our network can accurately segment small artificial objects such as carts and col-
umns. The segmentation results on flat objects such as a sunshade surface are also com-
plete. However, due to the sparse point cloud and the mixed geometric structure of the 
high vegetation leaves, the discriminative ability of the network is affected. Thus, our 
method is obviously inferior to the GAPNet in the recognition of targets such as high veg-
etation. This is what we will improve in the future. 

Table 7. OA (%) and mIoU (%) on Semantic3d dataset (Reduced-8 test online). 

Method OA mIoU Man-
Made 

Natural High 
vcg. 

Low vcg. Build-
ings 

Hard 
Scape 

Scanning 
Art. 

Cars 

PointNet [9]  - 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 
GACNet [26] 91.9 70.8 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8 
SegCloud [62] 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3 

JSNet [63] 87.7 54.5 - - - - - - - - 
OFDV-Net [64] 88.3 57.3 86.5 75.4 76.1 40.3 89.2 14.0 27.9 49.2 
OctreeNet [65] 89.9 59.1 90.7 82.0 82.4 39.3 90.0 10.9 31.2 46.0 

XJTLU [66] 89.4 63.5 85.4 74.4 74.6 31.9 93.0 25.2 41.5 82.0 
GAPNet * [13] 92.4 69.3 97.7 82.5 85.2 36.7 94.8 34.6 55.7 66.7 

MFNet-S (Ours) 93.7 71.9 97.9 92.2 82.1 45.9 94.1 34.2 57.0 72 
Note: the “*” is the result of replacing the feature extraction module of RandLA with GAPLayer. 
Boldface indicates the method with the highest performance value. 
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Figure 11. Semantic segmentation visualization results on the S3DIS. (a) Ground truth; (b) our 
method; (c) GAPNet. As shown in the figure, the segmentation result of our method is better than 
that of GAPNet in the black circle. 

 

  
Ground truth Our method GAPNet Ground truth Our method GAPNet 

Figure 12. Semantic segmentation results on the Semantic3D. As shown in the figure, the segmen-
tation result of our method is better than that of GAPNet in the red circle. 
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5. Conclusions 
In this research, we propose a new multi-scale feature extraction module MFEL for 

the large-scale point cloud classification. The MFEL first strengthens the local geometric 
feature extraction capability by adding a multi-layer perceptron channel with pooling lay-
ers to the graph convolution. Then, the statistical features of the point clouds at the 
pointset level are obtained via the RBFLayer. Finally, we combine the spatial location fea-
tures extracted by the PointNet and design an end-to-end framework for the classification 
and part segmentation with better results. We also embed the module into a basic frame-
work and perform experiments on large-scale indoor and outdoor point clouds, i.e., S3DIS 
and Semantic3D, with promising results. By the comparisons on several different types of 
datasets, our proposed feature extraction module provides greater improvements to the 
baseline model on large-scale datasets. In large-scale real scenarios, our proposed multi-
scale feature extraction is more accurate and a stronger semantic representation for objects 
with rich geometric shapes. 

However, our method is still inadequate in the segmentation of some small objects 
with complex structures, and inefficient feature fusion may lead to feature redundancy. 
Therefore, improving the efficiency of feature fusion and enriching the extraction of geo-
metric features will be our future research. 
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