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Abstract: Currently, under supervised learning, a model pre-trained by a large-scale nature scene
dataset and then fine-tuned on a few specific task labeling data is the paradigm that has dominated
knowledge transfer learning. Unfortunately, due to different categories of imaging data and stiff
challenges of data annotation, there is not a large enough and uniform remote sensing dataset to
support large-scale pre-training in the remote sensing domain (RSD). Moreover, pre-training models
on large-scale nature scene datasets by supervised learning and then directly fine-tuning on diverse
downstream tasks seems to be a crude method, which is easily affected by inevitable incorrect labeling,
severe domain gaps and task-aware discrepancies. Thus, in this paper, considering the self-supervised
pre-training and powerful vision transformer (ViT) architecture, a concise and effective knowledge
transfer learning strategy called ConSecutive Pre-Training (CSPT) is proposed based on the idea of
not stopping pre-training in natural language processing (NLP), which can gradually bridge the
domain gap and transfer large-scale data knowledge to any specific domain (e.g., from nature scene
domain to RSD) In addition, the proposed CSPT also can release the huge potential of unlabeled data
for task-aware model training. Finally, extensive experiments were carried out on twelve remote
sensing datasets involving three types of downstream tasks (e.g., scene classification, object detection
and land cover classification) and two types of imaging data (e.g., optical and synthetic aperture
radar (SAR)). The results show that by utilizing the proposed CSPT for task-aware model training,
almost all downstream tasks in the RSD can outperform the previous knowledge transfer learning
strategies based on model pre-training without any expensive manually labeling and even surpass
the state-of-the-art (SOTA) performance without any careful network architecture designing.

Keywords: knowledge transfer learning; remote sensing domain; self-supervised learning; vision
transformer

1. Introduction

With the rapid development of remote sensing technology, there has been a gradual
accumulation of available earth observation imaging data, which can be used for urban
planning, resource investigation, military surveillance and rapid search and rescue in large-
scale regions [1–5]. Consequently, how to convert the acquired large amount of remote
sensing imaging data into valid information to support practical applications has become a
very important question. At present, various data-hungry models, such as convolutional
neural networks (CNNs) [6–13] and vision transformers (ViTs) [14–17], have emerged and
been widely used for nature scene image interpretation tasks. Therefore, in order to apply
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these trained data-hungry models for other specific domains, knowledge transfer learning
should be considered; specifically, when data-hungry models are applied for remote sensing
domain (RSD), they have to utilize a large-scale dataset (e.g., ImageNet [18]) to sufficiently
stimulate their potential and then better adapt for various downstream tasks (e.g., scene
classification, object detection, and semantic segmentation) in the RSD. Until now, many
efforts [19–34] have demonstrated that the consensus solution of supervised pre-training
based knowledge transfer learning for model training has basically formed, which needs
to pre-train the model on a large-scale dataset with manual annotation and then directly
fine-tune pre-trained models on downstream task datasets in the RSD.

For example, Xia, G.S. et al. [19] pre-trained the CNN-based models (e.g., CaffeNet [6],
VGG-VD-16 [7] and GoogLeNet [8]) on the large-scale labeled dataset ImageNet [18] by
supervised learning and then fine-tuned them on scene classification dataset of AID [19],
whose results show its great generalization ability compared with other traditional hand-
craft feature based methods. Related to land cover classification in the RSD, Liu, Y. et al. [32]
utilized the PASCAL VOC [35] dataset to pre-train the encoder of their model, and then
mitigated the pre-trained encoder on fewer specific land cover labeling data to provide
acceptable pixel-wise prediction results. For the task of the object detection of SAR images,
Li, J. et al. [29] considered to transfer the ZFNet [9] that is pre-trained on ImageNet [18]
into SAR ship detection dataset SSDD. Specifically, to avoid overfitting on the small scale
dataset, they froze the former three layers of pre-trained model and only fine-tuned the
latter two layers on SSDD dataset to obtain better ship detection performance from SAR
images. Like the above mentioned studies, not only supervised pre-training based knowl-
edge transfer learning is widely employed on various remote sensing application scenes,
but also different kinds of imaging data are involved and they have significant differences
in imaging characteristics and spatial resolutions, as shown in Figure 1. Thus, it is difficult
to set up a large enough and uniform dataset to support large-scale pre-training for various
downstream tasks of different kinds of imaging data in the RSD, and it is also difficult
and expensive to manually label a large-scale dataset with diverse imaging data for model
pre-training. Instead, the relatively mature and large-scale nature scene datasets (e.g.,
ImageNet [18], Place365 [36], COCO [37] and PASCAL VOC [35]) as reported in Table 1 are
usually employed for the data-hungry model training and generating transferable domain-
level knowledge at pre-training step. Then, the transferable domain-level knowledge can
be adapted into various downstream tasks to largely promote the fine-tuning performance
comparing with training from scratch. Although it seems to be the right method for model
training in the RSD, the supervised pre-training based knowledge transfer learning still
suffers some problems regarding the inevitable incorrect labeling, severe domain gap and
task-aware discrepancy, which constrain the further performance improvement of various
downstream tasks in the RSD.

Currently, except for knowledge transfer learning via supervised pre-training meth-
ods [19,20,22–26,28–34,38] in the RSD, refs. [39–41] began to explore self-supervised pre-
training based knowledge transfer learning, which can avoid massive manually labeling
cost and release the potential of unlabeled data for model training in the RSD. In addition,
they also pointed out that the self-supervised pre-training can generate more transfer-
able feature representation than supervised pre-training method. According to studies
of [39–42], the self-supervised pre-training based knowledge transfer learning exhibits
two advantages: (1) no need to carefully label a large-scale and unified dataset; (2) more
generalized and transferable feature representation, which are friendly to knowledge trans-
fer learning in highly specialized fields such as RSD. For instance, Stojnic, V. et al. [43]
analyzed the applicability of knowledge transfer learning with different numbers and
domains of unlabeled images for self-supervised pre-training and then adapted them to
scene classification task in the RSD. By analyzing the results, ref. [43] indicated that the
self-supervised pre-training can provide better knowledge transfer ability than supervised
pre-training, even when using significantly fewer unlabeled images for self-supervised
pre-training. Then, considering the task-aware discrepancy between pre-training and
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fine-tuning processes, Li, H. et al. [44] specifically proposed a self-supervised pre-training
pretext task of global style and local matching to adapt the requirement about pixel-level
discrimination of land cover classification task, and the results indicated that the correlation
between pretext and downstream tasks is important for mitigating task-aware discrepancy.
Next, refs. [45–47] demonstrated that when collecting sufficient unlabeled data and narrow-
ing the domain gap by collecting the cognate data for pre-traininig and fine-tuning steps,
a self-supervised pre-training model would perform better on downstream tasks. However,
according to the results of [46,47], they only can obtain limited performance improvement
on multiple downstream tasks in the RSD than supervised pre-training based knowledge
transfer learning from ImageNet [18]. In addition, Reed, C. J. et al. [48] provided a study of
hierarchical self-supervised pre-training for knowledge transfer learning. They found that
self-supervised pre-training on ImageNet [18] can improve the self-supervised pre-training
on the unlabeled image data of RSD, and it can also reduce the convergence time and
perform better on diverse downstream tasks than in-domain self-supervised pre-training
carried out from scratch.

Figure 1. The different types of imaging data in remote sensing domain.

Table 1. The description of natural scene and remote sensing datasets.

Domain Payload Task Dataset Resolution (m) Classes # Trainval # Test

Natural
Scene RGB

Classification ImageNet [18] - 1000 1,331,167 100,000
Place365 [36] - 365 1,803,460 36,500

Detection/Segmentation COCO [37] - 80 123,287 40,670
PASCAL VOC [35] - 20 11,530 -

Remote
Sensing

Optical

Classification AID [19] 0.5 to 8 30 2000 8000
NWPU-RESISC45 [20] 0.2 to 30 45 9450 22,000

Segmentation
POTSDAM [21] 0.05 6 3456 2016

VAIHINGEN [21] 0.09 6 344 398
GID [22] 0.8 to 3.24 15 4368 2912

Detection

DIOR [23] 0.5 to 30 20 11,725 11,738
NWPUVHR-10 [24] 0.5 to 2 10 1479 1279

UCAS-AOD [25] - 2 6489 2824
HRSC2016 [26] 0.4 to 2 1 617 438

SAR
Classification MSTAR [27] 0.3 8 1890 7576

Detection SSDD [29] 1 to 15 1 812 348
HRSID [28] 0.5 to 3 1 3642 1962
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Therefore, the self-supervised pre-training based knowledge transfer learning is pro-
gressively becoming a mainstream to replace the supervised pre-training based knowledge
transfer learning for data-hungry model training in the RSD. However, although above self-
supervised pre-training based knowledge transfer learning can utilize large-scale unlabeled
imaging data to obtain a more universal and transferable feature representation and then
adapt it into the RSD, the severe domain gap from data difference between pre-training
and fine-tuning steps should not be ignored, because it would affect the performance of
knowledge transfer learning. Furthermore, due to current self-supervised pre-training
is mainly relied on contrastive learning such as SimCLR [49], MoCo [50], BYOL [51] and
SwAV [52], positive and negative pairs of unlabeled data still need to be carefully allocated
for model pre-training, meanwhile the global decision information from the deep layer of
CNNs is often employed for pretext tasks of instance level discrimination and invariant
representation learning. Here, these pretext tasks work well for global decision task such
as scene classification but not so well for dense prediction tasks (e.g., object detection and
segmentation tasks) because there is the task-aware discrepancy between the pretext and
downstream tasks. Accordingly, most CNN-based self-supervised pre-training methods
for knowledge transfer learning can only achieve limited performance improvement over
previous supervised pre-training method. Considering above issues, in order to achieve a
unified and more effective self-supervised pre-training based knowledge transfer learning
for model training to promote various downstream tasks in the RSD, there are still much
room to be explored such as how to overcome the domain gap between pre-training data
and fine-tuning data, select an effective network architecture for pre-training step and set an
optimal pretext task. Recently, ViT based models have proven to be more powerful network
architecture than CNNs, which interprets an image as a sequence of patches and then
process them by a standard transformer structure as used in natural language processing
(NLP). Obviously, the patch structure provides a condition for applying the idea of the
pretext task of masked language modeling which achieved great success and unified the
pre-training paradigm in NLP. Therefore, some works such as those on [53–57] have begun
turning to masking partial image patches and then reconstructing the original image (i.e.,
masked image modeling (MIM) task) by an encoder-decoder structure for self-supervised
pre-training in computer vision field.

In this article, inspired by the knowledge transfer learning idea of not stopping pre-
training in NLP [58,59] and the pretext task of MIM, a concise and effective knowledge
transfer learning strategy called ConSecutive Pre-Training (CSPT) is designed for model
training based on self-supervised pre-training to promote almost all downstream tasks of
RSD, as shown in Figure 2. Here, the ViT based encoder-decoder architecture is employed
for model pre-training and then only using the pre-trained encoder for model fine-tuning
on diverse downstream tasks. Different from the current existing knowledge transfer
learning methods, we utilize the ViT model and the MIM of task-agnostic representation for
the consecutive self-supervised pre-training process both on unlabeled large-scale data and
task-related data, and knowledge transfer learning from nature scene to RSD is selected as
the study scenario to prove that the designed CSPT can bridge the severe domain gap and
establish a more effective and transferable feature representation to facilitate the fine-tuning
step after pre-training on unlabeled natural and remote sensing data.

Meanwhile, since self-supervised pre-training does not require manual annotation,
a large amount of task-related unlabeled data can be employed on a consecutive self-
supervised pre-training process, which can not only leverage the domain-level knowledge
generated from large-scale nature scene data but also greatly release the potential of
unlabeled data for model training in the RSD. Finally, extensive experiments are performed
on a large-scale nature scene dataset (i.e., ImageNet [18]) and twelve remote sensing datasets
(i.e., AID [19], NWPU-RESISC45 (NR45) [20], ISPRS POTSDAM and VAIHINGEN [21],
GID [22], DIOR [23], NWPUVHR-10 [24], UCAS-AOD [25], HRSC2016 [26], MSTAR [27],
HRSID [28] and SSDD [29]). These remote sensing datasets involve three downstream tasks
(i.e., scene classification, object detection and land cover classification) and two categories
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of imaging data (i.e., optical RGB and synthetic aperture radar (SAR) images). From the
experimental results, we find that when more task-related unlabeled data is joined into the
further self-supervised pre-training step or waiting for more iterative epochs, the newly
designed CSPT can achieve the promising performance even reaching the state-of-the-art
(SOTA) result without any expensive labeling consumption and careful model design.
In summary, the contributions of our study are summarized below:

Figure 2. The knowledge transfer learning based model training process of our proposed CSPT.
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1. For the current knowledge transfer learning strategy from the natural scene domain
to the RSD, the severe domain gap is analyzed in detail. In addition, a concise and
effective knowledge transfer learning strategy called CSPT is proposed to gradually
bridge the domain gap and then efficiently transfer the domain-level knowledge of
large-scale unlabeled data such as ImageNet [18] into the specific RSD. Meanwhile,
the designed CSPT is a promising method to release the huge potential of unlabeled
data for task-aware model training in the RSD.

2. Based on the MIM of task-agnostic representation, the impact of adding extra task-
related unlabeled data and waiting for more iterative epochs on further self-supervised
pre-training step of the proposed CSPT are studied. Then, we find that the designed
CSPT can be a more unified and feasible way to promote the fine-tuning performance
of various downstream tasks.

3. Extensive experiments were conducted, which include three downstream tasks
(e.g., scene classification, object detection and land cover classification) and two kinds
of imaging data (e.g., optical and SAR) in the RSD. The experimental results show that
the designed CSPT can mitigate task-aware discrepancy and bridge the domain gap to
advance the performance of diverse downstream tasks and reach competitive results
in comparison with SOTA methods. Finally, we make the pre-trained model weights
freely available at https://github.com/ZhAnGToNG1/transfer_learning_cspt (ac-
cessed on 11 August 2022) to the remote sensing community. In addition, the research
can also follow the designed CSPT to train their own ViT model weights for specific
downstream tasks in other imaging data or application scenarios.

The rest of this paper is organized as follows: Section 2 introduces the related works
on knowledge transfer learning and self-supervised pre-training. Section 3 elaborates the
problem analysis and newly designed knowledge transfer learning called CSPT in the
RSD. Extensive experiments are reported in Section 4 with detailed discussions, and the
conclusion is provided in Section 5.

2. Related Work
2.1. Knowledge Transfer Learning

Knowledge transfer learning is a fundamental study in computer vision field, and it is
widely used for model training of downstream tasks in the RSD. Related to supervised pre-
training based knowledge transfer learning methods, Long, Y. et al. [30] set up a new large
scale aerial scene classification benchmark called Million-AID (M-AID), and made use of it
to achieve the in-domain large-scale supervised pre-training in the RSD. According to their
experimental analysis, fine-tuning CNN models pre-trained on M-AID would perform
better than those pre-trained ImageNet [18] for scene classification tasks. In addition, Tong,
X.Y. et al. [22] used knowledge transfer learning for improving land cover classification
tasks. In detail, first, ResNet-50 [10] is pre-trained by 150,000 image patches of GID [22] to
facilitate the generalization ability of pixel-wise land cover classification, and then, based on
the pre-trained ResNet-50 [10], they also used 30,000 image patches for model fine-tuning to
obtain the highest performance of pixel-wise land cover classification of 15 categories. Next,
Li, K. et al. [23] set up an available benchmark for object detection in optical remote sensing
images called DIOR, which contained 23,463 images and 192,472 object instances within
20 common object categories. Then, they pre-trained all detectors on large-scale nature
scene datesets (e.g., ImageNet [18] and COCO [37]) and then fine-tuned them on DIOR [23]
to achieve the knowledge transfer learning of object detection from natural scenes to RSD.
In addition, by their experimental results on DIOR [23], they found that knowledge transfer
learning also makes the superior detectors in natural scenes obtain competitive results
in the RSD without any careful model design. Moreover, Wang, D. et al. [34] provided
an empirical study of model pre-training in the RSD, which utilized the self-built optical
remote sensing dataset M-AID [30] to pre-train models of CNNs [7,10] and ViTs [15,16] and
then fine-tuned them on several downstream tasks to avoid the severe domain gap impact
of transferring knowledge from the natural scenes to remote sensing scenes. From the

https://github.com/ZhAnGToNG1/transfer_learning_cspt
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experimental results of [34], they found that ViT-based models [15,16] are promising
backbones to provide a stronger feature representation to facilitate downstream tasks
in the RSD. Meanwhile, the study of [34] also indicated that utilizing a large-scale dataset,
whether belonging to the nature or remote sensing domain, for model pre-training can
also promote almost all downstream tasks in the RSD. In general, the previous knowledge
transfer learning studies are mainly based on supervised pre-training paradigm, which
needs to carefully set up a large-scale labeled dataset for model pre-training and then
directly apply the pre-trained model into fine-tuning step. Therefore, the supervised pre-
training based knowledge transfer learning method inevitably has the issues of expensive
manual labelling, incorrect labeling existed in a large-scale dataset, domain gap and task-
aware discrepancy between pre-training and fine-tuning steps. Therefore, in this article,
we focus on the self-supervised pre-training based knowledge transfer learning method to
break through the inherent paradigm of supervised pre-training based knowledge transfer
learning and further improve the performance of various downstream tasks in the RSD.

2.2. Self-Supervised Pre-Training

Self-supervised pre-training is usually used to capture intrinsic patterns and semantic
representations from original imaging data. Until now, it began to be used for knowledge
transfer learning to facilitate model training and significantly boost performance of various
downstream tasks. According the investigation and experimental analysis, the studies
of [60,61] have demonstrated that adopting self-supervised pre-training to learn a trans-
ferable representation tightly relies on three elements: (1) the amount and domain of
pre-training data collection; (2) the pretext task setting; and (3) the network architecture
selection. Consequently, Tao, C. et al. [62] carefully designed a sample collection strategy
to automatically capture unlabeled samples with class-balanced resampling both in nat-
ural and remote sensing scenes, and then employed these samples on the pretext task of
contrastive learning to make the different augmented views (i.e., positive sample pairs) of
the same images closer and separate views (i.e., negative sample pairs) of different images.
Next, for different pretext task settings, Xu, Y. et al. [63] designed a novel unsupervised
adversarial contrastive learning method to pre-train a CNN-based Siamese network, which
minimized the feature similarity of augmented data and its corresponding unsupervised
adversarial samples. Through the designed pretext task, [63] obtained competitive classi-
fication results on SAR target recognition datasets. In addition, to use prior information
assisting pretext task setting in self-supervised pre-training, Ayush, K. et al. [64] introduced
the geography-aware into the pretext task of invariant representation learning, specifically,
it makes the positive pairs closer than typical unrelated negative pairs and meanwhile pre-
dicts the geo-location information of input images. By experimental analysis, the unlabeled
remote sensing images with geo-location prior information would further promote the
fine-tuning performance of the self-supervised pre-training method. Moreover, according
to self-supervised pre-training of ViT based models, the studies of [53,55,56] demonstrated
that the simple pretext task of MIM (i.e., predicting the raw pixels of RGB image values)
for self-supervised pre-training can provide a strong transferable ability than previous
pretext tasks. In addition, the study of [65] also has demonstrated that an extra branch of
MIM-based pretext task in parallel with the existing contrastive learning can facilitate the
self-supervised pre-training to mitigate task-aware discrepancy from diverse downstream
tasks. Then, following these works that used ViT architecture and MIM-based pretext task
in natural scenes, Wang, D. et al. [66] tried to pre-train ViT based models on large-scale
remote sensing data (i.e., M-AID [30]) by MAE [53] to propose large vision models cus-
tomized for remote sensing tasks. Similarly, Zhou, L. et al. [67] utilized MAE [53] for a
self-supervised pre-training study on medical image analysis and showed that ViT based
models pre-trained by MIM-based pretext task can significantly improve the fine-tuning
performance of diverse medical downstream tasks. Thus, referring to the ViT [14] architec-
ture and the MIM of task-agnostic representation, we would like to further explore a more
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effective and unified self-supervised pre-training strategy for knowledge transfer learning
in the RSD.

3. Knowledge Transfer Learning Strategy

In this section, the analysis of domain gap and transfer ability from nature scene to
RSD are first illustrated in Section 3.1. Next, in Section 3.2, we introduce the proposed
knowledge transfer learning of CSPT in detail. Finally, the mechanism of the MIM-based
pretext task is revisited in Section 3.3.

3.1. Problem Analysis

As mentioned in Sections 1 and 2, the domain gap is a troublesome issue in knowl-
edge transfer learning which limits the performance of task-aware model training. Here,
MAE [53] is utilized for self-supervised pre-training on the unlabeled nature scene dataset
of ImageNet-1K (IN1K) [18] based on the ViT [14] architecture. For intuitive analysis,
the pre-trained weights of ViT-B [14] from the unlabeled large-scale nature scene data
are adopted to individually generate visualized attention scores from two unseen images,
which is used to indicate the existing domain gap between nature and remote sensing
scenes. The visualized attention scores were calculated from the last self-attention layer of
ViT-B [14] via the query-key product, and the warmer color represents the higher attention
scores in self-attention map. In Figure 3a, referring to the selected red rectangle area located
in a vehicle of nature scene image, high attention scores reveal that the self-supervised
pre-training weights of ViT-B [14] can accurately pay attention on relevant areas of the
vehicle. However, when the same pre-trained weights of ViT-B [14] is directly applied
to unseen remote sensing image, as shown Figure 3b, some high attention scores are dis-
tributed in areas which are irrelevant to the previously selected red rectangle area, and only
a few high attention scores focus on relevant areas of vehicles in the remote sensing image.
Accordingly, from these visualized results, it can be found that the domain gap does exist
between nature and remote sensing scenes, and it would affect the understanding of remote
sensing image. Subjectively, in Figure 3a,b, except for the difference in appearance of the
vehicle in nature and remote sensing scenes, the context information of the vehicles is also
different. For example, the vehicle in natural scene has more fixed context information
because wheels are always on the ground and the top of the vehicle is toward the sky;
however, these vehicles in remote sensing scenes would have more flexible context infor-
mation because under the overlooking view, they can appear in any area with complex and
various surroundings.

In addition, we further analyze the transfer ability of different pre-training methods,
which directly affects the fine-tune process. Specifically, there are three curves of fine-
tuning loss presented in Figure 3c,d, where, the x-axis represents the epoch, and the
y-axis represents the corresponding fine-tuning loss value. The different color curves
represent three different pre-training methods: (1) the blue curve represents the model
that is self-supervised pre-trained on unlabeled IN1K [18] called SSP(IN1K); (2) the orange
curve indicates the model that is supervised pre-trained on a ready-made IN1K [18] called
SP(IN1K); (3) the green curve means the model that is self-supervised pre-trained on
unlabeled IN1K [18] and then further self-supervised pre-trained on the training data of
AID [19] and NR45 [20] called SSP(IN1K→Train). Notably, the above pre-training methods
all adopt ViT-B [14] and fine-tune it on AID [19] and NR45 [20]. From Figure 3c,d, it can
be seen that the blue curve of SSP(IN1K) can converge to a lower loss value than the
orange curve of SP(IN1K). This indicates that the self-supervised pre-training method
can indeed generate more transferable representation than the supervised pre-training
method to leverage the fine-tuning step. Next, the further self-supervised pre-training
process on the unlabeled task-related data is considered to bridge the domain gap so
that it can generate better transfer ability for specific tasks. From the green curves of
SSP(IN1K→Train), we can see that whether at the initial or the end of state, the fine-tuning
loss values of SSP(IN1K→Train) are both lower than those of SSP(IN1K) and SP(IN1K)
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on AID [19] and NR45 [20]. Thus, the consecutive pre-training is a promising method to
transfer domain-level knowledge into specific tasks in the RSD.

Figure 3. The analysis of domain gap and transfer ability from nature scene to RSD. (a) is the self-
attention map for a vehicle of natural scene image; (b) is the self-attention map for the vehicles
of remote sensing scene image; (c,d) represent the fine-tuning loss convergence curves of different
pre-training methods on AID [19] and NR45 [20].

3.2. Consecutive Pre-Training for Knowledge Transfer Learning

Taking into account the problem analysis in Section 3.1 and inspired by [58,59] in NLP,
a concise and effective self-supervised pre-training based knowledge transfer learning
strategy called CSPT is proposed for bridging the domain gap and providing a unified
model training paradigm for various downstream tasks in the RSD. As shown in Figure 2,
the overall framework is composed of three steps: (1) self-supervised pre-training on
a large-scale unlabeled dataset such as ImageNet [18]; (2) further self-supervised pre-
training on task-related unlabeled remote sensing data; and (3) fine-tuning on diverse
downstream tasks. Here, following the MAE [53], we adopt the MIM-based pretext task for
self-supervised pre-training on unlabeled nature and remote sensing data both in steps of
(1) and (2). Similarly, the benefits of not stopping pre-training model have been successfully
verified in NLP [58]. The pretext task of masked language modeling (MLM) is employed for
transformer-based model pre-training via masking and then completing tokens of words
in each sentence. This enables the pre-trained language model to learn the vocabulary,
sentence structure, semantic and even understand the context of large-scale unlabeled text
data. Based on the pretext task of MLM, a generalist language model such as BERT [68] or
GPT-3 [69] is firstly pre-trained by large-scale unlabeled text data to set up domain-level
knowledge. Then, the generalist model in NLP can make the domain-level knowledge
easily adapt to any sub-domain (e.g., biomedical, computer science publications, news,
or reviewers) or downstream task by domain adaptive pre-training.
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Along with the transformer structure of NLP being migrated into computer vision
field, ViT [14] set up vision words (i.e., a group of images patches) from 2-D images, which is
suitable for pre-training a model like the method of NLP. If ViT-based model can reconstruct
randomly masked partial tokens of vision words, it indicates that the model has learned
the pattern relation, structure, semantic and even understood the content of unlabeled
images. Thus, as shown in step (1) of Figure 2, when the ViT-based model is pre-trained
on a large enough unlabeled dataset such as ImageNet [18] by self-supervised learning,
the various combinations of pixel-level pattern relation, structure, semantic and even
content can be familiarized to set up domain-level knowledge and prepared for adapting
to RSD. Although the domain-level knowledge has a powerful feature representation
and transfer ability, directly transferring the domain-level knowledge of the nature scene
into the RSD by a fine-tuning step is a non-optimal solution, as discussed in Section 3.1.
Obviously, the basic characters (e.g., various combinations of pixel-level pattern relation
and structure) of an image are domain-invariant schema. Then, driven by the abundant
captured combinations of pattern relations and structures from large-scale nature scene
data, further self-supervised pre-training the generalist model on task-related data can
become quickly familiar with the semantic and content of image data for specific task, which
can be regarded a reasonable transitional stage to bridge the domain gap between upstream
and downstream data. Through the consecutive pre-training process, the pre-trained model
is considered to fine-tune on downstream tasks, as shown in step (3) of Figure 2. In detail,
only the encoder part is applied on the fine-tuning step, because the encoder part can
learn the latent representation of images but the decoder part is mainly responsible for
reconstructing the pixel value of images. Then, for scene classification task, the pre-trained
encoder is employed as feature extractor, and then the extracted feature is fed into global
average pooling and linear classifier to complete the classification task. For object detection
and land cover classification tasks, firstly, replacing the original backbone of benchmark
model by pre-trained encoder, and then the 3rd, 5th, 7th and 11th encoder blocks are
adopted to make up the multi-scale feature description of feature pyramid network. Then,
the subsequent components keep unchanged. Notably, the designed CSPT also can be
considered for in-domain consecutive pre-training to achieve knowledge transfer learning
when it is possible to establish domain-level knowledge by collecting a large-scale valid
unlabeled data.

3.3. Revisiting Masked Image Modeling

As mentioned above, the MIM of task-agnostic representation is a very effective pretext
task for the designed CSPT. It randomly masks partial tokens of vision words and then
reconstructs their pixel values according to their corresponding ground truth. As shown
in Figure 2, the ViT-based encoder and a lightweight transformer decoder are utilized for
MIM pretext task. Next, through randomly masked region reconstruction by the decoder,
the encoder can learn a powerful feature representation when the decoder can reconstruct
clearer images as shown in Figure 4c–e from masked original images (i.e., in Figure 4b).
Based on the encoder-decoder architecture, the whole reconstruction process is similar
to the mechanism of gradually understanding remote sensing images by humans. Thus,
the encoder-decoder architecture in Figure 2 can reasonably reveal whether the ViT-based
model learned the content about input images well. In our study, the process of MIM-based
pretext task follows [53], and it can be expressed by the following Equations (1)–(3):

R = encoder(XM̃) (1)

Y = decoder(R) (2)

Loss =
1

α(XM)
‖YM − XM‖ 1 (3)

In (1), X represents the image patches that are split from an input image. Then, aiming to
capture the latent representation of R, XM̃ can be encoded by encoder(·). Here, M is the
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index that indicates the masked patches of X. In contrast, M̃ is the index that represents
the unmasked patches of X. Next, in (2), the encoded R can be decoded by decoder(·)
and produce the reconstructed image Y, where X and Y ∈ RH×W×3. In (3), the L1-loss
is employed to evaluate the similarity of RGB pixel values between XM and YM. Here,
α(XM) is the number of masked pixels. When the value of L1-loss gradually decreases,
the reconstructed results become clearer, which shows that the model has captured the basic
pattern relation, structure, semantic and even understood the context of the input images.
Subsequently, when the model can well understand the context of images, the ViT-based
encoder can be applied for fine-tuning on diverse downstream tasks.

Figure 4. Reconstructed examples on AID [19] images. (a) denotes the original images; (b) denotes
masked images; (c) denotes reconstructed results of pre-trained model at the 10th epoch; (d) denotes
reconstructed results of pre-trained model at the 50th epoch; (e) denotes reconstructed results of
pre-trained model at the 800th epoch. Obviously, the reconstruction quality from (c) to (e) becomes
better and better.

4. Experiments and Analysis

In this section, extensive experiments were carried out to explore the impact of the
designed CSPT on diverse downstream tasks in the RSD. Specifically, through these ex-
periments, we prove three points: (1) Effectiveness: self-supervised pre-training is a
more advanced method for knowledge transfer learning in the RSD. And, the further
self-supervised pre-training step is a necessary step for consecutive pre-training to grad-
ually bridge the domain gap between nature and remote sensing scenes and promote
performance improvement of downstream tasks. (2) Robustness: the MIM of task-agnostic
representation is applied for self-supervised pre-training steps can mitigate task-aware
discrepancy and perform well on diverse downstream tasks in the RSD. (3) Scalability:
when casting off the constraint of carefully manual annotation, how feasible it is to use
different quantities of unlabeled data for further self-supervised pre-training, and how
data quantity can impact the performance of the fine-tuning step are discussed in detail.
In addition, SAR data that has more severe domain gap with nature scene data in the RSD
is also introduced for discussing scalability and verifying the knowledge transfer ability
of the designed CSPT. Finally, we also compared the results with other advanced model
pre-training technologies while some SOTA methods are selected for comparison.

4.1. Datasets Description

To compare different knowledge transfer learning strategies, we adopt twelve public
remote sensing datasets including nine optical remote sensing datasets and three SAR
remote sensing datasets. These datasets involve three basic downstream tasks: scene
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classification, object detection and land cover classification. Further details about the dataset
split, category number and data quantity are illustrated in Table 1. In particular, because
the image sizes of ISPRS POTSDAM and VAIHINGEN [21], GID [22], NWPUVHR-10 [24]
and UCAS-AOD [25] are irregular, we cropped them into 512 × 512 pixels. Specifically,
the amount of datasets in Table 1 is listed after cropping. Then, it can be found that not
only the amount of remote sensing datasets is extremely limited compared with large-scale
natural scene datasets but also there exist different kinds of imaging data in the RSD. This
allows us to reasonably verify the effect of knowledge transfer learning for downstream
tasks with insufficient data.

4.2. Implementation Details

As mentioned in Section 3.2, our proposed CSPT involves three steps: two steps of
self-supervised pre-training and one step of model fine-tuning. Next, we would elaborate
the pre-training and fine-tuning settings in detail.

4.2.1. Pre-Training Setting

In our work, a ViT based encoder-decoder architecture is adopted to achieve MIM-
based pretext task. Specifically, ViT-B/L [14] is chosen as the encoder, and a lightweight
transformer model that only has eight self-attention blocks is adopted as the decoder. Then,
all input images are regulated into 224 × 224 pixels and divided into non-overlapping
16 × 16 patches (i.e., vision words). Subsequently, to ensure effectiveness, we keep the
same pre-training setting as MAE [53] by utilizing 75% tokens randomly masked and then
reconstructed by the decoder. In addition, the original pixel values of masked tokens are
regarded as supervised information to achieve the self-supervised pre-training. In practice,
according to the first self-supervised pre-training step, the ViT-based model is pre-trained
on a large-scale unlabeled dataset of IN1K [18] for 800 epochs, which can obtain a generalist
model. Second, related to core idea of consecutive pre-training, the generalist model is
further pre-trained on task-related unlabeled data to achieve knowledge transfer learning.
For experimental details, the batchsize is set to 64 on one RTX 3090. AdamW [70] with
momentum β1 = 0.9 and β2 = 0.95 is employed for optimization. The learning rate schedule
adopts cosine decay with a base learning rate of 3.75 × 10−5. Moreover, input images are
augmented by random scale [0.2, 1.0], random crop and random horizontal flip. Then,
to simplify the description about pre-training methods in the following experiment analysis,
we defined the proposed CSPT as SSP(IN1K→Train) and SSP(IN1K→(Train + Test)), which
individually mean that firstly self-supervised pre-training on IN1K [18] and then further
pre-training on training set of target datasets and firstly self-supervised pre-training on
IN1K [18] and then further pre-training on training and testing set of target datasets. In ad-
dition, some other different pre-training methods are selected as comparison, namely, su-
pervised pre-training on IN1K [18], supervised pre-training on M-AID [30], self-supervised
pre-training on M-AID [30], self-supervised pre-training on training set of target dataset,
supervised pre-training on NR45 [20], self-supervised pre-training on Sentinel-2 [47]
and self-supervised pre-training on IN1K [18], individually called SP(IN1K), SP(M-AID),
SSP(M-AID), SSP(Train), SP(NR45), SSP(Sentinel-2) and SSP(IN1K).

4.2.2. Fine-Tuning Setting

In the fine-tuning step, we remove the decoder part of encoder-decoder architecture
and integrate the encoder part into specific network framework of downstream tasks,
as shown in step (3) of Figure 2. Notably, the basic network frameworks with plain design
are chosen in our method. Next, the implementation details are elaborated according to
different downstream tasks:

Scene classification: To migrate the pre-trained encoder into scene classification task,
we firstly extract the latent feature from the encoder output. Then, the class token is re-
moved from the latent feature. Next, we employ the global average pooling on remaining
tokens to aggregate the representations, and feed the global representation to a linear clas-
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sifier. Lastly, the CrossEntropy loss function is used for computing the loss value between
the prediction of linear classifier and ground truth. For experimental parameter settings,
we train all classification networks for 100 epochs with a batch size of 32. The AdamW [70]
(β1 = 0.9, β2 = 0.999) is employed with an initial learning rate of 5 × 10−4, and a learning
rate schedule follows cosine decay. The input image size is set to 224 × 224 pixels. Aug-
mentation technologies employ AutoAugment (rand-m9-mstd0.5-inc1), label smoothing
(0.1), mixup (0.8) and cutmix (1.0). For result comparison, the mean average of Top-1
classification accuracy on the test set is reported.

Object detection: We select Mask-RCNN [71] in mmdetection framework [72] as the
benchmark model. To fine-tune the pre-trained encoder network on object detection task,
the original backbone network of benchmark model is replaced by the pre-trained encoder
network. Then, about the neck network, feature pyramid network (FPN) is often used
for fusing multi-scale features in object detection task. Accordingly, to feed multi-scale
features into the FPN, the outputs of the 3rd, 5th, 7th and 11th blocks in encoder network
are firstly transformed from sequence into 2-D spatial space by reshaping and permuting
feature dimensions. Subsequently, the output of the 3rd block is upsampled by a factor
of 4 via using two 2 × 2 transposed convolutions with stride = 2. The output of the
5th block is upsampled by a factor of 2 via using a single 2 × 2 transposed convolution
with stride = 2. The output of the 7th block remains unchanged. The output of the 11th
block is downsampled by a factor of 2 via 2 × 2 max pooling with stride = 2. Then, these
four processed features are ready for FPN input. The other components (e.g., Region
Proposal Network (RPN) and head network) of benchmark model still use default setting.
For training details, the input image size is set as 512 × 512 pixels, and the total number of
epochs is set to 12 with a batchsize of 8. Then, momentum = 0.9 and weight decay = 0.0001
are adopted for SGD optimizer, and the initial learning rate is set as 0.02 and then reduced
by a factor of 10 times at the 8th and 11th epochs. In addition, random flipping and random
resizing are employed for data augmentation. For result comparison, we evaluate the
performance by using the mean average precision (mAP@0.5) of the PASCAL VOC object
challenge [35].

Land cover classification: We make use of Upernet [73] within the mmsegmentation
framework [74] as benchmark model, and the pre-trained encoder network is migrated in
the same way as the object detection task. Meanwhile, the input image size is also set to
512 × 512 pixels. Random cropping and random flipping are used for data augmentation.
AdamW [70] with momentum β1 = 0.9, β2 = 0.999 is employed for optimization. We
perform fine-tuning for 96K iterations with a batch size of 2. The learning rate is set as
3 × 10−5 with poly scheduler. Finally, the mean Intersection of Union (mIoU) is employed
for evaluation of all land cover classification performance.

4.3. Transfer Learning Ability Comparison

In this section, to evaluate the effectiveness of our designed CSPT, different knowl-
edge transfer learning methods of SSP(Train), SSP(M-AID), SP(IN1K) and SSP(IN1K) are
employed as comparison and then use the same fine-tuning setting on diverse downstream
tasks. Specifically, we consider nine public optical remote sensing datasets (e.g., two
scene classification datasets, namely, AID [19] and NR45 [20]; three land cover classification
datasets, namely, POTSDAM [21], VAIHINGEN [21] and GID [22]; and four object detection
datasets, namely, NWPUVHR10 [24], DIOR [23], UCAS-AOD [25] and HRSC2016 [26]).

Then, several experimental results are reported in Table 2. First, as shown in the
3rd column, compared with other knowledge transfer learning methods, the task-aware
model training from scratch (i.e., without knowledge transfer learning) obtains the worst
performance on all downstream tasks, which illustrates that insufficient data quantity of
downstream tasks cannot support for data-hungry model (i.e., ViT-B [14]) training and
knowledge transfer learning is indeed important for task-aware model training in the RSD.
Second, as reported in the 4th column of Table 2, it can be found that if only using the
training data of target dataset to pre-train the ViT-B [14] model (i.e., SSP(Train)) is hard to
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obtain the satisfactory performance compared with other model pre-training strategies with
a large-scale data. Thus, pre-training on a large-scale data such as ImageNet [18] is very nec-
essary to stimulate the learning potential of ViT-B [14]. Next, as reported in the 6th column
of Table 2 (i.e., SP(IN1K)) and compared with SSP(IN1K) and SSP(IN1K→Train) in the 7th
and 8th columns of Table 2, when SSP(IN1K) and SSP(IN1K→Train) are applied for model
pre-training of ViT-B [14], the performance of almost all downstream tasks is improved
than using the SP(IN1K) for model pre-training. In addition, as shown in Figure 5a,b,
the convergence speed and accuracy of fine-tuning step according to SP(IN1K), SSP(IN1K)
and SSP(IN1K→Train) are also analyzed on AID [19] and NR45 [20]. From Figure 5a,b,
the blue line of SSP(IN1K) has a slightly faster convergence speed and higher accuracy for
model fine-tuning step than the orange line of SP(IN1K), which also can be found in the
6th and 7th columns of Table 2. Then, related to the designed CSPT strategy, the green
line of SSP(IN1K→Train) in Figure 5a,b can perform a prominently faster convergence
speed and higher accuracy for model fine-tuning step than SP(IN1K) and SSP(IN1K). This
indicated that when getting rid of the labeling constraint, the MIM-based self-supervised
pre-training methods (e.g., SSP(IN1K) and SSP(IN1K→Train)) can set up more universal
and transferable domain-level knowledge by task-agnostic representation of reconstructing
image content so that better promoting downstream tasks. Moreover, our designed CSPT
strategy of SSP(IN1K→Train) can be a better way of model pre-training, which can make
the model rapidly converge and obtain the best Top-1 accuracy with fewer iterative epochs
at fine-tuning step. Third, as discussed in Section 3.1, the existing domain gap between
nature and remote sensing scenes would limit the performance of the fine-tuning step even
for the model pre-training by SSP(IN1K). Thus, the in-domain self-supervised pre-training
method of SSP(M-AID) is considered to be the comparison as reported in the 5th column
of Table 2. Here, different from our proposed CSPT strategy (e.g., SSP(IN1K→Train) and
SSP(IN1K→(Train + Test)), the SSP(M-AID) directly adopts the in-domain large-scale unla-
beled data from M-AID [30] to pre-train the ViT-B [14], and it can avoid the domain gap
because the fine-tuning performance of SSP(M-AID) indeed surpasses SSP(IN1K) on most
downstream tasks, as shown in the 5th and 7th columns of Table 2. However, we found
that though pre-training on an in-domain large-scale dataset can relieve the domain gap,
there still exists certain difference between upstream and downstream data to constraint the
model fine-tuning performance improvement, especially for different imaging data such as
SAR images. Subsequently, as reported in the 8th, 9th, and 10th columns of Table 2, follow-
ing the proposed CSPT strategy which allows to wait more epochs or add more task-related
unlabeled data in the further pre-training step to gradually bridge the domain gap and
transfer the domain-level knowledge into RSD, it can be found that the SSP(IN1K→Train)
can get better model fine-tuning performance on most downstream tasks than SSP(M-AID).
Next, to enlarge the data quantity for further self-supervised pre-training step, we can find
that the SSP(IN1K→(Train + Test)) can further boost the model fine-tuning performance
and respectively obtain 0.42∼3.73% and 0.62∼7.10% improvements on diverse downstream
tasks comparing with SSP(M-AID) and SSP(IN1K), which are presented in the 11th, 12th,
and 13th columns of Table 2.

Table 2. The comparison of knowledge transfer learning strategies on optical remote sensing down-
stream tasks.

Task Datasets

Transfer Learning Strategies (ViT-B [14])

- Train M-AID IN1K IN1K→Train IN1K→(Train + Test)

From
Scratch Self-Sup. Self-Sup. Sup. Self-Sup. Self-Sup. Self-Sup.

- ep800 ep1600 - ep800 ep800 ep1600 ep2400 ep800 ep1600 ep2400

Scene
Classification

NR45 [20] 67.35 88.40 94.69 94.10 93.94 94.23 94.21 94.16 95.11 94.90 94.84
AID [19] 63.15 86.53 96.10 94.04 95.00 95.78 96.05 96.00 96.69 96.69 96.75

Land Cover
Classification

POTSDAM [21] 60.97 63.32 76.85 76.43 78.08 78.36 78.14 78.09 78.70 77.98 78.19
VAIHINGEN [21] 60.43 59.62 73.82 69.21 71.05 72.34 72.04 72.90 74.69 74.19 73.07

GID [22] 44.70 46.08 60.96 62.64 62.93 64.97 62.82 63.58 63.31 64.69 64.55
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Table 2. Cont.

Task Datasets

Transfer Learning Strategies (ViT-B [14])

- Train M-AID IN1K IN1K→Train IN1K→(Train + Test)

From
Scratch Self-Sup. Self-Sup. Sup. Self-Sup. Self-Sup. Self-Sup.

- ep800 ep1600 - ep800 ep800 ep1600 ep2400 ep800 ep1600 ep2400

Object
Detection

NWPUVHR-10 [24] 54.80 66.50 88.10 68.20 86.00 87.10 87.20 87.50 88.40 88.30 88.90
DIOR [23] 36.90 56.00 68.20 52.70 66.80 68.30 68.20 67.60 69.80 69.20 68.50

UCAS-AOD [25] 49.00 59.40 89.60 83.30 88.70 89.40 90.00 89.30 90.00 90.10 90.30
HRSC2016 [26] 30.00 49.30 86.50 82.60 83.00 89.00 89.40 89.20 89.60 89.90 90.10

Note: (1) Evaluation metric: mean average of Top-1 classification accuracy (%) for scene classification; mean
Intersection of Union mIoU (%) for land cover classification; mean average precision mAP@0.5 (%) for object
detection. (2) The best results are marked in bold.

Figure 5. The accuracy curves of three different model pre-training strategies. (a) represents the
accuracy curves on AID [19]; (b) represents the accuracy curves on NR45 [20].

In addition, related to the analysis of domain gap, several visualized attention score
maps are shown in Figure 6. Comparing with SSP(M-AID) and SSP(IN1K) as shown in
Figure 6c,d,g,h, it can be seen that the designed CSPT in Figure 6b,f can easily attend to
any category of imaging data (e.g., optical RGB or SAR images) and correctly identify the
selected area (i.e., the red areas with higher attention scores). To sum up, the proposed CSPT
strategy is a better method than in-domain self-supervised pre-training (i.e., SSP(M-AID)),
and it also can be a uniform model training method based on knowledge transfer learning
for RSD.

4.4. Scalability of Data Quantity

According to Section 4.3, the further self-supervised pre-training step of the designed
CSPT has been proved to be very effective for knowledge transfer learning. Meanwhile,
we also find that in Table 2, the different unlabeled data quantity applied for the further
self-supervised pre-training step can affect the model fine-tuning performance. Thus,
the scalability of data quantity is discussed in this section. Specifically, two unlabeled data
expansion settings are formulated, namely, (1) domain relevant data (DRD) and (2) domain
irrelevant data (DID) to objectively analyze the impact of different unlabeled data joining
in the further self-supervised pre-training step. In addition, from the view of fine-tuning
step, RSD generally possesses insufficient data quantity for fine-tuning on low-resource
downstream tasks, as shown in Table 1. Thus, to verify that our proposed CSPT also can
adapt to low-resource downstream tasks, we further analyze the impact of fewer labeled
samples applied in the fine-tuning step under different pre-training methods and models.
Next, we discuss these two views as follows.
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Figure 6. The comparison of self-attention maps. (a,e) columns represent original images which
are from optical and SAR images; (b,f) columns are score maps produced by our proposed CSPT;
(c,g) columns are score maps produced by self-supervised pre-training on M-AID [30] and then
fine-tuning; (d,h) columns denote score maps produced by self-supervised pre-training on IN1K [18]
and then fine-tuning.

4.4.1. Discussion on Further Self-Supervised Pre-Training Step

As shown in Figure 7, to verify the impact of adding more task-related unlabeled
data for further self-supervised pre-training step, we set up a large-scale unlabeled dataset
of DRD by gathering three dataset images in the RSD, including DOTA [75], DIOR [23]
and NR45 [20], which contains 66,593 images and covers various kinds of remote sensing
scenes. Next, as the blue and gray bars shown in Figure 7, when further self-supervised
pre-training on the combination of an unlabeled training set of target datasets and DRD
(i.e., SSP(IN1K→(Train + DRD))) for 800 epochs, these fine-tuning results obtain more
performance improvement than only using unlabeled training data of target datasets
(i.e., SSP(IN1K→Train)). The reason is that the DRD involves relevant unlabeled data of
most downstream tasks, thus a comprehensive data distribution can facilitate the generalist
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model from IN1K [18] to further learn the general knowledge representation for RSD,
which can then easily adapt to diverse downstream tasks.

As for the data expansion of setting (2), the impact of adding DID into further self-
supervised pre-training step is discussed. Referring to the training sets of target dataset
(e.g., AID [19], NWPUVHR-10 [24] and HRSC2016 [26]), the same amount of unlabeled data
from natural scene dataset of Place365 [36] is considered to form DID. Then, the combination
of DID and given training sets is applied on the further self-supervised pre-training step
(i.e., SSP(IN1K→(Train + DID))) for 800 epochs. As the yellow and gray bars shown in
Figure 7, we find that adding more unlabeled data of DID into further self-supervised
pre-training step would cause accuracy reductions of 0.53%, 0.1% and 0.3% compared
with only using unlabeled training data of target datasets (i.e., SSP(IN1K→Train)) on
AID [19], NWPUVHR-10 [24] and HRSC2016 [26], respectively. This further demonstrates
the existence of the domain gap between nature and remote sensing scenes would severely
affect the performance improvement of knowledge transfer learning. In general, adding
more task-related unlabeled data is very important for the further self-supervised pre-
training step of the proposed CSPT, which can help the proposed CSPT to release a huge
potential of unlabeled data for promoting the model fine-tuning performance in the RSD.

Figure 7. The Top 1 accuracy curves of fine-tuning on training data of AID [19] with different traning
set ratios. (a) represents the Top 1 accuracy curves under the training set ratio of 2%; (b) represents
the Top 1 accuracy curves under the training set ratio of 4%; (c) represents the Top 1 accuracy curves
under the training set ratio of 8%; (d) represents the Top 1 accuracy curves under the training set
ratio of 16%.

4.4.2. Discussion on Fine-Tuning Step

As reported in Table 3, to explore the scalability of our proposed CSPT on low-resource
downstream tasks, different pre-training methods (e.g., train from scratch, SP(IN1K),
SSP(M-AID) and SSP(IN1K)) with different network architectures (e.g., ViT-B [14] and
ResNet-50 [10]) are selected for comparison. Notably, in our designed CSPT, all images of
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target datasets (i.e., AID [19] and NR45 [20]) can be regarded as task-related unlabeled data
and employed on the further self-supervised pre-training step (i.e., SSP(IN1K→(Train + Test)))
for 800 epochs. Then, for fair comparison, we fine-tuned all pre-trained models on the
training dataset of AID [19] and NR45 [20] with training set ratios of 2%, 4%, 8%, 16% for
100 epochs. According to Table 3, one observation is that our proposed CSPT produces
the best results in all training set ratios of NR45 [20] and 8% and 16% training set ratios of
AID [19], but it only obtains suboptimal results on 2% and 4% training set ratios of AID [19].
It is worthy noting that from Table 1, AID [19] has less data quantity than NR45 [20] so that
when using 2% or 4% training set ratios of AID [19], there are 5∼9 samples per class used
for training in fine-tuning step. Thus, our proposed CSPT for ViT-B [14] does not seem to
handle well on fine-tuning with fewer labeled samples. However, as shown in Figure 8,
by analyzing the accuracy trends, it can be observed that the blue curve of SP(IN1K) for
ResNet-50 [10] reaches the performance bottleneck quickly, but the purple curve of our
proposed CSPT for ViT-B [14] has been growing in the default epoch setting (i.e., 100
epochs). Accordingly, the fine-tuning epochs are expanded to study the performance
bottleneck of our proposed CSPT for ViT-B [14]. As shown in Figure 8a,b, the blue curves
remain at a constant performance level, while the purple curves exceed the blue curves and
reach the best performance with the increase in epochs. We conclude that the difference of
convergence speed is rooted in network architecture. Because ViT [14] has much less image-
specific inductive biases than CNNs, it requires a longer time to learn the relevant patterns
from fewer labeled samples. In addition, according to Figure 8a, with the increase in the
number of training epochs, the orange, green and red curves of SP(IN1K), SSP(M-AID),
SSP(IN1K) for ViT-B [14] are still lower than the blue curve of SP(IN1K) for ResNet-50 [10],
differently, the purple curve of our proposed CSPT for ViT-B much exceeds other methods.
To sum up, the results demonstrate that our proposed CSPT can advance model fine-tuning
performance improvement on low-resource downstream tasks.

Figure 8. Discussion on different data expansion applied for the further self-supervised pre-
training step. Notably, AID [19] and NR45 [20] are reported in Top-1 accuracy; NWPUVHR-10 [24],
HRSC2016 [26] and DIOR [23] are reported in mAP@0.5; VAIHINGEN [21] is reported in mIoU.
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Table 3. The comparison of fine-tuning on few labeled samples.

Pre-Training Method Architecture
NR45 AID

2% 4% 8% 16% 2% 4% 8% 16%

Train from scratch
ResNet-50 27.48 44.30 54.62 63.73 21.80 26.11 46.15 59.78

ViT-B 27.50 38.73 51.05 66.19 23.17 32.05 43.97 59.65

SP(IN1K)
ResNet-50 73.45 80.92 86.77 91.34 65.60 75.70 86.10 92.62

ViT-B 75.80 81.51 90.24 93.08 39.03 66.72 88.19 93.47

SSP(IN1K) ViT-B 59.36 85.92 88.38 92.58 17.59 42.38 83.29 93.44

SSP(M-AID) ViT-B 70.77 87.17 91.26 93.51 25.26 59.63 90.45 95.70

SSP(IN1K→(Train + Test)) ViT-B 80.43 89.66 92.56 94.33 42.79 73.69 93.23 96.10
Note: (1) The average of Top-1 classification accuracy (%) is used for reporting above results. (2) The best results
are marked in bold. (3) SSP(IN1K→(Train + Test)) represents our designed CSPT.

4.5. Scalability on SAR Imaging Data

It can be seen that remote sensing images possess the characteristics of multi-payload
and multi-platform. Apart from optical remote sensing images, SAR satellites are also es-
sential payloads. However, not only the number of available SAR images is limited, but also
the SAR images have significant imaging difference with optical images. Consequently,
to verify the scalability of our proposed CSPT, we also discuss the performance of the
designed CSPT strategy for model training on SAR images. Here, we conduct experiments
on one target classification dataset (e.g., MSTAR [27]), and two ship detection datasets
(e.g., HRSID [28] and SSDD [29]). Their data descriptions are listed in Table 1. In detail,
the unlabeled training data and the combination of unlabeled training and testing data of
target datasets are respectively adopted on the further self-supervised pre-training step for
800, 1600 and 2400 epochs. The experimental results are reported in Table 4. Compared
with SSP(M-AID) and SSP(IN1K) in the 3rd and 10th columns of Table 4, the designed CSPT
of SSP(IN1K→(Train + Test)) achieves the best results, and individually boosts the accuracy
by 1.94% and 1.96% Top-1 accuracy on MSTAR [27], 0.9% and 1.2% mAP on SSDD [29]
and 1.5% and 1.9% mAP on HRSID [28]. The results show that even on remote sensing
data with great imaging difference with nature scene image data, our proposed CSPT
can still effectively transfer domain-level knowledge of large-scale nature scene data into
diverse downstream tasks. Moreover, the model fine-tuning performance of SSP(M-AID)
obtains bad results, even lower than the model fine-tuning performance of SSP(IN1K). This
reflects that when there exists significant imaging difference between in-domain large-scale
data and specific downstream dataset, it is insufficient to eliminate the domain gap by
pre-training on an in-domain large-scale dataset because it cannot be compatible with
all imaging data in the RSD. Thus, compared with directly pre-training on an in-domain
large-scale dataset, our CSPT strategy has the advantage of flexibility and scalability for
downstream tasks with special imaging data.

Table 4. The knowledge transfer ability comparison on SAR images.

Task Dataset

Self-Supervised Pre-Training

M-AID M-AID→Train M-AID→(Train + Test) IN1K IN1K→Train IN1K→(Train + Test)

ep1600 ep800 ep1600 ep2400 ep800 ep1600 ep2400 ep800 ep800 ep1600 ep2400 ep800 ep1600 ep2400

Target Classification MSTAR [27] 98.01 99.67 99.79 99.80 99.93 99.95 99.96 98.03 99.82 99.80 99.80 99.96 99.96 99.97

Ship Detection
SSDD [29] 90.60 91.10 91.10 90.90 91.60 91.40 91.20 90.90 91.80 91.50 91.30 91.00 91.70 91.80

HRSID [28] 68.30 68.60 68.90 69.30 68.60 69.60 69.60 68.70 68.90 69.10 69.90 69.00 69.70 70.20

Note: (1) Network architecture uses ViT-B [14]. (2) Evaluation metric: the average of Top-1 classification accuracy
(%) for target classification; the average precision AP@0.5 (%) for ship detection. (3) The best results are marked
in bold.
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Based on the conclusion that SSP(M-AID) cannot perform well on downstream tasks
of SAR images, we replace the dataset used for the first step of our CSPT strategy with
M-AID [30] to further verify whether our CSPT strategy can adapt different large-scale
datasets to achieve knowledge transfer learning for promoting performance of downstream
tasks. The results are reported in 4th∼9th of Table 4. It can be found that when utilizing
large-scale dataset of M-AID [30] to achieve CSPT strategy (i.e., SSP(M-AID→Train) and
SSP(M-AID→(Train + Test))), it can obtain 1∼1.95% performance gain compared with
SSP(M-AID) in the 3rd column of Table 4 and achieve similar results with SSP(IN1K→Train)
and SSP(IN1K→(Train + Test)) in the 11th∼16th of Table 4. The results indicates that our
CSPT strategy would not severely depend on the choice of large-scale dataset used for the
first step of CSPT strategy. Meanwhile, it also shows further self-supervised pre-training
on task-related data is very flexible, which not only can make full use of the domain-level
knowledge from different large-scale datasets but also effectively learn the task-related
knowledge so that stably bringing performance gain in various downstream tasks.

4.6. Comparison Experiment Analysis

In this section, to demonstrate the potential and superiority of the designed CSPT, the
proposed CSPT is applied to train plain networks in the RSD to compare with recently
proposed SOTA methods and outstanding model pre-training technologies. In addition,
four public remote sensing datasets (i.e., AID [19], NR45 [20], DIOR [23] and ISPRS POTS-
DAM [21]) are employed as benchmark datasets which involve three downstream tasks
(e.g., scene classification, object detection and land cover classification).

4.6.1. Scene Classification

Following [30], the unified data split (i.e., training set: testing set = 2:8) is adopted
to evaluate AID [19] and NR45 [20]. In Table 5, different pre-training methods and
networks of these comparison methods are listed in the 3rd and 4th columns. Firstly, many
well-designed modules have been adopted for improving performance to achieve SOTA
results, such as advanced attention mechanisms (e.g., CAD [76], EAM [77], MBLANet [78],
ESD-MBENet [79] and MSA-Net [80]) and powerful feature fusion modules (e.g., MG-
CAP [81], F2BRBM [82] and KFB-Net [83]). From the experimental results of Table 5,
these well-designed models cannot obtain competitive results. Second, except for special
module designs, some works also focus on studying powerful pre-training technologies.
For example, MoCov3 [84], MAE [53] and SimMIM [55] are designed for self-supervised
pre-training on natural scene data. Here, we also transfer these pre-trained models from
large-scale nature scene data into the AID [19] and NR45 [20] datasets. From the 11th, 17th
and 18th rows of Table 5, it can be seen that MoCov3 [84] based on contrastive learning
(CL) obtains slightly worse results than MAE [53] and SimMIM [55]. This is since CL
is decision-making based on deep semantic features that would lose much information
from original images. In addition, CL needs to carefully construct positive and negative
sample pairs; Otherwise, unsuitable positive and negative sample pairs would affect the
performance of CL [44,85,86]. In contrast, MIM-based pretext task applied for MAE [53]
and SimMIM [55] directly reconstructs the pixels of the original images, which can not
only perceive general and detailed image information but also avoid positive and negative
sample allocation. Thus, the reconstruction of randomly masked tokens is beneficial for
evoking the cognition of underlying knowledge from images. In addition, to avoid the
domain gap, some researchers have used self-built large-scale remote sensing data to pre-
train their models (e.g., SeCo [47], ASP [30] and RSP [34]). From the 9th, 10th and 16th
rows of Table 5, it can be seen that these methods pre-trained on the RSD dataset mostly
suppress the above methods pre-trained on nature scene dataset, which illustrates that
domain gap would restrict the performance supremum. Although these methods achieve
good performance by eliminating domain gap, the expensive collection cost of the self-built
unlabeled or labeled large-scale dataset is inevitable. Finally, according to the results of our
proposed CSPT as shown in the 21rd and 22th rows, it obtain the SOTA results of 96.75% on
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AID [19] and 95.62% on NR45 [20], which indicates that the effectiveness of our proposed
CSPT on scene classification task.

Table 5. The comparison results on AID [19] and NR45 [20]. The best results are marked in bold.

Method Publication Setting Network
Top-1 Accuracy (%)

AID (2:8) NR45 (2:8)

MG-CAP [81] TIP2020 SP(IN1K) VGG-16 93.34 92.95

CAD [76] JSTAR2020 SP(IN1K) DenseNet-121 95.73 94.58

KFBNet [83] TGRS2020 SP(IN1K) DenseNet-121 95.50 95.11

F2BRBM [82] JSTAR2021 SP(IN1K) ResNet-50 96.05 94.87

MBLANet [78] TIP2021 SP(IN1K) ResNet-50 95.60 94.66

EAM [77] GRSL2021 SP(IN1K) ResNet-101 94.26 94.29

MSA-Net [80] JSTAR2021 SP(IN1K) ResNet-101 93.53 93.52

ESD-MBENet [79] TGRS2021 SP(IN1K) DenseNet-121 96.39 95.36

ASP [30] arXiv2022 SP(M-AID) ResNet-101 95.40 94.20

SeCo [47] ICCV2021 SSP(Sentinel-2) ResNet-50 93.47 92.91

MoCov3 [84] ICCV2021 SSP(IN1K) ResNet-50 92.51 91.79

Swin Transformer [15] ICCV2021 SP(IN1K) Swin-T 96.55 94.70

Vision Transformer [14] ICLR2021 SP(IN1K) ViT-B 94.04 94.10

CTNet [87] GRSL2021 SP(IN1K) MobileNet-v2+ViT-B 96.25 95.40

ViTAEv2 [16] arXiv2022 SP(IN1K) ViTAEv2-S 96.61 95.29

RSP [34] arXiv2022 SP(M-AID) ViTAEv2-S-E40 96.72 95.35

SimMIM [55] CVPR2022 SSP(IN1K) ViT-B 93.08 92.57

MAE [53] CVPR2022 SSP(IN1K) ViT-B 95.00 93.94

MAE [53] CVPR2022 SSP(IN1K) ViT-L 94.92 94.34

CSPT - SSP(IN1K→(Train + DRD)) ViT-B 96.24 95.18

CSPT - SSP(IN1K→(Train + Test)) ViT-B 96.75 95.11

CSPT - SSP(IN1K→(Train + Test)) ViT-L 96.30 95.62

4.6.2. Object Detection

Object detection belongs to the dense prediction task, which has more complex net-
work structure, including backbone, neck and head networks. Here, we only attend to the
replacement of backbone network that is pre-trained from our CSPT or other pre-training
strategies. As shown in Section 4.2.2, the Mask-RCNN [71] is selected as the benchmark
model. In addition, the public remote sensing dataset DIOR [23] is adopted to evaluate
the performance. It contains 23,463 images with 192,472 instances involving 20 object
categories such as airplane (AL), airport (AT), baseball field (BF), basketball court (BC),
bridge (B), chimney (C), dam (D), expressway service area (ESA), expressway toll station
(ETS), golf course (GC), ground track field (GTF), harbour (HB), overpass (O), ship (S), sta-
dium (SD), storage tank (ST), tennis court (TC), train station (TS), vehicle (V), and windmill
(W). Following to the data split rule of DIOR [23], we compared our strategy with other
SOTA detectors and advanced pre-training technologies. Among these methods, some
classical detectors, such as Faster-RCNN [88], YOLOv5 [89], Mask-RCNN [71], PANet [90]
and CenterNet [91] are selected. Meanwhile, we also compare with some SOTA detectors
from RSD including MSFC-Net [92], CANet [93] and FSoD [94]. As reported in the 9th and
14th rows of Table 6, compared with the original version of Mask-RCNN [71], our method
achieves 3% mAP improvement without bells and whistles based on ViT-B [14]. In addition,
when using ViT-L [14] as backbone, we obtain 71.7% mAP in plain Mask-RCNN detector,
which is competitive with the SOTA detectors and even exceeds some of them. Moreover,
some self-supervised pre-training methods (e.g., MAE [53], MoCov3 [84] and SimMIM [55])
are compared, as shown in the 9th to 12th rows of Table 6. It can be observed that the
proposed CSPT still achieves the best performance. Through above analysis, it can be
demonstrated that the simple further self-supervised pre-training on task-related unlabeled
data can effectively avoid both large-scale data annotation and bridge the domain gap,
and then bring significant performance gain in remote sensing object detection task.
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Table 6. The comparison results on DIOR [23]. The best results are marked in bold.

Method Setting Backbone mAP (%) AL AT BF BC B C D ESA ETS GC GTF HB O S SD ST TC TS V WM

Faster-RCNN [88] SP(IN1K) ResNet-101 53.6 51.3 61.6 62.2 80.6 26.9 74.2 37.3 53.4 45.1 69.6 61.8 43.7 48.9 56.1 41.8 39.5 73.8 44.7 33.9 65.3

Mask-RCNN [71] SP(IN1K) ResNet-101 65.2 53.9 76.6 63.2 80.9 40.2 72.5 60.4 76.3 62.5 76.0 75.9 46.5 57.4 71.8 68.3 53.7 81.0 62.3 53.0 81.0

YOLOv5 [89] SP(IN1K) CSPdarknet-53 68.5 87.3 61.7 73.7 90.0 42.6 77.5 55.2 63.8 63.2 66.9 78.0 58.1 58.1 87.8 54.3 79.3 89.7 50.2 53.9 79.6

CenterNet [91] SP(IN1K) DLA-34 63.2 78.6 56.5 76.1 88.1 33.2 77.1 41.0 47.4 55.5 71.4 72.5 23.0 52.7 89.8 54.0 78.6 86.2 46.1 57.8 77.4

CANet [93] SP(IN1K) ResNet-101 74.3 70.3 82.4 72.0 87.8 55.7 79.9 67.7 83.5 77.2 77.3 83.6 56.0 63.6 81.0 79.8 70.8 88.2 67.6 51.2 89.6

PANet [90] SP(IN1K) ResNet-101 66.1 60.2 72.0 70.6 80.5 43.6 72.3 61.4 72.1 66.7 72.0 73.4 45.3 56.9 71.7 70.4 62.0 80.9 57.0 47.2 84.5

MSFC-Net [92] SP(IN1K) ResNeSt-101 70.1 85.8 76.2 74.3 90.1 44.1 78.1 55.5 60.9 59.5 76.9 73.6 49.5 57.2 89.6 69.2 76.5 86.7 51.8 55.2 84.3

FSoD [94] SP(NR45) MSE-Net 71.8 88.9 66.9 86.8 90.2 45.5 79.6 48.2 86.9 75.5 67.0 77.3 53.6 59.7 78.3 69.9 75.0 91.4 52.3 52.0 90.6

Mask-RCNN(MAE) [53] SSP(IN1K) ViT-B 66.8 58.9 85.6 69.4 80.7 37.8 78.5 70.2 85.0 55.4 80.7 77.4 58.7 57.1 44.3 79.2 44.3 83.1 70.9 27.5 74.8

Mask-RCNN(MAE) [53] SSP(IN1K) ViT-L 68.3 66.1 86.5 73.3 83.6 41.4 81.6 72.2 86.2 58.3 79.2 78.7 60.3 61.1 60.1 73.4 42.1 83.3 71.3 28.9 78.7

Mask-RCNN(MoCov3) [84] SSP(IN1K) ResNet-50 62.5 57.9 75.1 65.1 85.3 36.2 71.9 59.2 66.4 51.6 74.0 75.8 58.8 54.8 67.8 67.8 44.2 83.0 58.4 27.6 76.6

Mask-RCNN(SimMIM) [55] SSP(IN1K) ResNet-50 63.5 59.6 80.4 69.7 77.0 34.5 77.5 64.9 77.6 52.4 76.8 74.4 52.0 55.5 59.6 70.8 40.5 80.2 64.4 27.1 75.0

Mask-RCNN(CSPT) SSP(IN1K→(Train + DRD)) ViT-B 68.7 69.9 87.7 70.8 81.2 41.6 80.5 74.8 86.0 58.8 78.9 75.6 60.6 58.9 60.8 78.3 44.6 84.1 76.2 29.0 76.4

Mask-RCNN(CSPT) SSP(IN1K→(Train + Test)) ViT-B 69.8 69.8 89.1 74.7 82.6 42.2 80.5 76.9 86.4 58.8 80.7 77.7 61.9 60.2 60.9 79.2 46.1 84.3 77.2 29.0 77.3

Mask-RCNN(CSPT) SSP(IN1K→(Train + Test)) ViT-L 71.7 74.1 89.9 81.2 86.2 44.5 81.9 74.8 90.1 61.3 81.9 79.6 61.6 61.0 61.0 83.7 44.5 88.1 78.9 29.2 79.9

4.6.3. Land Cover Classification

For the land cover classification task, we adopt Upernet [73] as the benchmark model
and then replace its backbone with the model pre-trained by our proposed CSPT. Then,
the ISPRS POTSDAM [21] is selected as our benchmark dataset to evaluate our proposed
CSPT. As shown in Table 1, there are six categories of land cover (e.g., impervious sur-
face, building, low vegetation, tree, car and clutter) used for evaluating the performance
(i.e., mIoU) of the models. Next, some advanced methods are selected for comparison such
as Deeplabv3+ [95], GCNet [96] and BES-Net [97] from nature and remote sensing scenes.
As reported in the 5th and 7th rows of Table 7, based on ViT-B [14], our proposed CSPT
brings 2.27% mIoU gain compared with employing SP(IN1K) on Upernet [73]. Moreover,
our result is very competitive with other SOTA methods.

Table 7. The comparison results on ISPRS POTSDAM [21]. The best results are marked in bold.

Method Setting Backbone mIoU(%)

BES-Net [97] SP(IN1K) ResNet-18 78.21
Deeplabv3+ [95] SP(IN1K) ResNet-50 75.21

Upernet [73] SP(IN1K) ResNet-50 75.86
GCNet [96] SP(IN1K) ResNet-101 75.38

Upernet [73] SP(IN1K) ViT-B 76.43

Upernet(CSPT) SSP(IN1K→Train) ViT-B 78.36
Upernet(CSPT) SSP(IN1K→(Train + Test)) ViT-B 78.70

5. Conclusions

In this paper, first, we provided an empirical analysis of knowledge transfer learning
and illustrated some limitations and problems of traditional knowledge transfer learning.
Second, a concise and effective knowledge transfer learning strategy called CSPT based
on the idea of not stopping pre-training in NLP is proposed to gradually narrow the
domain gap and better transfer domain-level knowledge from the natural scene domain
to the RSD. The further self-supervised pre-training step adopted in CSPT can release
the potential of unlabeled data for model pre-training and then facilitate fine-tuning step.
In addition, the MIM-based pretext task of task-agnostic representation that is utilized
for self-supervised pre-training can mitigate the task-aware discrepancy from diverse
downstream tasks. Finally, through extensive experiments, our proposed CSPT has been
shown to bring significant performance improvements on various downstream tasks in
the RSD. Meanwhile, the comparison also shows that the designed CSPT can achieve the
competitive results compared with SOTA methods on diverse downstream tasks without
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bells and whistles. In the future, we plan to explore more reasonable knowledge transfer
learning strategies for specific downstream tasks.
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