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Abstract: Whitecap formation is an important factor in the exchange of momentum, heat, and
gas on the ocean surface. The long-term measurement of whitecaps is necessary to deepen our
understanding of the mechanisms of ocean surface motion. However, traditional detection methods
are highly sensitive to illumination. Under various illumination conditions, significant light pollution
may be introduced into images. The poor performance caused by using images degraded with
light pollution is not conducive to automated long-term whitecap measurement. In this study, we
propose a two-step method for the detection of whitecaps under various illumination conditions. An
abnormal detection method based on previous whitecap detection methods for the accurate detection
of whitecaps in light-polluted areas is proposed as the first step. Using the detection results, we
propose a post-processing method based on optical flow trajectories at two sampling rates to separate
actual whitecap components in images containing false positives. Experiments show that the method
proposed in this study can more accurately detect whitecaps in images with light pollution when
compared to existing methods.

Keywords: whitecaps; monocular camera; optical flow; light pollution

1. Introduction

Wave-breaking is the main mechanism of wave energy dissipation, which plays a
crucial role in the energy balance of surface waves. Whitecaps are formed when breaking
waves entrain air at the surface, forming a submerged bubble plume that appears as a
patch of highly reflective foam at the sea surface. Whitecaps enhance the transport of gases
across the air–sea interface [1,2], are an important source of primary marine aerosols [3],
and alter the ocean albedo [4,5].

At present, whitecap observation methods include the use of monocular cameras [6–10],
stereo cameras [11], infrared cameras [12–14], and satellites [15–18], among other methods.
Monocular cameras have been widely used to detect the whitecap coverage W over the past
20 years due to their low cost and high flexibility. The most widely used whitecap detection
method based on the use of a monocular camera is the automated whitecap extraction
(AWE) method based on the percentage increase in the number of pixels (PIP) function
proposed by Callaghan [19]. Compared with the earlier algorithms [20–22], Callaghan’s
method can automatically obtain the threshold for every single grayscale image if whitecaps
exist in the picture, while earlier algorithms prefer to use one threshold when analyzing
a short video. Inspired by AWE, adaptive thresholding segmentation (ATS) [23] has
been proposed as an improved global threshold segmentation method, which reduces the
multiple time derivation and smoothing operations used in AWE, effectively improving
the speed of whitecap detection. More recently, the use of deep learning methods for
whitecap analysis has been discussed [24–26]; however, some of them are only concerned
with wave-breaking events, not the whitecap itself.

Whitecaps have particular spatial and temporal characteristics. For further under-
standing of the movement of a single whitecap and the statistical properties of whitecaps,
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whitecap detection in continuous sequences is particularly important. In order to obtain
convergent whitecap coverage, hundreds of images within 20 min need to be available [19],
as well as continuous motion tracking. However, due to the optical characteristics of
cameras, images under varying illumination conditions may differ, resulting in significant
errors. As for AWE and ATS, their whitecap detection performance is accurate under uni-
form illumination conditions; however, in case of uneven illumination, the global threshold
method will lead to misjudgment. In order to retrieve whitecaps automatically in uneven
lighting conditions, IBCV has been proposed [23]. This method aims to maximize the
inter-class variance when obtaining the segmentation threshold. As IBCV shares different
ideas with other methods, IBCV only performs better in uneven illumination conditions
and is completely inapplicable under other conditions. Liu [27] has introduced a pre-
processing method, the top-hat transform, which suppresses the background pixels under
uneven lighting in a single image, allowing whitecap pixels to be enhanced. An adaptive
thresholding method has also been applied [28] for whitecap detection. The image was
split into 64 × 64 overlapping sub-images, and the Otsu method was used to obtain the
optimal threshold for every sub-image. A contour identification method is used in the
method in order to distinguish actual whitecap contours. A semantic whitecap extraction
model has been proposed [26], allowing the error result in uneven illumination conditions
to be eliminated.

In addition to uneven illumination, sun glints can also influence the captured image,
serving as the main source of light pollution. In most analyses, these images are discarded.
The easiest solution is to add a polarizer to the camera, which removes certain incident
light [29]. Considering that most whitecap images are derived from ship-borne cameras
or fixed cameras on offshore platforms, the vibrations induced by waves may come from
any direction and cannot be avoided, and therefore fixed polarizers are not effective at
all times. Careful positioning of the camera can help to avoid contamination from the
effects of sun glints and uneven illumination caused by sky reflection [19]. For long-term
monitoring, frequent camera adjustments lead to increased costs and reduced automation
as, in the analysis of whitecap coverage, it is necessary to remove the perspective effect,
while a change of angle would also lead to a change in the field of view, and the camera’s
extrinsic parameter matrix must also be re-calculated according to the angle [30]. With the
movement of clouds and the sun, light pollution also occurs in short-term videos, such that
accurate whitecap detection under light pollution conditions is generally necessary.

Sun glints occur in many imagery methods applied to sea surface monitoring. Two
sun glint removal techniques are commonly used—(1) a radiative transfer model coupled
with a statistical model of surface water, in order to predict water leaving reflectance [31,32];
and (2) using near-infrared (NIR) wavelengths, which exhibit maximum absorption and
minimal water-leaving radiance over clear waters [33,34]—as a proxy for the amount of
sun glint in a pixel, as well as for finding the spatial variation of glint intensity across the
image. However, these methods require additional equipment to measure radiance, and
are most often used with satellite images, which typically have a spatial resolution higher
than 100 m per pixel, making them unsuitable for high spatial resolution scenes of offshore
structure-based or ship-borne cameras. A sun glint correction method for a UAV platform
has been proposed [35], and the use of simultaneous multi-channel polarimetric cameras
has been shown to be capable of minimizing the influence of sun glints in the case of a
detailed analysis of sea surface polarization patterns under different sea states and solar
zenith angles [36]; however, these approaches also require additional equipment.

It should be emphasized that our goal is not to remove sun glints but, instead, to
reliably detect whitecaps even in highly light-polluted images. As the whitecap alters
the albedo of the sea surface, in most cases, the light pollution area will not contain the
whitecap; conversely, the whitecap area will not have obvious light pollution. This is why
the whitecap can still be observed by the naked eye in the presence of light pollution. In
the absence of additional equipment, the difference in spatial and temporal properties
between sun glints and whitecaps can be utilized. Contours with tracked time shorter
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than 2/3 second have been directly removed in an earlier study [37], where sun glints may
behave similarly to whitecaps when the wave is slight or moderate. A UNet-based sun
glint and whitecap separation method [38] has been proposed, but no detailed comparison
is available. Distinguishing whitecaps and light pollution using statistical methods is
acceptable in some cases; for example, using the average grayscale value X and standard
deviation value of an abnormal pixels σ [39] to find a new threshold, where the abnormal
pixels are those which have values higher than a manually determined threshold. The new
threshold can be calculated as X + 3σ, as determined by experience, and whitecaps should
have a higher grayscale value than the new threshold. This method shares the same idea as
an efficient method to separate the diffuse and specular reflection components in a single
image [40]; however, this method requires a significant difference in brightness between
the whitecap and the sun glint in the image, which is not always fully satisfied in images.

Although existing whitecap detection algorithms can achieve automatic detection
under ideal conditions, it is still challenging to detect whitecaps reliably due to the various
illumination conditions. Therefore, we propose an automated whitecap detection method
under complex illumination conditions with varying levels of light pollution. First, the
automated whitecap detection algorithm is improved on the basis of existing approaches,
allowing the proposed method to obtain all abnormal pixels in a single image, including
whitecaps and light pollution. Then, the sea surface abnormal image sequence and a
down-sampled abnormal image sequence are used for optical flow trajectory analysis in
order to remove misjudgments due to illumination effects.

The remainder of this manuscript is organized as follows: Section 2 describes the
materials and methods. Section 3 provides the results. Finally, in Section 4, we detail our
findings in the discussion.

2. Materials and Methods
2.1. Instrumentation

The video data used in this study were captured using a rotatable camera installed on
the external platform of an offshore wind turbine located in Jiangsu, China. The principal
objective of the camera is to obtain real-time sea conditions in the offshore wind farm area.
In the image data used in this study, the roll angle of the camera was set as 0◦ in order to
obtain the largest field of view on the sea surface. The external platform was 12.89 m above
mean sea level. The wind direction and wind speed were obtained from anemometers,
which were also mounted on the external platform. The in situ wave data were retrieved
from a WaveGuide 5 Direction WG5-DR-CP, developed by Radac. The radar was sampled
at 10 Hz, and the accuracy of the measured wave height was ±1 cm.

The wave data were processed using the Standard Wave Analysis Program (SWAP).
According to the WaveGuide Direction, the real height difference between the external
platform and current sea surface was obtained. This was used to calculate the extrinsic
parameter matrix of the camera, which is necessary for the image to be restored to the
world coordinate system (WCS). Figure 1a shows the location of the offshore platform and
the installation position of the equipment. In order to verify the effectiveness of proposed
method, we captured video under various illumination conditions and sea states at different
times. Figure 1b shows the wind speed and significant wave height under different sea
states in 2021. The wind speed U10 was in the range of 1–12 m/s, and the significant wave
height Hs was in the range of 0.2–2.5 m. Both U10 and Hs were taken as 10-minute averages.

All video data were stored on the recorder, then transmitted to the shore-based station.
The camera was a HIKVISION 2MP Dome DS-2DE2204IW-DE3/W/XM, using a 1/2.8 inch
CMOS with a focal length variation range of 2.8–12 mm, horizontal FOV in the range of
25–100◦, vertical FOV of 14.1–56.3◦, and diagonal FOV of 28.7–114.7◦. In the video clips
captured in our study, both the focal length and the roll angle were fixed. Figure 2b shows
a typical image captured by the camera. The camera was calibrated [41] before installation,
and the images were converted to the world coordinate system, as shown in Figure 2b,
where the WCS and the pixel coordinate system (PCS) are shown in Figure 2a. Xc, Yc, and
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Zc are the axes of the image coordinate system (ICS); u and v are the axes of the PCS; Xw,
Yw, and Zw are the axes of the WCS; Ow is the origin point of WCS; (x, y) is the projection
of Ow in PCS; and Tz is the height difference between the external platform and the current
tide level. In the subsequent study, the size of images we selected is 200 × 200, and the
spatial size under WCS is about 14 × 14 m2, which is related to the current tide level
because the change in the tide level would cause the change of Tz, thereby changing the
actual spatial size.
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Figure 1. (a) Instrumentation; (b) wind speed and significant wave height data in video clips analyzed
in this study.

Ow

(x,y)

Tz

Xc

Yc

Zc

u

v

Zw

Yw

Xw

Oc

(a)
(b)

Figure 2. (a) The spatial location of the WCS and the PCS. (b) The original image taken by the camera
and the image restored to WCS. The orange box marks the area restored to WCS, and the orange
points in two images are the corresponding positions of the origin coordinate in the WCS. The spatial
size of the image under the WCS is 50.00 m × 85.69 m, with the same spatial resolution in both axes.
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2.2. Method

The goal of the proposed method is to automatically detect whitecaps on the sea
surface under different illumination conditions. Existing whitecap detection algorithms
are not satisfactory when dealing with images under variable illumination conditions, as
directly using a global threshold segmentation or adaptive threshold segmentation without
any pre-processing of the image will result in obvious misjudgments and misdetection.
Even with a proper pre-processing method, the error cannot be eliminated completely.
Furthermore, a variety of post-processing methods have been proposed to remove the error
area, but, basically, the judgment criteria are only applicable in a few cases and cannot be
applied to changing illumination conditions.

To be more precise, when only a single image is used for whitecap detection detection,
it is difficult to distinguish whitecap from light pollution areas, and this is because a sun
glint area behaves similarly to a whitecap. Such images could be found in Sections 2.2.2,
3.3 and 3.4. Even experienced personnel find it difficult to select accurate whitecap areas
from a single image when there are no other images from adjacent moments, not to
mention the simple use of shape differentiation [28] or the use of brightness differences to
differentiate [39]. hence, we solve the above problems in two steps. The specific process is
shown in Figure 3. First, the abnormal detection method, motivated by a previous whitecap
detection method, is used for every single image in the video. The abnormal areas include
whitecaps and light pollution points (where, generally, light pollution indicates sun glints).
We select the channel most sensitive to abnormal pixels in the image, apply the top-hat
transform to enhance the distinction between abnormal foreground and background, and
use global threshold segmentation on the processed image to obtain the abnormal pixels
in the image. After acquiring the most accurate abnormal areas possible, optical flow
trajectories of the same features at different sampling rates are analyzed using optical flow
in order to obtain the whitecaps in each image from the abnormal videos using the feature
motion trajectories of light pollution and whitecaps to distinguish spurious whitecaps in
the image.

Original RGB 
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min(R,G,B)
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transform

Threshold 
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mask

Abnormal Detection Method

Pixel
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I Abnormal 
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Figure 3. Flowchart of the proposed method.

2.2.1. Abnormal Detection Method

Under different illumination conditions, the brightness difference between a whitecap
and the sea surface may differ greatly. Additionally, during the lifetime of a whitecap, its
brightness may change [42], leading to some whitecaps potentially being ignored. Therefore,
abnormal pixels are obtained under different illumination conditions for every single image
in a video clip automatically. This method is abbreviated as AD (abnormal detection) in
the following.

Considering that the abnormal pixels have high intensity in all channels in RGB images
and light pollution points of sea surface images would have a strong specular reflection,
we consider light pollution to be in the form of sun glints. The commonly used V′ channel
in specular component detection [40,43] was chosen, instead of grayscale images, as V′ is
more sensitive to sun glint points.

V′pixel = min(R, G, B)pixel ,
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where R, G, and B denote the intensities of the three respective channels. In the case of
different weather and different illuminations, the overall brightness and regional brightness
of the image will change significantly. At this time, using a global threshold without any
pre-processing is likely to cause errors. The top-hat transform has the ability to suppress
the background of the image, thus enhancing the whitecaps and sun glints, which are
considered as the foreground:

F(I) = I − (I ◦ b),

where F(I) denotes the top-hat transform of image I, and (I ◦ b) denotes a morphological
opening applied to I, where b is the kernel used in the transform. By using a small circular
kernel, background and foreground separation at different overall brightnesses can be
accomplished. Figure 4a shows the effect of the top-hat transform. Background pixels are
suppressed, whether they are relatively bright or dark, and abnormal pixels are enhanced,
regardless of the intensity of those pixels in the original image. Figure 4b shows the
intensity distribution difference after the transform, where the difference between the two
histograms also confirms our observations. The histogram after the transform is smoother,
and the intensity values of the background are suppressed, such that the bright background
is also removed.
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Figure 4. (a) The original grayscale image and the image after top-hat transformation; (b) histogram
of image before and after the top-hat transform. The dashed line represents the threshold found by
the knee point determination method.

After the pre-processing, we can utilize the knee point in the histogram as the desired
threshold T. An effective method to determine the knee point is defined as:

T = arg max
t

(var(t− σ, t)/var(t, t + σ)),

where var(p1, p2) denotes the variance in the number of pixels of intensity p satisfying
p1 < p < p2 in the statistical histogram. This method can be used in the image after the
top-hat transform in order to find the threshold faster, as the threshold is closer to the
origin on the x-axis and, so, the number of iterations is significantly reduced. Note that,
under certain illumination conditions, there may be a small part of the sea surface that is
identified as an abnormal area; however, this will not affect the subsequent analysis. Such
cases could be found in Section 3.5.
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2.2.2. Whitecap Separation Method

As mentioned in the previous section, with a single image, whitecaps and sun glints
may have very similar appearances, as shown in Figure 5, not only in RGB space. There
is only one whitecap marked, but the rest of the sun glint components are difficult to
distinguish from the whitecap with limited information. In the three commonly used color
spaces, the whitecap and sun glints exhibit similar color performance. An analysis of such
cases could be found in Section 3.4.

(a) (b) (c)

Figure 5. (a) Image containing sun glints and whitecap in RGB color space; (b) image containing sun
glints and whitecap in HSV color space; and (c) image containing sun glints and whitecap in LAB
color space (the display colors of this image have been modified to enhance the difference).

Considering that the temporal and spatial characteristics of whitecaps and sun glints
are different from those found in observation, they may be used to distinguish whitecaps
and highlights. The specular reflection of the sea surface results in sun glints [44]. In
areas where whitecaps are generated, the sea surface will not be as smooth as elsewhere,
and the specular reflection component is greatly weakened, as shown in Figure 6. For
sun glints, it is very related to the slope of sea surface and the distance from the camera.
The overall oscillatory motion on the ocean surface is a combination of a large variety of
waves [45], and the slope changes significantly at certain points on the sea surface. This
makes the appearance of sun glints relatively random. With the movement of waves and
currents on the sea surface, a whitecap will maintain a noticeable movement on the sea
surface. Additionally, before dissipating, the whitecap areas mainly show diffuse reflection
characteristics. The illumination conditions can change rapidly, and maximizing utilization
of the limited available video data is important for further whitecap analysis. Instead
of using a simple rule of thumb to remove suspicious components, we intend to detect
whitecaps as accurately as possible through the use of spatial and temporal information.
This method is abbreviated as WS (whitecap separation) in the following.

whitecap
water 

surface

Direction 

of sun

 Detecting 

Gauge 

A B C D E

Figure 6. Schematic diagram of water surface reflection. In the case of A, C, D, and E, specular
reflection is dominant, and A, D, and E may all have sun glints in the result. In case B, diffuse
reflection is dominant due to the occurrence of whitecaps.

Previous methods have focused on determining the whitecap component in the image
from the contour [28] itself or its duration [37], while our proposed method does not care
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about the contour shape, as its contour performance is quite different during the whitecap
lifetime, and many kinds of shapes are possible. In practice, some specific shape contours
are removed, which makes the judgment mostly dependent on experience. The proposed
method is based on the analysis of optical flow trajectories at different sampling frequencies
in order to determine whitecap components. Velocity measurement methods in computer
vision, including particle image velocity (PIV), and optical flow methods have been applied
in whitecap research [37,46], demonstrating their feasibility. In those studies, the known
whitecaps were tracked to analyze the wave-breaking or the movement of whitecaps over
their lifetime. Such methods are based on the prior knowledge that features in neighbor
frames may correspond to each other. To track features, we utilize the L-K optical flow
method [47] and use sparse optical flow to analyze all possible features.

The L-K optical flow method is based on three assumptions. (1) The brightness is
constant, and the pixels of the target image in the scene do not appear to change as they
move from frame to frame. For grayscale images (as well as for color images), this means
that the grayscale value of the pixel does not change as the frame is tracked. (2) Temporal
persistence: the movement of the camera on the image changes slowly over time. In
practice, this means that changes in time do not cause drastic changes in the pixel position,
such that the gray value of a pixel can be used to obtain the corresponding partial derivative
with respect to the position. (3) Spatial consistency: neighboring points on the same surface
in the scene have similar motions, such that their projected distances onto the image plane
are also relatively close.

For speed and robustness, the input is defined as below.

input(x,y) =

{
R, G, B = (0, 0, 0) mask(x,y) = 0,
R, G, B = I(x,y) mask(x,y) = 255,

where (x, y) is an arbitrary point in the binary image (called a mask) obtained by threshold
segmentation. The mask has the same size as the original image, and the input image
retains the RGB value of the original image at (x, y) if the mask value is not zero. Using
the pyramid L-K optical flow function in OpenCV for calculation, a two-layer pyramid
is designed, its features are obtained by the Shi–Tomasi corner detection method, and
the maximum number of corner points is set to 100. The pixel corresponding to the local
maximum of the first derivative (gradient of gray value) is the corner point; a detailed
description of the method can be found in [48]. Figure 7 shows that when using the Shi–
Tomasi corner detection method, the abnormal areas obtained by AD are used as input, and
the detected corner points are distributed within the abnormal areas and on the boundary
of the abnormal areas. Figure 8 shows a typical optical flow trajectory tracking case. An
optical flow trajectory is a collection of the corresponding feature point positions in every
frame over time, such as {(x0, y0), (x1, y1), ..., (xn, yn)}, where the subscript means the nth
frame, and the maximum is 25, while x, y represent the position on both axis. The motion
trajectory between two adjacent positions (xn, yn), (xn+1, yn+1) is a line segment between
the two points, and the smallest unit is a pixel. The optical flow trajectories are drawn
in the latest image so we can see the complete trajectory of each feature point. When we
utilized the image restored to WCS, the motion in the pixels also represents the motion in
the XwYw plane.

Whitecaps have obvious spatial and temporal stability from the active stage to the
mature stage and eventually perish [42,49,50]. Therefore, their features are distinct, and
multiple stable feature points can be found in a certain whitecap contour, all of which have
similar motion trajectories. According to the previous analysis, the sun glint area may not
have a stable optical flow trajectory. In this way, it appears that whitecaps can be separated
using optical flow trajectory analysis at a certain sampling rate. However, for sun glint
areas, there may also be optical flow trajectories, and such cases are not uncommon. This is
because the time interval between two neighboring frames is short, and the position and
intensity of sun glint pixels may not change.
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(a) (b) (c)

Figure 7. (a) Original image; (b) input image for Shi–Tomasi corner detection. (c) The features found
by Shi–Tomasi corner detection.

(a)

(b)

(c)

Figure 8. (a) Original video. (b) The corresponding optical flow trajectory at one sampling rate. The
interval ∆t between two images is 0.64 s. (c) The corresponding optical flow trajectory at the other
sampling rate.

Both cases are shown in Figure 8. The time interval ∆t between each two images in
the figure is 0.64 s, and 4 images are actually used to determine the optical flow trajectories
between each two images. We only show the first and last two images because we want
to show as much as possible the movement characteristics of the whitecap in space and
time. In addition to a clearly moving whitecap, which are marked by red boxes, there are
also many scattered sun glint areas, and some of them have similarities to the whitecap. In
Figure 8b,c, some sun glint areas produce optical flow trajectories, and even in certain sun
glint areas, multiple similar optical flow trajectories can be found.
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Since, under a certain sampling rate, the sun glint areas may also result in optical
flow trajectories, we propose to complete the whitecap separation through the optical
flow trajectories under different sampling rates. For the more random sun glints, the
corresponding feature points under different sampling rates will be quite different, which is
manifested in the difference in the position of a single feature point and the difference in the
overall trajectory shape on the optical flow trajectory. This phenomenon can be seen from
the comparison in Figure 8b,c. Under the two sampling rates, the number of optical flow
trajectories and the starting and ending positions of a single optical flow are not completely
consistent. For every optical flow trajectory, the following judging criteria were designed:

(1) If stable optical flow trajectories are found at both high sampling rates fh and low
sampling rates fl , we use the correlation coefficient ρlh as the criterion:

ρlh =
Σn

i=1(Tli − Tl)(Thi − Th)√
Σn

i=1(Tli − Tl)2
√

Σn
i=1(Thi − Th)2

,

where subscript l represents sampling at fl , subscript h represents sampling at fh, T denotes
the optical flow trajectory of a feature, subscript i denotes the ith point in T, and n is the
number of points in the trajectory. Tl is interpolated to have the same number of points
as Th. If ρlh is higher than the design threshold, we consider the contour that obtained the
trajectory point as a whitecap. Here, we set the threshold at 0.95, which means that the
optical flow trajectories Tl and Th are very similar.

(2) If a stable optical flow trajectory is found at only fl or fh, contours with such
trajectories are simply discarded, as the feature correspondence fails.

It is difficult for us to obtain data with a higher frame rate than the original video, so
the other sampling rates are derived from downsampling. For our proposed method, a
variety of conditions are verified in Section 3.

3. Results

The light pollution in an image will be very different under different illumination
conditions. According to the behavior and shape of the light pollution area, the performance
of the proposed method under various conditions was analyzed. As mentioned above, we
used videos converted to WCS. For convenience, we selected a fixed rectangular area in
the videos as our region of interest (ROI), which did not change in a certain video but may
differ between two videos.

3.1. Results for AD

In previous methods, images that were not pre-processed were used for whitecap
detection, leading to performance that varies greatly under different illumination conditions.
Here, we compare the accuracy of whitecap detection under various illumination conditions.

As shown in Figure 9, the AWE, ATS, and sub-image Otsu methods were selected for
comparison with our method.

The source video of these four images was used to confirm the exact location of the
whitecaps. We selected five volunteers to mark whitecaps and used the average value as
the real W. The comparison between W obtained by different methods is shown in Table 1.
In the first row of the figure, every method could obtain most of the whitecap areas. For
AWE, the brightness of the water surface close to the whitecap is relatively high, resulting
in obvious misjudgments. However, in both the ATS and sub-image Otsu(SOtsu) methods,
there are missed detections. It should be noted that in Table 1, although ATS has the best
effect in the first case, it is based on the fact that ATS falsely detected some whitecaps and
also missed some other whitecaps. For the proposed method, the whitecaps are not missed,
but only the edge of whitecaps with lower intensities are missed.
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(a) (b) (c) (d) (e)

Figure 9. (a) Original images; (b) whitecap obtained using AWE; (c) whitecap obtained using ATS;
(d) whitecap obtained using the sub-image Otsu method; and (e) whitecap obtained using the
proposed method.

Table 1. Comparison of W obtained by different methods; in each method column, the first data are
W, and the second data are the relative error (RE) between the ground truth and obtained W. Text is
bolded to indicate that the method performs best in this case.

Number Ground (%) AWE/RE (%) ATS/RE (%) SOtsu/RE (%) Our’s/RE (%)

1 7.70 13.35/73.38 7.84/1.82 5.38/30.13 7.46/3.12
2 0.61 0.73/19.67 0.55/9.84 0.45/26.23 0.67/9.84
3 2.86 3.65/27.62 0.50/17.48 0.00/100.00 2.38/16.78
4 0.00 5.42/- 2.95/- 2.25/- 1.27/-

In the second row, there is almost no bright area on the water surface caused by
illumination, and there is a whitecap with a significant difference in brightness from the
overall water surface. In this case, all methods obtained the whitecap accurately, although
AWE still obtained some misjudgments and SOtsu missed a small whitecap. Whether from
the image or from the detection results, the effect of AWE and our proposed method is
basically the same in this case.
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In the third row, the brightness difference between the whitecap and the water surface
was significantly smaller than in others. For AWE, although most of the whitecaps were
obtained, many bright areas on the water surface were also misjudged. However, the
threshold obtained by ATS is higher than that of AWE, and only a small part of the
whitecap was obtained. This is also reflected in each case regarding the higher threshold
of ATS compared to AWE, and this is the reason why the false-positive area with ATS
is smaller than that of AWE. Smaller differences in brightness caused the SOtsu method
to fail. In this case where the brightness difference between the whitecap and the water
surface is small, through reasonable preprocessing, our method can identify the whitecap
more accurately.

The last row shows the existence of many sun glints and high-brightness areas on
the sea surface. In terms of the ability to detect abnormal areas, the performance of the
other methods cannot be used for comparison, as this condition is not within the scope
of whitecap detection; however, this condition occurs frequently. It is shown here, as
minimizing the possibility of detecting high-brightness areas on the sea surface will help
to speed up the performance of subsequent analyses. As can be seen in both Figure 9
and Table 1, our method is able to obtain the minimal possible abnormal sea surface. The
processing time of these methods is compared in Section 3.6.2. According to the above
analysis, the improved abnormal detection method proposed in this study can accurately
detect whitecap and light pollution areas under different illumination conditions.

3.2. Results for WS without Sun Glint

We selected videos without light pollution conditions and applied our method in
order to detect whitecaps. The original images, the optical flow trajectories under fl and fh,
and the whitecap detection results are depicted in Figure 10.

In the figure, the first three and last three columns are from two different videos, which
we denote by C1 and C2, respectively. In the two cases, due to the different illumination
conditions, the color of the sea surface is quite different, and whitecaps with different
lifetimes have significant intensity differences in the same image. In C1, the features found
were concentrated on whitecaps, with a few features on the sea surface; that is, small areas
on the sea surface had relatively high brightness after the top-hat transform and were
identified as abnormal areas instead of being suppressed as the background. As shown
in the figure, their trajectories were not well-preserved, and thus, those features were not
expected to influence further analysis. Considering the feature points of the whitecap,
the number of feature points is proportional to its size; that is, the larger the whitecap,
the higher the number of feature points. The whitecap marked in C1 was undergoing
a transition from the generating stage to active stage, so the whitecap area increased
significantly, and feature points inside the whitecap also gradually increased. In C2, W
is much higher than in C1, leading to many more feature points. All of the features were
within whitecaps, as the difference between the whitecaps and the water surface was
distinct. It should be noted that trajectories are not distinguished by color in order to make
the difference between the trajectories more obvious, and random colors were selected
for drawing.

For each whitecap, a stable optical flow trajectory can be maintained at two sampling
rates. Thus, the corresponding Tl and Th have high similarity. Ideally, the trajectories
should be exactly the same at both sample rates, as every feature point is exactly the same.
However, in the actual feature point trajectory iteration process, different feature points
may be discarded or retained at different sampling rates. Therefore, we may use a spatial
neighbor feature instead of the same feature. In the Shi–Tomasi corner detection method,
we set the maximum number of detected corners to 100 and set the minimum distance
between every two corners to 5 pixels. Both designs are based on a compromise between
detection accuracy and processing speed. Both neighbor feature trajectories of C1 and C2
are shown in Figure 11, where Tl and Th can be found in the third and sixth columns. We
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applied correlation analysis to the sub-trajectories in the x- and y-axes, respectively, where,
in ρlh = min{ρlhx, ρlhy}, the subscripts x and y represent the respective sub-trajectory axes.

(a)

(b)

(c)

(d)

Figure 10. (a) Original images where the interval ∆t between two images is 0.16 s; (b) Th at fh = 25 Hz.
Within ∆t, the trajectories were updated 4 times; (c) Tl at fl = 6.25 Hz. Within ∆t, the trajectories
were only updated 1 time; and (d) whitecap retrieval result using our method under no sun glint
conditions. Whitecap areas are shown as black pixels.

Th appears as solid lines, while dashed lines represent Tl . Changes in Tl are not as
frequent as those in Th, which is expected as fl = 0.25 fh. However, Tl and Th were found to
be highly correlated after linear interpolation. In addition, for a certain trajectory, too few
trajectory points or the loss of features in the trajectory iterative process at fl may lead to
the interruption of whitecap tracking. Our solution to this was as follows: once a confirmed
whitecap trajectory was found, the corresponding Th was treated as the trajectory of the
whitecap, which continued to be tracked until Th was lost. This is also due to consideration
of the analysis speed, as if all trajectories are compared in every frame, the efficiency would
be reduced. As shown in Figure 10, all whitecaps were detected in C1, while a few small
whitecaps in C2 were rejected, as the whitecap features were lost due to low quality.
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Figure 11. (a) Neighbor feature trajectories at fl and fh in C1 with ρlh = 0.9598; the horizontal
ordinate Index represents the ith point in this optical flow trajectory, i ∈ [1, n]. (b) Neighbor feature
trajectories at fl and fh in C2 with ρlh = 0.9790.

3.3. Result of WS with Random Sun Glint

In this section, the video shown in Figure 8 was used for analysis. We used images
under the WCS, while the images in Figure 8 are under the PCS. In these images, except for
the whitecap, there are many sun glint pixels, which appeared and disappeared randomly,
such that a stable optical flow trajectory would not exist for light pollution features. The
images converted to WCS, trajectories, and whitecap detection results are provided in
Figure 12. The longest trajectory lengths produced by the whitecaps and sun glints in the
corresponding column are recorded in Table 2.

First, we examined the optical flow trajectory of the whitecap. In the first column of
Figure 12, the whitecap is in the generating stage. Obviously, there are no Tl and Th, which
could be considered as neighbor feature trajectories. More precisely, the feature trajectory
of the whitecap at fl does not build at this time. With the movement of the whitecap, the
whitecap evolves into the active stage. In the second and third columns, with the update
of the trajectory, stable Tl and Th appear, and the length of the trajectory increases with
time , as shown in Table 2, until the maximum length of 25 is reached, which indicates the
existence of stable trajectories. In the last two columns, the whitecap gradually evolves
from the active stage to the mature stage. In Th, trajectories from the active stage to the
mature stage are preserved. The rapid evolution of the whitecap is hard to track at fl ,
and thus, loss of features and re-establishment of trajectories occurs, while Tl is much
shorter than Th in the same column. However, this does not affect the analysis, as only
the last segment of trajectories at the same time period was used in the calculation of ρlh,
and we only utilized Th, which has more points than interpolated Tl . We assumed that
interpolated Tl has a points and Th has b points, where a ≤ b, and we used the last a points
of interpolated Tl and Th. What may be misleading is why the first column did not find Tl
and Th, which satisfy the judgment criteria, but a whitecap was still marked in Figure 12d.
When we marked the whitecap in images, we assumed that we found trajectories satisfying
our judgment criteria at time t, and Th has b points. We started processing from the image
at the first point of the trajectory; that is, the image captured at time t− a

fh
, as the number

of video frames is fh and the contour containing the trajectory point is the whitecap.
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(a)

(b)

(c)

(d)

Figure 12. (a) Original images under WCS. ∆t is not fixed, as the entire whitecap lifetime is to be
displayed; (b) Th at fh = 25 Hz; (c) Tl at fl = 6.25 Hz; and (d) whitecap retrieval results using our
method under no sun glint conditions. Whitecap areas are shown as black pixels.

Table 2. The longest trajectory lengths from whitecaps and sun glints at different sampling rates. Lw

represents the maximum trajectory length from whitecaps, and Ls represents the maximum trajectory
length from sun glints. The data format is Lh/ Ll , which represents the trajectory lengths at high and
low sampling rates, respectively.

Image Number 1 2 3 4 5 6

Lw 4/2 13/3 21/4 25/6 25/4 25/5
Ls 14/2 7/3 10/2 17/3 5/2 4/2

Regarding the sun glint points, as the sun glint basically appears at random locations
in such cases as in Figure 12b, except for the whitecap Th, there are some features brought
by sun glints, some of which create light flow trajectories of a certain length. We counted
the length of the longest trajectory produced by whitecaps and by sun glints in Figure 12.

Using images to describe the trajectory length is not intuitive; we describe it in more
detail from the perspective of the maximum trajectory length. Based on the data in Table 2,
in the first four images, Lw is gradually increased from 4 to 25 at fh and from 2 to 6 at fl .
Ls is not stable, which also proves the random appearance of the sun glints because the
length of a stable feature trajectory should be gradually accumulated. It can also be seen in
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Figure 12 that the trajectory of sun glints in different images vary greatly. In the fifth image,
Lw also decreases at a low sampling rate due to the transition from the active stage to the
mature stage of the whitecap, but increases again in the next image. However, there is still
no significant regularity in Ls. It is also worth mentioning that the ls of the fourth picture at
fh reaches 17, and with a sampling rate 25 Hz, its duration exceeds 0.67 s. According to
the previous detection method [37], this area will be treated as a whitecap. Such a case is
analyzed in Section 3.4.

3.4. Results for WS with Sun Glint in Certain Shapes

The condition considered in the previous section is a relatively simple case of sun
glints. In more complex cases, due to the peaks and troughs of the waves, the sun glints
appear to have a specific slope on the sea surface and persist with the movement of the
waves. Under these conditions, the behavior and trajectories of sun glints are shown in
Figure 13.

(a)

(b)

(c)

Figure 13. (a) Original images for two videos. Three images were taken from each video. ∆t = 0.16 s;
(b) Th; and (c) Tl .
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The case shown in the first three columns is denoted by C3, while that in the last three
columns is denoted by C4. The marked sun glint area is similar to a whitecap in the mature
stage in C3, but its intensity changes in a wide range, and the shape change is quite different
from that of a whitecap. There is a stable trajectory at fh, but its corresponding Tl does
not exist. This is because, as the sampling rate decreases, the feature points that can be
continuously found at fh are already regarded as error points in fl , as the feature quality
threshold designed in the method will reject features with lower similarity. Hence, there
are less feature points at fl than at fh. Inside the red box of C4, the sun glints and mature
whitecaps are very hard to distinguish. On one hand, this is due to the image degradation
caused by the conversion to WCS. On the other hand, the two do present very similar
behaviors. The whitecap is marked in the yellow box; under the optical flow trajectory at a
certain sampling rate, both whitecaps and sun glints exhibit similar persistent trajectories.

The number of trajectories and the trajectory lengths in the marked area in C3 were
compared at fl and fh, as shown in Figure 14a. In the figure, the length of the trajectories
in the marked area at fh is longer, which is reasonable: about half of Th were longer than
10, and about a quarter of Th were longer than 16. In addition, at fl , a quarter of Tl had
more than 5 points. For a trajectory with a feature points at sampling rate f , the tracked
time tt can be calculated as tt =

a−1
f . In this condition, regardless of whether we use fl

or fh to track the feature, if the feature lasts longer than 2/3 s, the method using tracked
time [37] would fail. In the following content, we will also call it the single optical flow
method, abbreviated as SOF. Correspondingly, the whitecap separation method proposed
could be summarized as a method of judgment using the correlation coefficient of optical
flow trajectory, which would be abbreviated as OFTC.

1 2 5 6 8 12 13 14 15 16 17 21 22 23
0.00

0.05

0.10

Pe
rc
en

ta
ge

 Th

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

Pe
rc
en

ta
ge

The point numbers of trajectory

 Tl

(a)

0 5 10 15 20
10

15

20

25

30

35

40

 x in Tl

 x in Th

 y in Tl

 y in Th

Index

Po
sit

io
n 

in
 x

 a
xi

s

130

135

140

145

150

155

160

 P
os

iti
on

 in
 y

 a
xi

s

(b)

0 2 4 6 8 10 12

21

22

23

24

25

26

27

28

29

Index

Po
sit

io
n 

in
 x

 a
xi

s

 x in Tl

 x in Th

 y in Tl

 y in Th

166

168

170

172

174

176

178

Po
sit

io
n 

in
 y

 a
xi

s

(c)

0 1 2 3 4 5 6 7 8 9
96

97

98

99

100

101

102

103

104

105
 x in Tl

 x in Th

 y in Tl

 y in Th

Index

Po
sit

io
n 

in
 x

 a
xi

s

128.0

128.5

129.0

129.5

130.0

130.5

131.0

Po
sit

io
n 

in
 y

 a
xi

s

(d)

Figure 14. (a) Histogram of trajectory point numbers. (b) Whitecap neighbor feature optical flow
trajectories of C4. (c) Sun glint neighbor feature optical flow trajectories of C4. (d) Sun glint neighbor
feature optical flow trajectories of images in Figure 15.



Remote Sens. 2022, 14, 5691 18 of 26

(a)

(b)

(c)

(d)

Figure 15. (a) Original images; (b) Th; (c) Tl ; and (d) false-positive areas caused by using only
tracked time.

The whitecap trajectory and the sun glint trajectory of C4 are shown in the figure. The
correlation coefficients of the whitecap trajectory are 0.9828 and 0.9747, respectively, while
the correlation coefficients of the sun glint trajectory are 0.7162 and −0.6462, respectively.
The detection result of C4 could be found in Figure 16b.

We believe that the use of optical flow trajectories at a certain sampling frequency,
although temporal and spatial information is used, still lacks reliable judgment criteria.
From the results in the previous section and this section, it can be seen that even the sun
glint area would have a stable optical flow trajectory, and the correlation coefficient analysis
at two sampling rates can solve this problem to a certain extent. Combining Figure 13
and Table 3, although there is no whitecap in C3, there are many light pollution areas.
Obvious false detections could be found under ATS or AD. Furthermore, using SOF to
remove false positives cannot remove the sun glint areas in the red box of C3. This is also
the result of Figure 14a, as a considerable part of the feature points have long-duration
optical flow trajectories. In C4, the information that can be obtained from the images is that
the trajectories of the whitecaps and the sun glint areas are very similar, so in the actual
detection results, the SOF method cannot obtain the results well.
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(a)

(b)

Figure 16. (a) The top-hat transform and abnormal detection results of sun glints in Figure 15 and
C3; and (b) the whitecap separation process, from the original image to top-hat transform result and
abnormal detection result and, finally, to the whitecap separation result in C4.

Under WCS, the image is obviously degraded. In order to better demonstrate the sun
glint with certain shape conditions, the videos under PCS were selected for the analysis,
in which it is easier to distinguish between sun glints and whitecaps. In Figure 15, it is
important to note that there was no whitecap in these images.

We also divided the images under PCS into two cases, C5 and C6, corresponding to
the first three columns and the last three columns of Figure 15, in the false detection areas
by tracking the time method marked in Figure 15d. Stable optical flow trajectories can
be observed at both sampling rates. We selected the last three images with more obvious
trajectories, whose correlation analysis is shown in Figure 14d. The correlation coefficients
were ρlhx = 0.9733 and ρlhy = 0.4886, respectively. The optical flow method itself depends
on the brightness, and the brightness of the sun glint area varies greatly; thus, the neighbor
features could be found and the stable trajectories were built, but the feature trajectories at
the two sampling rates were very different. It is manifested in the results that optical flow
trajectories lasts for a long time, causing significant errors. However, such errors can be
removed by the proposed judgment criteria 1.

Table 3. Comparison of detection results of different methods under light pollution of a specific shape.

Case Ground (%) ATS (%) AD (%) SOF (%) OFTC (%)

C3 0.00 0.89 0.86 0.48 0.00
C4 0.31 3.50 3.21 0.80 0.23
C5 0.00 0.66 0.85 0.54 0.00
C6 0.00 2.55 0.54 0.32 0.00

Similar to under WCS, we also compared the detection results under PCS. Due to
the absence of degradation and the larger field of view, using PCS images is more likely
to generate neighbor light pollution feature points on the sea surface and produce stable
trajectories. The ATS and AD detection results of C6 can refer to Figure 9, but in Figure 9,
we used the third image of C6, and the result of AD would be higher than the second image
we used here. Even though AD marked the smaller possible areas, SOF still produced
significant false positives. The optical flow at two sampling rates gives more abundant
information, allowingg the OFTC method to handle this condition better.
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3.5. Ablation Study

It is obvious that, in the presence of sun glints, it is essential to use the optical flow
method to remove misjudgments. Regardless of whether there is a whitecap in the image,
only using the abnormal detection method may lead to obvious misjudgments. The images
that were analyzed before are shown in Figure 16a. The top-hat transform results and
the abnormal detection results indicate that the proposed abnormal detection method can
identify abnormal points in the image. If the misjudgment removal method is not used, we
could not retrieve a reliable W.

In Figure 16b, most of the abnormal pixels originate from light pollution. After the
process of the proposed method, W can be obtained correctly. The same result can be found
in Figure 12.

Even in the absence of sun glints, as mentioned above, sea surface areas with relatively
high brightness in the image may also be considered abnormal areas. If the bright sea
surface area is large, it can be removed using various uneven illumination correction
methods; however, the smaller area itself has a similar image performance to the whitecap,
and it is likely to be considered an abnormal area using the threshold segmentation method.
In this case, an accurate W cannot be obtained with only a single image; the results of such
cases are shown in Figure 17b. Such conditions occur very frequently. In a sea surface scene,
such conditions usually last for several hours on sunny days, which is very unfavorable for
long-term whitecap detection. Fortunately, it is simpler to use optical flow processing under
sun glint conditions as, for sun glint points, even if the brightness of the point changes due
to motion, the brightness is always much higher than the brightness of most points in the
image, making the trajectory more likely to be found at high sampling rates. The general
high-brightness area is only slightly brighter than other points. As time goes by, this area is
not likely to exist in the following images, and the features are lost.

(a) (b) (c)

Figure 17. (a) The high-brightness sea surface, considered as abnormal with, ∆t = 0.16s; (b) the
abnormal area of (a), marked with black pixels; and (c) whitecap trajectories without any illumination
pollution at fh and fl of the second row in Figure 9. ∆t = 0.16s.

Considering the detection results shown in the second row in Figure 9, for example,
all whitecaps were found and there were no high-brightness sea surface areas or sun glints
in the image. Therefore, the whitecap detection can be accomplished without the use
of subsequent processing. The trajectories after the optical flow process are shown in
Figure 17c. With Figure 10, we found that the detection results would not be affected if
we added the optical flow method. The process is not required under such conditions;
however, there is no good way to automatically determine whether the image contains sun
glints and high-brightness sea surface areas. According to a previous statistical analysis
of whitecaps [51], we can estimate the approximate range of W at the current wind speed
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based on statistical information. However, this method is still not stable because there may
still be a notable difference from the empirical curve in actual situations.

3.6. Comparison with Previous Method
3.6.1. Accuracy Comparison

Due to in situ storage limitations at sea and the filtering of available video data,
our data are mainly derived from U10 in the range of 5–10 m/s; this can be observed
from Figure 1b. In the existing dataset, firstly, we consider the use of videos without
light pollution to obtain the widely used 20-min whitecap coverage W [19,52,53]. Both W
obtained using ATS and using AD are displayed. We used ATS and AD in the same dataset,
and the results showed that the differences were not significant. In Figure 18, we added
the experience curve proposed by Scanlon [52], and most of the W we obtained is below
the convex curve. Although we cannot confirm that the statistical characteristics of the
whitecap in the current sea area and utilized in Scanlon’s work are the same, we could use
it as a rough distinction criterion. In our dataset, the value of W at the most time should be
lower than that obtained from the curve at a certain U10 or close to it.

It needs to be explained that since the camera is not toward the nadir, it is inevitable
that, at certain moments, part of the whitecap will be obscured by the wave crest that is
closer to the camera, which may result in a smaller W obtained. In our verification, we
found the phenomenon has a very limited impact on results. On the one hand, we used
a 20-min average of the whitecap coverage, and errors in a small number of images are
tolerable. On the other hand, the occlusion is not particularly severe due to the used part in
the original image, as shown by the orange box in Figure 2b.
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Figure 18. W obtained by different methods. No sun glint ATS represents W obtained using the ATS
method without light pollution, no sun glint AD represents W obtained using the AD we proposed
without light pollution, AD represents W obtained by whitecap extraction method using only a single
image, SOF represents W obtained by single optical flow method, and OFTC represents W obtained
by the optical flow trajectories correlation method.
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Furthermore, we selected the videos under different light pollution conditions and
plotted W obtained by (1) the SOF method, (2) the proposed OFTC method, and (3) the
whitecap extraction method using single image in Figure 18. It is obvious that in the results
without using video data, W has a great error due to the influence of illumination and
has little relationship with wind speed. The method using tracked time can obtain results
close to the optical flow correlation coefficient method in some cases, such as case A in
the figure. However, in case B, the single optical flow method still cannot obtain reliable
results. This actually has much to do with the shape of light pollution. As previously
introduced in Sections 3.3 and 3.4, case A and case B are obtained from videos of different
light pollution shapes, and if the shape of a sun glint area is similar to a whitecap shape,
the performance of SOF will be greatly attenuated. In the results of case B, the W obtained
by the SOF method is also several times higher than the statistical data. Since the ordinate
of Figure 18 is logarithmic, a slightly larger value also represents a difference of several
times, not to mention that the SOF results in case B are significantly far from the statistical
value. While the results obtained by the OFTC method are relatively more reliable, our
proposed method can guarantee almost the same accuracy as previous methods in the case
of random light pollution and can still stably extract the whitecap of the sea surface in the
case of specific-shaped light pollution.

3.6.2. Processing Time Comparison

According to the above analysis, we believe that, under various illumination conditions
and with only video data available, the proposed post-processing method should be
widely used rather than only relying on single-image information. Videos under different
illumination conditions were selected for process time analysis. All codes used were written
in Python. Figure 19 shows the processing times of the abnormal detection method and the
abnormal detection method + whitecap separation method compared to those of methods
available in the literature.
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Figure 19. Comparison of processing time of different methods. Note: AD, proposed abnormal
detection method; AD+WS, proposed abnormal detection method + proposed whitecap separation
method; SOtsu, sub-image Otsu method.

Due to the multiple derivation and smoothing operations of AWE, its algorithm
efficiency is relatively low, while ATS, the sub-image Otsu method, and the proposed
abnormal detection method can be processed quickly. After fixing the image size, these
methods are not concerned with the content of the image, which makes their process
efficiency basically fixed. However, after adding post-processing, the processing speed will
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be significantly reduced. First, the optical flow trajectory acquisition under two sampling
rates will lead to reduced performance. In addition, the neighbor feature correspondence
and correlation were calculated after the trajectory, which also reduces the processing speed.
The video we selected include sea states with relatively low W, relatively high W, whitecaps
and sun glint points, as well as whitecaps and large sun glint areas, corresponding to
0–500, 500–1000, 1000–1500 frames, and >1500 frames, respectively. Images from this video
are shown above, for example, in Figures 8 and 9. In these cases, the number of feature
points in the images differ, resulting in different feature trajectories that need to be judged.
Therefore, it can be seen that the processing time after 500 frames was significantly longer
than that before 500 frames. Except for relatively low W, there will be many abnormal areas
in the images causing many feature points, especially in the case of large sun glint areas,
and therefore, the required processing time increased significantly. In the first stage of
processing (about 25 frames), AD+WS ran significantly faster than in the subsequent frames,
as the whitecap that is not detected in the current frame needs to be fully considered. In
this way, there will not be a single whitecap that goes undetected. Before 25 frames, the
program only needs to store the pictures into the queue while, after 25 frames, it starts to
perform enqueue and dequeue operations and detects the whitecap(s) in each frame, which
would take a relatively greater amount of time. However, in general, the time required for
AD+WS is acceptable, and the detection could be completed in real-time.

4. Discussion

In previous work on whitecap detection, the inefficiency of manual marking led to
research on the automated detection of whitecaps. Notably, in the automated extraction
process, due to the influence of illumination, failure to perform error correction due to
light pollution can lead to significant detection errors. Currently popular single-image
post-processing approaches are generally based on contours, but this relies on strong prior
knowledge. From the data in this study, we can state that there are obvious differences
in the shapes of whitecaps; therefore, utilizing contours to determine the presence of a
whitecap is difficult. Another type of method is based on brightness difference. Although
there is a certain brightness difference between light pollution and certain whitecaps,
whitecaps in different lifetimes also have obvious brightness differences. In general, the
information that can be utilized to separate whitecaps from light pollution areas in a single
image is very limited, and manual marking is difficult to achieve under such a condition.
Furthermore, in previous studies, few illumination conditions are considered, and whether
the method can be used under various illuminations could not be proved.

Therefore, the detection of whitecaps should not only be limited to a single image;
instead, the presence or absence of whitecaps should be confirmed using video data.
Whitecaps are an important part of the air–sea exchange, and they can last on the sea
surface for some time. Moreover, whitecaps are displaced with the waves and currents,
which is significantly different from the sun glints we observed. Manual marking can often
obtain accurate whitecaps in a video sequence, but when the video sequence is not available
and the illumination pollution is strong, recognizing whitecaps can be difficult even for
humans. Considering the movement of a whitecap, a method using the tracked time to
judge the whitecap was proposed, but only judging by time can lead to some long-lasting
light-pollution areas also being marked as whitecaps.

The abnormal detection method proposed in the study was motivated by previous
research [19,23,27,43]. Using the V′ channel makes our method more sensitive to the points
with specular reflection in the image, and using the top-hat transform also makes it possible
to suppress the larger bright background in the image. Furthermore, a new histogram-
based threshold determination method is used, which simplifies the search process and
improves the robustness of the approach, compared to previous ones requiring derivation
and smoothing operations. Under different illumination conditions, the whitecap detection
accuracy is higher, and the determination of abnormal points under strong illumination
pollution is more accurate. Under different illumination conditions, the proposed abnormal
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detection method was shown to be able to detect whitecaps more accurately in images
without light pollution than previous whitecap detection methods. In the images containing
light pollution, our method could detect all possible areas that may contain whitecaps.
Compared with the previous whitecap detection method, we reduced the candidate area as
much as possible to improve the speed of subsequent analysis.

In the analysis of whitecaps under different illumination conditions, the post-processing
method proposed in this study does not concern the shape of the contour and only judges
whether the contour is a whitecap or not by assessing the correlation of the motion tra-
jectories of neighboring feature points under the high and low sampling rates, making
the proposed method much less dependent on experience. Compared with the tracked
time method, the illumination pollution component can be removed more accurately. In
addition, compared with previous research, the premise of this method is the use of a high
video sampling rate, while the low sampling rate used in this paper is the same as the
sampling rate in most previous studies. It should be noted that this study is still based on
prior knowledge, as the randomness of sun glints appearing and disappearing allows us to
find different feature trajectories for the same sun glint features at different sampling rates,
while whitecap features are obviously spatially and temporally continuous.

The method proposed in this study also has limitations. First, for a large W, the
abnormal detection method will fail, which is the same as observed in previous whitecap
detection methods based on thresholds retrieved from histograms. In post-processing,
illumination pollution can be removed in most cases; however, the brightness uniformity of
some sun glint areas is good and the sun glint area features last for a long time in a manner
closely related to the current wave shape and sea state. In future work, we will focus on
solving this problem. It is also worth mentioning that using the motion detection method
of computer vision to analyze the movement of whitecaps is also a problem worthy of
study, which can be used to distinguish the lifetime of a certain whitecap [14,46,50,54], and
deepen the understanding of the role of whitecaps in different lifetimes [52,55,56]. The
method proposed in this study, while removing illumination pollution, actually includes
many trajectories of whitecap movement over time. Tracking specific whitecaps and
analyzing the movement of whitecaps in different stages could be a main research direction
in future work.
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