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Abstract: The landscape patterns of urban green spaces have been proven to be important factors
that affect urban thermal environments. However, the spatial effect of the landscape patterns of
urban patches with different vegetation densities on land surface temperature (LST) has not been
investigated in detail. In this study, the built-up area of Xuzhou City was taken as the study region,
and the four phases of Landsat 8 images and their corresponding ground observations from 2014
to 2020 were selected as the basic data. Normalized spectral mixture analysis and an improved
mono-window algorithm were used to invert the vegetation component fraction (VF) and LST maps
of the study area, respectively, and the surface patches were classified into five levels according to
the VF values, from low to high. Four landscape-level and five class-level metrics were then selected
to represent the landscape characteristics of each VF-level patch. The tested values of 60 and 780 m
were regarded as the best grain size and spatial extent, respectively, in the calculation of all landscape
metrics of ALL VF-level patches (VFLM) using the moving-window method. The results of bivariate
Moran’s I for VFLM and LST showed the following: (1) for landscape-level metrics, only the Shannon
diversity index and patch diversity have substantial negative spatial correlations with LST (with
average |Moran’s I| < 0.2), indicating that the types of VF levels and the number of patches exert
weak negative effects on the thermal environment for a certain area; (2) for class-level metrics such
as percentage of landscape, patch cohesion index, largest patch index, landscape shape index, and
aggregation index, only the class-level metrics of sub-high VF (LV4) and extreme-high (LV5) VF levels
patches have significant negative spatial correlations with LST (with high Moran’s I value, and high–
high and low–high distributions in local indications of spatial association cluster maps), indicating
that only the patches of high VF levels can effectively alleviate LST and that patch proportion, natural
connectivity degree, predominance degree, shape complexity, and aggregation degree are important
landscape factors for regulating the thermal environment. Principal component analysis and multiple
linear regression were applied to determine the impact weights of the class-level VFLMs of LV4 and
LV5 patches on LST, which revealed the contributions of these landscape metrics to mitigating the
urban heat island effect (UHI). These results signify the importance of and differences in the spatial
patterns of various VF-level patches for UHI regulation; these patterns can provide new perspectives
and references for urban green space planning and climate management.

Keywords: urban vegetation; urban heat island effect; landscape patterns; spatial correlation;
Landsat 8

1. Introduction

In the process of urbanization, many natural surfaces are replaced by dense sidewalks,
buildings, and other surfaces that absorb and retain heat; urbanization not only changes the
ground thermal radiation characteristics but also generates a large amount of anthropogenic
heat, resulting in a condition wherein the atmospheric and surface temperatures in urban
areas are higher than those in the surrounding suburban natural and agricultural areas.
This phenomenon is known as the urban heat island effect (UHI), which is also a form of
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air pollution and a major cause of global warming. UHI expansion not only deteriorates
regional thermal environments [1] but also leads to increased energy consumption, thermal
risk, air pollution, and pollution-related mortality [2], which seriously reduce the quality of
living environments for urban residents [3]. The urban thermal environment has become a
research hotspot in the field of urban ecology, environment, and climate, and methods that
can mitigate the risks and negative consequences of UHI are urgently needed.

The development of open green spaces, also known as “green infrastructure” and
“green space cold islands” [4], has become a widely accepted strategy for mitigating UHI.
Vegetation can reduce temperature and increase humidity by transpiration and shielding
against long- and short-wave radiation [5,6]. As important parts of urban ecosystems,
urban forests and greening can effectively improve urban substrates and play a major role
in regulating the temperature and mitigating UHI [7]. Green spaces containing a large
number of vegetation canopies can cool the atmosphere and air by creating a shading
effect [8]. Interconnected shadow areas called “Shadeways” can pass through the city along
infrastructure corridors and roads, provide relatively high natural and artificial shadows,
and align cool areas with active travel spaces [9,10]. According to the vegetation species and
environmental conditions in urban areas, shadow areas have a cooling effect of between
2.3 ◦C and 2.5 ◦C [11].

The cooling effect of green spaces on UHI can be analyzed by evaluating the statisti-
cal relationship between land surface temperature (LST) and regional landscape patterns
or vegetation indices [12]. Some vegetation indices, such as the normalized difference
vegetation index (NDVI) and fractional vegetation coverage (FVC), have been proven to
exhibit negative correlations with LST [13,14]. Owing to urban land restrictions, it is impos-
sible to mitigate UHI only by increasing urban vegetation. In addition to expanding the
number and scale of urban forests (in a limited manner), maximizing the eco-efficiency of
urban vegetation is a fundamental strategy to mitigate the thermal environment. Therefore,
optimizing the landscape patterns of urban vegetation has become an effective option
for alleviating UHI. Landscape patterns describe the landscape features of an ecosystem,
such as its spatial arrangement and configuration. Spatial composition represents the
proportions of all types of land cover within a certain spatial unit, whereas spatial configu-
ration refers to their physical arrangement and distribution [15]. Spatial composition and
configuration can be quantified using various landscape metrics that describe different
spatial characteristics [3]. Some reports have described the coverage, patch characteristics,
and spatial distribution of urban vegetation using landscape metrics and then discussed
the relationship between urban vegetation and UHI. The results show that the size, shape,
and spatial distribution of vegetation patches have a significant impact on urban thermal
environments and that increasing the area and density of vegetation patches can effectively
reduce LST [16,17]. However, most studies on the relationship between urban vegetation
landscape patterns and UHI consider urban forests and open green spaces as a single type
of vegetation, and few studies have considered the differences in the regulation effects of
patches with different vegetation densities on UHI.

In this study, Landsat 8 and ground observation data were used to extract information
on the urban vegetation component fraction (VF) and LST, respectively, and the urban
surface considered was divided into patches with different vegetation densities according
to VF values. The LST and landscape metrics of these patches extracted using the moving-
window method were then analyzed via geospatial and statistical approaches. The results
revealed the spatial effect of the landscape pattern of urban patches with different VFs on
the urban thermal environment. The detailed technical process was shown in Figure 1.
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Figure 1. Technical roadmap of this study.

2. Materials and Methods
2.1. Study Area

The built-up area of Xuzhou, Jiangsu Province, was selected as the study location
(Figure 2). Xuzhou is located southeast of the North China Plain (between 116◦22’–118◦40′E
and 33◦43′–34◦58′N) and has a temperate monsoon climate. Xuzhou is an important
transportation hub, an important coal-producing area in China, and an electric power
base in eastern China. Xuzhou also has a large-scale manufacturing industry. However,
the vegetation coverage rate of Xuzhou is as high as 32%, of which the urban vegetation
coverage rate is 27.8%, making this city rank first in Jiangsu Province. The developed
transportation and energy sectors, industries, and a large area of impervious surfaces have
caused the built-up areas of Xuzhou to experience significant UHI. Simultaneously, the
large area of urban vegetation has also played an important role in regulating the urban
thermal environment. These characteristics of the study area make it suitable for exploring
the spatial relationship between landscape patterns of patches with different vegetation
densities and the urban thermal environment.
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Figure 2. Location and satellite image of the study area. (a) Map of Jiangsu Province in China;
(b) map of the study area in Xuzhou; and (c) GF-1 satellite image of the study area on 28 April 2020.

As shown in Figure 2c, a total of 101 sample points were selected in the study for the
scale effect analysis and pixel unmixing validation in subsequent sections. At an interval
of 900 m, the sample points were distributed on four sample lines from the city center
to the suburb along four directions (east–west, south–north, southeast–northwest, and
southwest–northeast). This distribution mode provides stable variation in the vegetation
component ratio of the pixels along each sample line, owing to the sample pixels along
each direction gradually changing from the suburb mainly covered by vegetation to the
urban built-up area mainly covered by impervious surface, which ensures the diversity of
the component ratios of the sample pixels.

2.2. Data Descriptions
2.2.1. Satellite Data

The remote sensing data used in this study included four Landsat 8 images from May
2014 to 2020 and one GF-1 image from April 2020. Detailed information is shown in Table 1.
Visible and near-infrared bands 1–7 of the Landsat 8 OLI sensor were primarily used to
extract mixed pixel endmember fractions and calculate other land surface parameters.
Thermal infrared band 10 of the TIRS sensor was primarily used to invert LST. The spatial
resolution of the fusion of the panchromatic and multispectral bands of the GF-1 image was
2 m; this resolution could be used to extract high-precision surface coverage data to verify
the accuracy of the mixed pixel decomposition. As there are no high-resolution satellite
data that completely coincide with the transit dates of the four phases of Landsat 8 images,
the acquisition date of the GF-1 image used in this study was 28 April 2020, which is only
19 days from the acquisition date of the corresponding Landsat 8 image. Therefore, it is
acceptable to use this GF-1 scene as the validation data.

2.2.2. Ground Observations

The necessary meteorological observations for the remote sensing inversion of LST
included near-surface temperature and air relative humidity, as shown in Table 2. All the
ground observations from 2014 to 2018 were obtained from the Collaborative Observa-
tion Test Site of the China University of Mining and Technology in the study area (data
acquisition frequency: 30 min), and the meteorological data for 2020 were obtained from
the NOAA National Centers for Environmental Information of USA [18] (data acquisition
frequency: 1 h).
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Table 1. Technical parameters of Landsat 8 and GF-1 data.

Satellite Sensor Resolution Scene ID Acquisition Date Acquisition
Time (GMT + 8)

Landsat 8
OLI: 30 m

TIRS: 100 m

LC81210362014121LGN00 1 May 2014 10:42:29
LC81220362017136LGN00 16 May 2017 10:48:22
LC81220362018123LGN00 3 May 2018 10:48:04
LC81210362020138LGN00 17 May 2020 10:42:10

GF-1 PAN: 2 m
MSS: 8 m

GF1_PMS1_E117.2_N34.1_20200428_L1A0004767917 28 April 2020 11:14:21
GF1_PMS1_E117.3_N34.4_20200428_L1A0004767915 28 April 2020 11:14:17

Table 2. Ground meteorological observation data at satellite transit time.

Date Acquisition Time (GMT + 8) Air Temperature (K) Air Relative Humidity (%)

1 May 2014 11:00:00 297.42 55.12
16 May 2017 11:00:00 296.33 39.76
3 May 2018 11:00:00 294.96 48.00

17 May 2020 11:00:00 299.48 53.19

2.3. Extraction of Vegetation Fraction from Mixed Pixels
2.3.1. Selection of Spectral Mixture Analysis Model

The pixels of low- and medium-resolution remote sensing images of urban areas are
often mixed with endmembers, such as impervious surfaces, vegetation, and bare soil
(water bodies generally exist independently). The commonly used methods for extracting
the proportion of each endmember in a mixed pixel are divided into two categories:
nonlinear and linear models. The theoretical premise of the linear spectral mixture analysis
model (LSMA) is that the spectral signal of a pixel is a linear combination of the spectral
signals of each endmember; the endmember fractions can be inverted using the least
squares method based on the spectral characteristics of each endmember, simplifying the
relationship between the components in the mixed pixel [19]. The fully constrained linear
spectral mixture analysis model (FCLS), which is based on LSMA, adds two constraints:
(1) the sum of all endmember fractions in each pixel is 100%; (2) all endmember fractions
are non-negative [20]. The greater the number of endmembers, the more detailed the
spectral analysis, which is beneficial to the fitting accuracy of FCLS. However, too many
endmembers will increase the sensitivity of the decomposition results to endmember
errors [21–23]. Based on a field investigation in the study area, the mixed pixel endmembers
were divided into five types: forest, grassland (including grass, shrubs, and farmland), bare
soil, and high- and low-albedo impervious surfaces (IPS). In addition, to solve the problems
associated with brightness variation and shade, the reflectance values of all bands were
normalized before applying FCLS [24]; the algorithms used were as follows.

Rb =
Rb

1
N ∑N

b=1×Rb
× 100 (1)

Rb =
N

∑
i=1

fiRi,b + eb (2)

N

∑
i=1

fi = 1, fi ≥ 0 (3)

where Rb is the normalized reflectance value of the mixed pixel for band b, Rb is the original
reflectance of the mixed pixel for band b, N is the number of endmembers, fi is the fraction
of endmember i in the mixed pixel, Ri,b is the reflectance of endmember i for band b in the
mixed pixel, and eb is the model calculation residual for band b. The final fitting accuracy
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of FCLS is represented by the RMS calculated using eb, and the calculation formula is as
follows [22].

RMS = (
N

∑
b=1

eb/N)

0.5

(4)

2.3.2. Extraction of Endmember Fraction

In ENVI 5.3, the minimum noise fraction rotation (MNF) was used to calculate the band
eigenvalues to select the main bands by reducing the data dimensions (Figure 3a). Next,
the pure pixel index was applied to identify and extract pure pixels in the multispectral
data. The filtered pure pixels were used as the region of interest of the first four bands
of the MNF image to generate a 3D scatter plot in the ENVI n-D visualizer. The scatter
plot was rotated, and the clustered scatter clouds (endmembers) were marked (Figure 3b).
Finally, the classified endmembers (Figure 3c) were substituted into FCLS to extract the
component fractions.

Figure 3. Endmember selection (data of 28 April 2020). (a) Eigenvalues of all minimum noise fraction
rotation (MNF) bands; (b) 3D scatter plot of each endmember in MNF bands 1–3; and (c) response
curve of all endmembers at each wavelength.

2.3.3. Validation of Endmember Fraction

A total of 101 sample points were generated in the study area (Figure 2c), and
101 validation sample areas of 90 × 90 m2 (3 × 3 pixels) were established with each sample
point as the center. All sample areas were superimposed onto the mixed pixel decomposi-
tion image and GF1 image of 2020 to extract the endmember fraction inversion value and
high-resolution interpretation value (true value) of each sample area. The endmembers of
vegetation (forest and grassland) and IPS (high- and low-albedo) exhibited high correlation
coefficients (r > 0.89) and linear goodness of fit (R2 > 0.80) between the endmember fraction
inversion value and the true value (Figure 4), indicating that the FCLS result had a high
accuracy. As the four Landsat 8 images are all from May and the principles of endmem-
ber selection are completely consistent, it can be considered that the FCLS results of the
four-phase data can meet the accuracy requirements.
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Figure 4. Validation of endmember fraction inversion results. (a) Accuracy of inversed vegetation
fraction; (b) accuracy of inversed impervious surface fraction.

2.4. Analysis of Vegetation Fraction Levels Using Landscape Metrics
2.4.1. Definitions of Vegetation Fraction Levels

The mean-deviation method (Table 3) was used to classify the VFs into five lev-
els: extreme-high VF (Level 5), sub-high VF (Level 4), medium VF (Level 3), sub-low
VF (Level 2), and extreme-low VF (Level 1), which represent patches with various vegeta-
tion densities.

Table 3. Vegetation fraction levels.

VF Levels Interval

Extreme-high VF (Level 5, LV5) VF > VF_mean + std
Sub-high VF (Level 4, LV4) VF_mean + 0.5std < VF ≤ VF_mean + std
Medium VF (Level 3, LV3) VF_mean − 0.5std < VF ≤ VF_mean + 0.5std
Sub-low VF (Level 2, LV2) VF_mean − std < VF ≤ VF_mean − 0.5std
Extreme-low VF (Level 1, LV1) VF < VF_mean − std

2.4.2. Selection of Landscape Metrics

Landscape metrics are effective tools for quantifying the spatial characteristics of
various land-cover types [3]. Class-level and landscape-level metrics were used to an-
alyze the number and spatial distribution characteristics of VF-level patches (Table 4).
Five class-level metrics—percentage of landscape (PLAND), largest patch index (LPI), land-
scape shape index (LSI), aggregation index (AI), and patch cohesion index (COHESION)—
were selected to represent the proportion, predominance, shape complexity, aggregation,
and natural connectivity of patches at each VF level. Four landscape-level metrics—the
Shannon diversity index (SHDI), Shannon evenness index (SHEI), patch diversity (PD),
and contagion index (CONTAG)—were selected to represent the diversity, distribution,
number, and aggregation degrees of all patches within an analysis unit.

2.4.3. Scale Effect Analysis

Scale effects, including the effects of grain size (spatial resolution) and spatial ex-
tent [25], are important factors that affect the results of landscape pattern analyses [26].
Landscape structure information changes with variations in grain size, and some land-
scape features can only be found at a specific grain size [27]. For the data of 17 May 2020,
the VF-level images were resampled from 30 to 200 m at 10 m intervals to obtain the
corresponding raster images with 18 spatial resolutions, and the class-level metrics for
each grain size were calculated using FRAGSTATS 4.2. As shown in Figure A1a–e in
Appendix B, most inflection points in the response curves appear at a grain size of 60 m.
Figure A1f in Appendix B describes the land-area information-loss index calculated using
Equations (A1) and (A2) in Appendix A for each grain size, indicating that the land area
accuracy loss is small when the grain size is 60 m. Therefore, 60 m was selected as the best
grain size for landscape pattern analysis.
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Table 4. Formulas and descriptions of landscape metrics selected in this study.

Metrics Equation Description Parameter Explanation

Class level

PLAND
(

n
∑

j=1
aij/A

)
× 100

Porportion of the
patch type

aij—the area of patch ij;
A—total landscape area;
eik—total length (m) of
edge in landscape
between patch types
(classes) i and k;
gii—number of adjacent
patches of the same
landscape type i;
pij—perimeter of patch ij
in terms of number of cell
surfaces;
Z—total number of cells
in the landscape.

LPI
[
max

(
aij

)
/A
]
× 100

Porportion of the largest
patch type

LSI 0.25
n
∑

j=1
eik/
√

A
Shape complexity degree
of the patch type

AI
[

gii
max→gii

]
× 100

Aggregation degree of
the patch type

COHESION

{
1−

[
m
∑

i=1

m
∑

k=1
pij/

m
∑

i=1

m
∑

k=1

(
pij ×

√aij

)]}
×(

1− 1/
√

Z
)−1
× 100

Natural connectivity
degree between patches

Landscape
level

SHDI −
n
∑

i=1
[pi × ln(pi)]

Diversity indicator of all
patch types

pi—proportion of the
landscape occupied by
patch type (class) i;
m—number of patch
types (classes) present in
the landscape, excluding
the landscape border if
present;
N—number of patches in
the landscape of patch
type (class) i;
A—total landscape area.

SHEI −
n
∑

i=1
[pi × ln(pi)]/ln(m)

Even distribution
indicator of all patch
types

PD N/A Number of patches per
unit area

CONTAG

{
1 +

[
m
∑

i=1

m
∑

k=1

(
pi ×

gik
∑n

j=1 gij

)
×

ln

(
pi × gik/

n
∑

j=1
gij

)]
/[2ln(m)]

}
× 100

Aggregation degree of all
patch types

The moving-window method [28,29] was used to quantify the landscape patterns
of VF-level patches. Using this method, landscape metrics within a spatial extent were
assigned to the center pixel for each window movement, and finally, the mapped distri-
butions of the landscape metrics were generated. Owing to the scale dependence of the
landscape metrics [30], the size of the moving window used in the calculation may affect the
results [28]. When the spatial extent is smaller, the landscape index changes significantly
and fluctuates greatly and hence cannot effectively reflect the gradient characteristics of
the landscape patterns. When the spatial extent is larger, the landscape metrics change
gently, eliminating the interference caused by high-resolution and regional differences
but also leading to the loss of some gradient features. Six window sizes ranging from
300 × 300 to 1500 × 1500 m were tested at 240 m intervals. To avoid pixel splitting, the
interval for the moving-window sizes was set to multiples of 60 m (the best grain size).
Four landscape-level metrics were calculated for each tested window size, and then all
metrics were extracted for the 101 sample points (Figure 2c) to record the metric changes
under different moving-window sizes. Figure A2 shows that the curve of variation in
landscape metrics tends to be stable when the spatial extent reaches 780 m. Therefore,
780 m was selected as the best spatial extent.

2.5. Landscape Surface Temperature Inversion

Landsat 8 has two thermal infrared bands: 10 and 11. However, owing to the uncer-
tainty of band 11 information, the USGS recommends using single-channel algorithms
based on band 10 for LST inversion [31,32]. The improved mono-window model [33]
was used to determine the inversion parameters for the Landsat 8 sensor, as shown in
Equations (5)–(7).

LST = {a(1− C− D) + [b(1− C− D) + C + D]T10 − DTair_e}/C (5)
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C = ετ (6)

D = (1− τ)[1 + (1− ε)τ] (7)

where a = −62.7182 and b = 0.4339 are the linear regression coefficients of the Planck
blackbody radiation function for band 10 (0–70 ◦C), T10 is the brightness temperature
calculated using band 10, Tair_e is the effective atmospheric average temperature, ε is the
surface emissivity, and τ is the atmospheric transmissivity.

T10 = K2/ ln(1 + K1/L10) (8)

εnature = PvRvεv + (1− Pv)Rsεs + dε (9)

εconstruction = PvRvεv + (1− Pv)Rmεm + dε (10)

where K1 = 774.89 and K2 = 1321.08, are the thermal conversion constants for Landsat 8
band 10; L10 is the thermal spectral radiance calculated from the pixel DN value of band
10 [33]; Rv, Rs, and Rm are the radiation ratios of vegetation, bare soil, and construction
land, respectively [34]; εv = 0.986, εs = 0.970, and εm = 0.970, are the emissivity of pure
vegetation, bare soil, and construction land, respectively; Pv is the fractional vegetation
coverage; and dε is the effect of the interaction between vegetation and bare soil on the
surface emissivity [34].

Table 5 shows the linear relationship between the mid-latitude summer effective mean
atmospheric temperature (Tair_e) and near-surface air temperature (Tair) [34]. In addition,
the regression functions between atmospheric transmissivity (τ) and the atmospheric
water content (w) for Landsat 8 TIR band 10 were also simulated using the Moderate
Resolution Atmospheric Transmission (MODTRAN 4) program [33]. Since the atmospheric
water content data of the study area was not directly obtained, according to the algorithm
obtained by fitting the historical observation data of the China Meteorological Stations,
water content can be estimated by the average altitude of the study area (HE = 40 m), the
latitude of the study area (ϕ = 34.24◦), and the relative humidity (RH), which have been
shown as Equations (11) and (12) [35].

w = 0.03exp
(
−1.39HE

2 + 2.74HE + 0.15
)

e +
0.066

(ϕ− 33)2 + 4.41
+ 0.17 (11)

e = 0.6112exp
(

17.67Tair
Tair + 243.5

)
× RH (12)

Table 5. Regression functions for Tair_e and τ estimation.

w (g·cm−2) τ Functions Tair_e Function

0.2–1.6 0.9184–0.0725w
16.0110 + 0.9262Tair1.6–4.4 1.0163–0.1330w

4.4–5.4 0.7029–0.0620w

2.6. Spatial Correlation Analysis

Spatial autocorrelation analysis was used to determine whether the distribution of
spatial variables was related to the adjacent variables. It can be divided into global and
local spatial autocorrelations. Bivariate Moran’s I [36], proposed by Anselin, can effectively
reflect the correlation and dependence characteristics of the spatial distribution of two
variables. OpenGeoDa software was used for bivariate spatial autocorrelation analysis.
Bivariate global Moran’s I was used to analyze the spatial response of LST to landscape
metrics of VF-level patches; it was calculated using Equation (13).

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
yj − y

)
S2 ∑n

i ∑n
j=1 Wij

(13)



Remote Sens. 2022, 14, 5684 10 of 20

where I is the bivariate global spatial autocorrelation index, that is, the overall correlation
between the spatial distribution of variables x and y; N is the total number of spatial
units; Wij is the spatial weight matrix established by the K adjacency method; xi and yj are
the observed values of the independent and dependent variables in spatial units i and j,
respectively; and S2 is the variance of all samples.

Bivariate local Moran’s I was calculated as follows [37]:

Ii = Zi ∑n
j=1 WijZj (14)

where Ii is the local spatial relationship between the independent and dependent variables
of spatial unit i, and zi and zj are the standardized variance values of the observed values
of spatial units i and j. Based on Ii, there are four clustering modes in the Local Indications
of Spatial Association (LISA) distribution map, which can intuitively present the agglomer-
ation and differentiation characteristics of independent and dependent variables in local
areas. The clustering mode can be classified as high–high (HH) clustering, that is, the
independent variable of the spatial unit i and the dependent variable of the adjacent unit
j are both high; low–low (LL) clustering, that is, the independent variable of the spatial
unit i and the dependent variable values of the adjacent unit j are both low; low–high
(LH) aggregation, that is, the independent variable value of spatial unit i is low and the
dependent variable value of the adjacent unit j is high; and high–low (HL) aggregation, that
is, the independent variable value of the spatial unit i is high and the dependent variable
value of the adjacent unit j is low.

2.7. Impact Weight Calculation Based on Principal Component Analysis

To further explore the contribution of the class-level metrics negatively correlated
with LST in urban thermal environment mitigation, the impact weight of each metric
was calculated by combining the principal component analysis (PCA) and multiple linear
regression. The standardized coefficients in multiple linear regression are often used to rep-
resent the influence weight of independent variables on dependent variables. However, to
prevent multicollinearity between class-level VFLMs, the multiple linear regression method
cannot be used directly. In this study, PCA was used to extract the principal component
variable Fi [38] for the class-level VFLMs, and standardized regression coefficients (βi)
were extracted by multiple linear regression between Fi and LST. This procedure removes
the multicollinearity among the metrics, and the weighted impact (Wj) of each VFLM on
LST can be obtained using the eigenvalues (λi), PCA component matrix (θij), and βi. The
equations for impact weight calculation are shown as follows.

αij =
θij√
λi

(15)

Fi =
n

∑
j=1

αijXj (16)

Wj =
∣∣α1j × β1 + α2j × β2

∣∣ (17)

where Xj is the original variable; n is the total number of the original variables; aij is
the contribution coefficient of original e variable in corresponding principal component
variable Fi.

3. Results
3.1. Inversion Results for VF and LST

Figure 5 shows the VF maps of the study area from 2014 to 2020, which indicate
the spatial distribution and area ratio of the vegetation patches. LSMA could not only
extract large-area and high-proportion vegetation patches in the study area but also fully
extract the fragmented and low-proportion vegetation distributions in mixed pixels, such
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as small green belts near buildings and roads. Complete vegetation quantity information is
beneficial for accurately exploring the effects of patches with different VFs on the thermal
environment. Figure 6 shows the LST maps of the study area from 2014 to 2020, revealing
that the LST values of the areas primarily covered by urban IPS were significantly higher
than those of the area covered by vegetation. The superposition of the LST and VF maps
indicates that the LST of patches with different VFs varies greatly. The VF and LST values of
101 sample points (Figure 2c) were extracted for correlation and linear regression analyses,
as shown in Figure A3 of Appendix B. The Pearson correlation coefficients between VF and
LST for the four phases were −0.6923, −0.6226, −0.6820, and −0.6573, indicating a strong
negative correlation between them. The linear regression results also showed that there
was a significant negative linear correlation between VF and LST (p < 0.001) and that for
every 0.1 increase in VF, LST decreased by approximately 0.48–0.78 ◦C. Therefore, a high VF
exerts a significant alleviating effect on LST, and it is necessary to further explore the spatial
impact of patches with various vegetation densities on the urban thermal environment.

Figure 5. Vegetation fraction inversion maps of (a) 1 May 2014, (b) 16 May 2017, (c) 3 May 2018, and
(d) 17 May 2020.

Figure 6. Land surface temperature inversion maps of (a) 1 May 2014, (b) 16 May 2017, (c) 3 May 2018,
and (d) 17 May 2020.
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3.2. Bivariate Moran’s I between Landscape Metrics of VF-Level Patches and LST

Figure 7 shows the bivariate global Moran’s I between the landscape metrics of VF-
level patches (hereinafter referred to as VFLM) and LST. The spatial correlations of VFLM
and LST varied widely for different landscape metrics. For the same landscape metric, the
spatial correlation between VFLM and LST also varied greatly from VF LV1 to LV5. The
landscape-level metrics of SHDI and PD exhibited significant negative spatial correlations
with LST (average Moran’s I was −0.17 and −0.13, respectively), indicating that the region
contained more types of VF levels and that patch numbers have weak effects on regional
cooling. Both positive and negative spatial correlations were observed between LST and
SHEI, and CONTAG, indicating that the even distribution degree and aggregation degree
of the five types of VF levels have no stable influence on regional temperature. Therefore,
the impact of landscape-level VFLM on LST is limited.

Class-level VFLMs such as PLAND, LPI, LSI, AI, and COHESION showed a significant
spatial correlation with LST (p < 0.001), implying that the spatial distribution characteristics
of VF-level patches, such as patch proportion, predominance degree, shape complexity
degree, aggregation degree, and natural connectivity degree, are important factors for
regulating environmental temperature. In addition, the bivariate global Moran’s I values
between VFLM and LST were positive and gradually increased from VF LV3 to LV1. In
contrast, bivariate global Moran’s I values between VFLM and LST were negative and
gradually increased from VF LV4 to LV5. Therefore, the patch VF can effectively alleviate
ambient temperature only when it reaches sub- and extreme-high levels, and the higher the
VF level, the stronger the mitigation effect.

Figure 7. Bivariate global Moran’s I between landscape metrics of IPSD levels and LST (the
significance levels of all Moran’s I were at p < 0.001 except for CONTAG of 1 May 2014 with
p > 0.05).

The average values of bivariate global Moran’s I between the VFLM of LV4 and
LV5 patches and LST in the four phases were, from high to low, in the order of PLAND
(−0.53), LPI (−0.43), LSI (−0.49), COHESION (−0.42), and AI (−0.24), indicating that patch
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proportion and aggregation degree have the strongest and weakest spatial correlations with
LST, respectively. However, Moran’s I value cannot directly represent the contributions of
these five class-level VFLMs to LST mitigation, which is necessary for further discussion of
their impact.

Bivariate local Moran’s I was used to further reveal the spatial characteristics of the
landscape patterns of VF LV4 and LV5 patches regulating the thermal environment. The
LISA maps (Figure 8) show the spatial distribution characteristics of the spatial correlation
between VFLM (class level) and LST. The clustering patterns between VFLM (PLAND,
LPI, LSI, AI, and COHESION) and LST were primarily HL and LH. The LH areas were
primarily distributed in the urban center and mostly covered by IPS. The HL areas were
primarily distributed in urban forests, parks, and suburban farmlands and were primarily
covered by natural vegetation and farmland.

Figure 8. Local Indications of Spatial Association (LISA) cluster maps between landscape metrics of
the vegetation fraction (VFLM; LV4 and LV5) and land surface temperature (LST): (a) 1 May 2014;
(b) 16 May 2017; (c) 3 May 2018; (d) 17 May 2020 (HH: high VFLM and high LST; LL: low VFLM and
low LST; LH: low VFLM and high LST; HL: high VFLM and low LST).

3.3. Impact Weight of Class-Level VFLMs of LV4 and LV5 on LST

The class-level VFLMs of LV4 and LV5 patches have been shown to have a significant
negative spatial correlation with LST; however, the contribution rate of each VFLM in
mitigating the thermal environment remains unclear. Therefore, it is necessary to discuss
the impact weights of PLAND, LPI, LSI, COHESION, and AI of LV4 and LV5 patches in
LST regulation.

The five class-level VFLMs of LV4 and LV5 patches were normalized before PCA.
As listed in Table 6, the values of the Kaiser–Meyer–Olkin (KMO) measure of sampling
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adequacy for the four phases were all greater than 0.6, indicating that the PCA method is
feasible for analyzing these variables. Two principal components (F1 and F2) were extracted
from each phase, with a high proportion of cumulative variance (>77%).

Table 7 lists the loadings of the original variables in the principal components (F1 and
F2). A common feature is that the metrics of LV5 (X1–X5) and LV4 (X6–X10) are the core
parameters affecting the principal components F1 and F2, respectively (with high θi values;
values with θi < 0.3 have been rejected). Therefore, F1 and F2 can be used as new variables
to represent the class-level VFLMs of LV5 and LV4 patches, respectively. Equation (15)
was used to calculate the contribution coefficient (αij) of each original variable based on
eigenvalues (λi) and θi, and F1 and F2 were calculated using Equation (16).

Table 6. Total variance explained from principal component analysis (PCA).

Date KMO Sums of Squared Loadings F1
1© F2

1©

1 May 2014 0.7190
Eigenvalue (λi) 4.02 3.74
Cumulative percent (%) 77.56

16 May 2017 0.7109
Eigenvalue (λi) 4.00 3.71
Cumulative percent (%) 77.14

3 May 2018 0.7096
Eigenvalue (λi) 3.89 3.84
Cumulative percent (%) 77.32

17 May 2020 0.6855
Eigenvalue (λi) 3.89 3.88
Cumulative percent (%) 77.74

1© F1 and F2 are components 1 and 2 extracted using PCA, respectively.

Table 7. Component matrix of principle component analysis 1©.

Normalized Original Variables
(Class-Level VFLMs)

1 May 2014 16 May 2017 3 May 2018 17 May 2020

F1 (θ1) F2 (θ2) F1 (θ1) F2 (θ1) F1 (θ1) F2 (θ2) F1 (θ1) F2 (θ2)

(X1) PLAND_LV5 0.914 / 0.910 / 0.914 / 0.921 /
(X2) COHESION_LV5 0.914 / 0.911 / 0.909 / 0.914 /
(X3) LPI_LV5 0.883 / 0.880 / 0.885 / 0.891 /
(X4) AI_LV5 0.827 / 0.838 / 0.826 / 0.823 /
(X5) LSI_LV5 0.627 0.572 0.611 0.586 0.596 0.579 /
(X6) PLAND_LV4 0.341 0.875 0.372 0.868 0.300 0.896 / 0.908
(X7) COHESION_LV4 / 0.923 / 0.924 / 0.924 / 0.935
(X8) LPI_LV4 / 0.873 / 0.883 / 0.880 / 0.883
(X9) AI_LV4 / 0.733 / 0.705 / 0.733 / 0.724
(X10) LSI_LV4 0.555 0.632 0.531 0.624 0.513 0.631 0.519 0.642

1© Rotation method: Varimax with Kaiser normalization.

Multiple linear regressions between normalized LST (LSTN) and F1 and F2 (Table 8) of
the four phases showed significant negative linear correlations between them (p < 0.001).
The absolute values of the standardized coefficients (β1) of F1 were all larger than those of
F2 (β2), indicating that the class-level VFLM of LV5 had a stronger regulatory effect on LST
than that of LV4. Finally, the impact weights (Wj) of all class-level VFLMs were calculated
using Equation (17), and the results are shown in Figure 9.

The heat map in Figure 9 again shows that the class-level VFLM of LV5 has a higher
impact weight on LST than that of LV4 and that PLAND_LV5 (X1) and COHESION_LV5
(X2) had the highest impact weights among all metrics, indicating that patch proportion
and natural connectivity degree between LV5 patches are the two most important factors
affecting LST, followed by LPI_LV5 (X3), AI_LV5 (X4), and LSI_LV5 (X5). In contrast to LV5,
the impact weights of the class-level VFLM of LV4 were, from high to low, in the order of
LSI_LV4 (X10), PLAND_LV4 (X6), COHESION_LV4 (X7), LPI_LV4 (X8), and AI_LV4 (X9).
In urban areas, the land-cover type of the LV5 patch is almost entirely vegetation; however,
the LV4 patch is still mixed with more land-cover types, which is the main reason for the
difference in the orders of impact weights between the VFLMs of LV4 and LV5.
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Table 8. Results of multiple linear regression between dependent variable LSTN and independent
variables F1 and F2.

Regression Coefficients 1 May 2014 16 May 2017 3 May 2018 17 May 2020

r 0.569 *** 0.612 *** 0.553 *** 0.644 ***

R2 0.323 *** 0.375 *** 0.306 *** 0.415 ***

Regression Constant 0.949 *** 0.578 *** 0.693 *** 0.635 ***

Unstandardized Coefficients
F1 −0.010 *** −0.110 *** −0.083 *** −0.109 ***
F2 −0.004 *** −0.066 *** −0.014 *** −0.054 ***

Standardized Coefficients (βi)
β1 −0.474 *** −0.463 *** −0.516 *** −0.538 ***
β2 −0.139 *** −0.207 *** −0.060 *** −0.179 ***

*** Significant: p < 0.001.

Figure 9. Heatmap of the impact weights of vegetation-fraction landscape metrics on land surface
temperature.

4. Discussion

In previous studies on the relationship between green space and LST based on mid-
or low-resolution satellite images, vegetation was generally regarded as one or several
kinds of homogeneous patches (such as grassland, farmland, and forest) in landscape
pattern analysis [12,15,39], without considering the spatial impact of vegetation density
on the thermal environment. Since vegetation density has been proven to have significant
negative correlations with LST [40,41], an innovative method was explored to incorporate
vegetation density into landscape pattern analysis in this study. According to the fraction
value of vegetation component from low to high, the land surface of the study area was
classified into five levels (or five patch types), which is similar to the land-cover types. A
same index is used to classify the urban surface with high heterogeneity, which is conducive
to revealing the difference in the impacts of the spatial patterns of patches with various
vegetation densities on UHI regulation.

The results showed that there were differences in the impacts of landscape-level and
class-level metrics on LST. Particularly, the effects of the landscape-level SHEI and CON-
TAG on LST were unstable (both positive and negative effects exist). This is mainly because
landscape-level metrics represent the regional spatial characteristics of five vegetation den-
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sity levels, which includes both the mitigation effects of high-vegetation-density patches on
the thermal environment and the enhancement impacts of low-vegetation-density patches
(with a higher density of impervious surfaces) on the surface temperature. Therefore,
the impacts of the even distribution degree and aggregation degree of the five vegetation
levels on LST depend on which level is dominant in the region. This phenomenon is
consistent with the previous research. On the premise that the land surfaces are divided
into grassland, forest, farmland, impervious water, and other types, the correlations of LST
with landscape-level metrics such as AI, LPI, CONTAG, SHDI, and PD are unstable (with
variable correlation directions and significances) [3,42].

The absolute value of the spatial correlation between class-level metrics and LST
(|Moran’s I|) gradually decreases from LV1 to LV3 and conversely increases gradually
from LV4 to LV5. This phenomenon is also owing to the variation in vegetation density
among different patches. From LV1 to LV3, the patches’ spatial patterns were positively
correlated with LST, because these patches were primarily covered by IPS and because
the vegetation cooling effect could not offset the heating effect caused by the IPS thermal
radiation and anthropogenic heat. However, as the vegetation density gradually increased
and the impervious surface density gradually decreased, resulting in a decreasing trend
of |Moran’s I|. From LV4 to LV5, the spatial pattern of patches was negatively correlated
with LST, because these patches were dominated by vegetation cover and because their
cooling effect was sufficient to control the ambient temperature. Furthermore, owing to
the gradual increase in vegetation density, |Moran’s I| showed an increasing trend. In
addition, the land-cover types of the LV5 patches were almost entirely vegetation. However,
the LV4 patches were still mixed with more land-cover types. This is an important reason
for the difference in the orders of impact weights between the VFLMs of LV4 and LV5.
In previous studies, for the patches of forest, grassland, and farmland, their class-level
metrics of PLAND, LSI, and AI were found to be negatively correlated with LST, and the
correlation between PLAND and LST was far stronger than AI [42], which is also consistent
with our results. According to our research, priority should be given to increasing the area
ratio, natural connectivity, and shape complexity degrees of high-density vegetation, which
can effectively enhance the ability of green space in regional UHI mitigation.

5. Conclusions

In this study, four periods of Landsat 8 OLI/TIRS images and various geospatial
methods (including landscape measurement, spatial correlation, and statistics) were used
to examine the spatial relationship between LST and the landscape patterns of patches with
various vegetation densities. There was a certain spatial correlation between the landscape
metrics of the five VF-level patches and LST. Landscape-level metrics such as SHDI and PD
only have significant but weak negative spatial correlations with LST, indicating that the
types of VF levels and number of patches have limited impacts on regional temperature.
However, all class-level metrics, such as PLAND, COHESION, LPI, LSI, and AI, of extreme-
and sub-high-level patches had significant negative spatial correlations with LST, and the
correlation degree was high. This indicates that spatial distribution characteristics such as
patch proportion, natural connectivity degree, predominance degree, shape complexity, and
aggregation degree of areas with high vegetation density are important factors in regulating
the thermal environment. In addition, patches with high VF levels have a strong ability to
alleviate surface temperature; in particular, PLAND and COHESION of VF LV5 patches
have the highest impact weights on LST. These findings reveal the importance of and
differences in the spatial patterns of areas with various VFs in urban thermal environment
regulation, thus providing new perspectives and references for urban green-space planning
and climate management.

Special attention should be paid to the fact that different vegetation types have sig-
nificant differences in evapotranspiration, shading, canopy heat radiation characteristics,
etc., so their spatial patterns will have different impact mechanisms on LST. Further re-
search is required on the distinction of the regulatory effects of the spatial patterns of the
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vegetation types with different canopy characteristics on LST, with the help of Uninhabited
Air Vehicles (UAV) or high-resolution satellites equipped with multi-spectral and thermal
infrared sensors.
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Appendix A

Lj =
(

Aj − Abj

)
/Abj × 100 (A1)

Sj =

√
∑n

j=1 L2
j

n
(A2)

where Lj refers to the relative value of area loss; Aj is the area of VF level j at a converted
grain size; Abj is the area of VF level j at the original grain size; n is the number of VF levels,
and Sj is the land area loss index.

Appendix B

Figure A1. (a–e) Response curves of class−level metrics against variations in grain size; (f) land area
loss index curve corresponding to grain size variation.
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Figure A2. Trends in the variation of landscape−level metrics of 101 sample points for different
spatial extents.

Figure A3. Linear regression between vegetation fraction and land surface temperature of sample
points: (a) 1 May 2014; (b) 16 May 2017; (c) 3 May 2018; and (d) 17 May 2020.
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