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Abstract: Reference evapotranspiration (ET0) is an integral part of the regional hydrological cycle and
energy balance and is extremely sensitive to climate change. Based on temperature data from 24 global
climate models (GCMs) in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this study
developed a multi-model ensemble based on delta statistical downscaling with multiple interpolation
methods and evaluation indicators to predict the spatial and temporal evolution trends of ET0 in the
Yellow River Basin (YRB) under four emission scenarios (SSP126, SSP245, SSP370, and SSP585) for
the near- (2022–2040), mid- (2041–2060), and long- (2081–2100) term future. Results demonstrate that
regional data generated based on delta statistical downscaling had good simulation performance
for the monthly mean, maximum, and minimum temperatures in the YRB, and the developed multi-
model ensemble had better simulation capability than any single model. Compared to the historical
period (1901–2014), the annual ET0 showed a highly significant increase for different future emission
scenarios, and the increase is faster with increasing radiative forcing. The first main cycle of ET0

change was 52, 53, 60, and 48 years for the SSP126, SSP245, SSP370, and SSP585, respectively. ET0 in
the YRB had positive values for EOF1 under all four emission scenarios, responding to a spatially
consistent trend across the region. Compared to the historical period, the spatial distribution of ET0

under different future emission scenarios was characterized by being larger in the west and smaller
in the east. As the radiative forcing scenario increased and time extended, ET0 significantly increased,
with a maximum variation of 112.91% occurring in the western part of the YRB in the long-term
future under the SSP585 scenario. This study can provide insight into the water cycle patterns of
watersheds and scientific decision support for relevant departments to address the challenges of
climate change.

Keywords: reference evapotranspiration; CMIP6; delta statistical downscaling; Hargreaves model;
Yellow River Basin; EOF analysis

1. Introduction

Climate change and its impacts on the water cycle, particularly on regional hydro-
logical systems, are major global challenges in the 21st century [1–3]. As an important
factor in the regional hydrological cycle and energy balance, reference evapotranspiration
(ET0) can be used to make total energy estimates of actual evapotranspiration [4], and is
the component of the water cycle that is directly affected by climate change. Changes in
ET0 have a significant impact on the global water cycle and water resources [5], thereby
leading to droughts and floods, water scarcity, and ecosystem degradation. In the context
of climate change, ET0 is an important guide for understanding the hydrological cycle and
formulating water resource plans in watersheds [6–8].

Although studies on ET0 have been conducted recently [9–14], most existing studies
focused on the historical period. With the development of global climate models (GCMs),
exploring the future ET0 of watersheds based on historical data has become a topic of
research interest in the context of climate change. GCMs are the most powerful tools for
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climate change modeling and future predictions [15,16], and the modeling results can
provide valuable data to support studies on climate change-induced impacts at regional
and continental scales. Nevertheless, low-resolution data will lead to large biases in the
prediction of regional climate change when climate studies are conducted at regional scales.
Downscaling is an effective method for transforming large-scale, low-resolution outputs
from GCMs into small-scale, high-resolution regional ground information [17,18]. Current
mainstream downscaling methods include dynamic downscaling [19] and statistical down-
scaling [20]. Compared to statistical downscaling, dynamic downscaling requires a large
number of complex inputs and computational requirements [21,22], and sometimes fine
and reliable climate data at regional scales are not available [22,23]. Statistical downscaling
is the most widely used and established downscaling technique in basin climate change
studies because of its low computational cost, easy model construction, multiple implemen-
tation methods, ease of operation, and lack of consideration of the influence of boundary
conditions on prediction results [24].

Two methods are widely used for ET0 prediction under future climate scenarios: (1)
input of future meteorological data from GCMs into ET0 models [25,26]; and (2) directly
predicting future ET0 via downscaling methods based on historical ET0 [1,27]. Liu et al. [28]
used Coupled Model Intercomparison Project Phase 5 (CMIP5) and Coupled Model Inter-
comparison Project Phase 6 (CMIP6) climate models to compare global potential evapotran-
spiration and found that both models could effectively simulate the increasing trend; they
also revealed that CMIP6 multi-model results simulated higher values of global potential
evapotranspiration than CMIP5 for the same emission scenario. Nistor et al. [29] assessed
the impact of climate change on ET0 in Turkey in the 21st century based on the Thornth-
waite equation and the CMIP5 dataset. They revealed that ET0 will increase in southern
and southeastern Turkey and along the Mediterranean coast in the coming period owing to
climate warming.

The Yellow River Basin (YRB) is an important component of China’s strategic eco-
logical security pattern, and most of the YRB is an arid and semi-arid region. Because of
its unique geographical location, its environment is fragile and highly sensitive to global
climate change [21,30], making it a good indicator of climate change. Despite the high
sensitivity of the region to climate change, studies on the evolution of ET0 in the YRB in
the context of future climate are limited, and most of the existing studies on future ET0
in other regions are at the CMIP5 stage [21,30,31], with no downscaling treatment [1], a
single spatial interpolation method [21], or a single indicator for climate model prefer-
ences [32]. Therefore, against the backdrop of global warming, the ET0 predictions in the
YRB can provide a theoretical reference basis for water resource planning and management,
as well as a scientific basis for relevant authorities to formulate future climate change
response strategies.

This study used the YRB as the study area and developed a multi-model ensemble
based on the delta statistical downscaling using multiple interpolation methods and mul-
tiple evaluation indicators to predict the spatial and temporal evolution characteristics
of ET0 in the YRB under different CMIP6 emission scenarios. Studies on ET0 not only
enhance the understanding of hydrological processes in the YRB but also provide data
to support and guide future water resource management and drought mitigation. The
specific objectives are to: (1) obtain monthly mean, maximum, and minimum temperature
datasets in the YRB with a resolution of 1 × 1 km based on CMIP6 climate model data and
delta statistical downscaling; (2) select the best simulated climate model and multi-model
ensemble by evaluating and validating historical measured data; and (3) predict the spatial
and temporal changes in ET0 under different emission scenarios in the future based on the
Hargreaves formula and downscaled temperature data from 2022 to 2100.
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2. Materials and Methods
2.1. Study Area

The Yellow River, the second-largest river in China, starts from the Bayankara Moun-
tains in the west, crosses the Qinghai–Tibetan Plateau, Loess Plateau, and Huang-Huai-Hai
Plain, and flows into the Bohai Sea in Shandong Province. The total length of the basin is 5464 km,
covering an area of approximately 79.5 × 104 km2 (95◦53′E–119◦05′E, 32◦10′N–41◦50′N),
accounting for 8% of China’s land area (Figure 1). The YRB is in the mid-latitude zone,
with complex natural conditions and undulating basin topography, and is influenced by
atmospheric and monsoonal circulation, making the climate different from that of the other
basins in China [33,34]. The average annual precipitation in the basin is 495 mm, with
concentrated and highly variable interannual precipitation and an evident downward trend
from the southeast to the northwest [35]. The average annual temperature ranges from
−4 to 14 ◦C, varying with latitude and altitude [36]. The basin’s evapotranspiration varies
markedly, with an average annual ET0 of 700–1800 mm and an increasing trend from the
southeast to the northwest. As the basin straddles arid, semi-arid, and semi-humid zones, it
is in the transition zone between semi-arid and semi-humid climates, rendering it extremely
sensitive to climate change [21]. Climate change has exacerbated the uneven spatial and
temporal distributions of water resources in the YRB, and the contradiction between water
resource supply and demand has become evident, seriously affecting the production and
life of human society and restricting the high-quality economic development of the region.
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Figure 1. (a) Location and digital elevation model of the Yellow River Basin in China and (b) the
distribution of 93 national meteorological stations in the Yellow River Basin.

2.2. Data Collection
2.2.1. Ground-Based Observation Data

In this study, monthly monitoring data from 93 national meteorological stations in
the YRB from 1980 to 2014 were obtained from the National Meteorological Information
Centre-China Meteorological Data Network (http://data.cma.cn/ (accessed on 11 March
2022)), including monthly mean temperature (tas), monthly mean maximum temperature
(tasmax), monthly mean minimum temperature (tasmin), and monthly pan evaporation.
Some of the missing data were reasonably interpolated via the hydrologic analogy method
and the linear interpolation method. The tas, tasmax, and tasmin were used to assess
the accuracy of the climate model simulations, and the converted value based on pan
evaporation data [4] were used to assess the ET0 values based on the multi-model ensemble
and Hargreaves formula.

http://data.cma.cn/
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2.2.2. Reference Data on Downscaling

The national 30-year cumulative mean, mean maximum, and mean minimum tem-
perature datasets with a resolution of 1 km from 1971 to 2000 were selected as the regional
high-resolution reference data to construct the delta statistical downscaling model in this
study. Data were obtained from the National Ecosystem Science Data Center (NESDC)
(http://www.nesdc.org.cn/ (accessed on 9 May 2022)).

2.2.3. Future Climate Data

In this study, 24 GCMs were selected from CMIP6 (https://esgf-node.llnl.gov/search/
cmip6/ (accessed on 13 May 2022)) for the historical period (1901–2014) and three future
periods (near-term 2022–2040, mid-term 2041–2060, and long-term 2081–2100). The tas,
tasmax, and tasmin data of the models were presented, which contained 21, 19, and
21 GCMs, respectively; the basic details about each model and variable are summarized in
Table 1. For future forcing scenarios, the recent shared socioeconomic pathways (SSPs), such
as SSP1-2.6 (low-forcing scenario, SSP126), SSP2-4.5 (medium-forcing scenario, SSP245),
SSP3-7.0 (medium to high-forcing scenario, SSP370), and SSP5-8.5 (high-forcing scenario,
SSP585), were selected [37]. Notably, the future scenarios of the climate model were set
for the 2015–2100 period; the historical period in this study did not extend back to 2021,
and the future period did not extend forward to 2015 to ensure the reasonability of the
data. The selection of the periods for downscaling the simulation accuracy and Hargreaves
model validation were based on these considerations.

Table 1. Introduction to climate models with temperature variables.

Serial Number Climate Models Variables Research Institution,
Country Spatial Resolution

1 ACCESS-CM2 tasmax, tasmin ACCESS, Australia 1.9◦ × 1.3◦

2 ACCESS-ESM1-5 tas, tasmax, tasmin ACCESS, Australia 1.9◦ × 1.3◦

3 AWI-CM-1-1-MR tas, tasmin AWI, Germany 0.9◦ × 0.9◦

4 AWI-ESM-1-1-LR tasmax, tasmin AWI, Germany 1.9◦ × 1.9◦

5 BCC-CSM2-MR tas, tasmax, tasmin BBC, CMA, China 1.125◦ × 1.125◦

6 BCC-ESM1 tasmax, tasmin BBC, CMA, China 2.8◦ × 2.8◦

7 CanESM5 tas, tasmax, tasmin CCCMA, Canada 2.8125◦ × 2.8125◦

8 CMCC-CM2-SR5 tas CMCC, Italy 1.250◦ × 0.938◦

9 CMCC-ESM2 tas, tasmin CMCC, Italy 1.25◦ × 0.9375◦

10 E3SM-1-0 tas LLNL, ANL, LANL, LBNL,
ORNL, PNNL, SNL, U.S.A 1◦ × 1◦

11 EC-Earth3 tas, tasmax, tasmin EC-Earth, 10 European
countries 0.7◦ × 0.7◦

12 EC-Earth3-Veg tas, tasmax, tasmin EC-Earth, 10 European
countries 0.703◦ × 0.703◦

13 FGOALS-f3-L tas IAP, CAS, China 1◦ × 1.25◦

14 FIO-ESM-2-0 tas, tasmax, tasmin FIO, China 0.9424◦ × 1.25◦

15 GFDL-ESM4 tas, tasmax, tasmin GFDL, U.S.A 1◦ × 1.25◦

16 GISS-E2-1-G tas, tasmax, tasmin NASA-GISS, U.S.A 1◦ × 1.25◦

17 INM-CM5-0 tas, tasmax, tasmin INM, Russia 2◦ × 1.5◦

18 IPSL-CM6A-LR tas, tasmax, tasmin IPSL, France 1.2676◦ × 2.5◦

19 MIROC6 tas, tasmax, tasmin MIROC, Japan 1.389◦ × 1.406◦

20 MPI-ESM-1-2-HAM tas, tasmax, tasmin MPI, Germany 1.865◦ × 1.875◦

21 MPI-ESM1-2-HR tas, tasmax, tasmin MPI, Germany 0.9375◦ × 0.9375◦

22 MPI-ESM1-2-LR tas, tasmax, tasmin MPI, Germany 1.875◦ × 1.875◦

23 MRI-ESM2-0 tas, tasmax, tasmin MRI, Japan 1.124◦ × 1.125◦

24 NESM3 tas, tasmax, tasmin NUIST, China 1.865◦ × 1.875◦

Note: In the variable column, tas is the average temperature, tasmax is the average maximum temperature, and
tasmin is the average minimum temperature.

http://www.nesdc.org.cn/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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2.3. Research Methodology
2.3.1. Delta Statistical Downscaling

The delta statistical downscaling method is a simple bias correction technique recom-
mended by the U.S. Global Change Research Program (see http://www.nacc.usgcrp.gov
(accessed on 6 June 2022)) that is easy to understand and operate, requires fewer factors, and
is widely used in a wide range of fields related to climate change impact studies [21,38,39].
For the temperature variables used in this study, the delta method was used to compare
the temperature of different periods of each simulation grid with the simulated average
temperature of the base period, calculate the absolute change in temperature in each period
of each simulation grid, and add the measured average temperature of each base period
with the change in the grid based on the spatial interpolation of the change to obtain the
temperature scenarios of different periods in the reconstruction grid [21]. The calculation
equation is as follows:

Tf = T0 +
(

TM f − TM0

)
(1)

where Tf is the grid temperature data reconstructed by the delta method, TM f is the
simulated grid temperature data for a certain period, TM0 is the simulated grid multi-
year average temperature data for the base period, and T0 is the measured multi-year
average temperature data for the base period. In this study, five interpolation methods
were considered: bilinear interpolation (BI), inverse distance weighted (IDW), kriging,
natural neighbor interpolation (NNI), and spline. The delta statistical downscaling process
is shown in Figure 2.
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2.3.2. Climate Model Accuracy Assessment and Multi-Model Ensemble

To effectively assess the accuracy and applicability of climate model forecasts in the
YRB, the evaluation metrics used were mean absolute error (MAE) [40], Taylor diagram-
based quantile S [41], spatial skills score (SS) [42], and temporal skills score (TS) [43]. The
closer the MAE and TS are to 0, the better the simulation ability of the model. The closer S
and SS are to 1, the better the simulation ability of the model.

The downscaling results of different GCMs differ, and the performance of multi-model
averaging is considered to be better than that of individual models [44,45]. In this study,
multi-model ensemble averaging of preferred climate models was performed using the
equally weighted ensemble averaging (MME) method commonly used in multi-model
prediction studies.

2.3.3. ET0 Calculation Model

The Hargreaves model, which can reveal the physics of the evaporative process, was
used for calculating monthly ET0 based on a future climate. It has been widely demon-
strated to be able to provide reliable estimations [31,46,47]. The Food and Agriculture
Organization of the United Nations (FAO) [4] also suggests it as the simplified standard al-

http://www.nacc.usgcrp.gov
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gorithm for ET0 under the missing meteorological observations as required by the Penman–
Monteith formula. Several improvements were made to the original equation [48,49]. The
form used in this study was published in 1985 [50] and expressed as follows:

ET0(Har) = 0.0023Ra(Tmax − Tmin)
0.5(Tmean + 17.8) (2)

where ET0(Har) is the ET0 calculated by the Hargreaves empirical formula (mm/d); Tmax
and Tmin are the mean maximum and minimum temperatures for the calculation time
interval (◦C), respectively; Tmean is the mean temperature for the calculation time interval
(◦C); and Ra is the zenith radiation (mm/d); the applicable time scale is 30 or 10 days.

2.3.4. Methods for Spatial and Temporal Trend Analysis

In this study, Morlet wavelet analysis was used to study the significant cycle changes
in ET0 time series at different time scales, which has significant advantages in revealing the
multiscale configuration and main climate change cycle [51]. Empirical orthogonal function
(EOF) analysis produces a set of orthogonal spatial and temporal patterns in the order
of explained variance, reducing the dimensionality of the analyzed system and finding
relatively few independent variables that can provide comprehensive information about
the variability of the raw data [52]. EOF analysis, supplemented by the North test [53],
was used to study the spatial and temporal patterns of the ET0 climate field in the YRB. In
addition, spatial changes in the near-, mid-, and long-term future relative to the historical
period were estimated by comparing historical long-term (1901–2014) annual ET0 averages
for different emission scenarios of ET0.

3. Results
3.1. Simulation Accuracy Assessment of Regional Temperatures and Multi-Model Ensemble

For the three temperature variables, tas, tasmax, and tasmin, out of all interpolation
methods, IDW exhibited the lowest overall error for all four different evaluation metrics,
and therefore, it was used to further assess the effectiveness of the temperature simula-
tions for all climate models (Figures 3–5). For tas, the climate models ACCESS-ESM1-5,
CMCC-CM2-SR5, and GISS-E2-1-G were ranked high for each evaluation index; for tasmax,
ACCESS-CM2, NESM3, and ACCESS-ESM1-5 were ranked high for each evaluation index;
for tasmin, ACCESS-CM2, ACCESS-ESM1-5, and GISS-E2-1-G were ranked high for each
evaluation index. Because some climate models do not have data on future emission
scenarios, considering the data integrity and actual fitting performance of climate mod-
els, tas selected ACCESS-ESM1-5, CMCC-CM2-SR5, and INM-CM5-0; tasmax selected
ACCESS-CM2, ACCESS-ESM1-5, and MRI-ESM2-0; and tasmin selected ACCESS-CM2,
ACCESS-ESM1-5, and MPI-ESM1-2-LR for the ensemble analysis of subsequent tempera-
ture patterns in the YRB. The fitting results of the simulated data of the selected climate
model for each variable and MME of the 1995–2014 period to the observed data from
93 ground-based meteorological stations (Figure 6) show that, although the simulated tas,
tasmax, and tasmin of the YRB by CMIP6 were slightly lower than the observed values,
most of the points were near the 1:1 line, and the R2 and regression coefficients were greater
than 0.9, with all passing the 99% confidence level test. The simulated and observed values
of the MME dataset were more concentrated than those of the three independent climate
models, and the R2 values of the three variables were 0.9418, 0.9226, and 0.9362, respectively
(Figure 6d,h,l), which reduced the errors caused by outlier points and slightly improved
the fit of the simulated data. The above analysis reveals that climate models have high
application potential in the YRB, and the CMIP6 multi-model ensemble is a good reference
value for predicting ET0 trends in the YRB under future climate scenarios.
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model’s fitting accuracy.
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Figure 6. Scatter density plots of measured and selected climate models and multi-model ensem-
bles simulating monthly temperatures in the Yellow River Basin at stations from 1995 to 2014.
(a−c) correspond to the fitting effects of ACCESS-ESM1-5, CMCC-CM2-SR5, and GISS-E2-1-G, re-
spectively, under tas variable; (d) corresponds to the fitting effect of MMEtas; (e–g) correspond to
the fitting effects of ACCESS-CM2, ACCESS-ESM1-5, and MRI-ESM2-0, respectively, under tasmax
variable; (h) corresponds to the fitting effect of MMEtasmax; (i–k) correspond to the fitting effects
of ACCESS-CM2, ACCESS-ESM1-5, and MPI-ESM1-2-LR, respectively, under tasmin variable; and
(l) corresponds to the fitting effect of MMEtasmin.
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3.2. Simulation Accuracy Assessment of Regional ET0

The scatter density plots of the actual monthly pan evaporation converted values
(ET0(pan)) and simulated ET0 values based on the multi-model ensemble-Hargreaves for-
mula (ET0(Har)) for the YRB from 1980 to 2014 (Figure 7) showed that the CMIP6-simulated
ET0(Har) for the YRB correlated well with the evaporation dish converted ET0(pan) at the
monthly scale, with a fitted line regression coefficient of 0.9439 and R2 of 0.8523, passing the
99% confidence level test. Although the Hargreaves formula partially underestimated ET0,
most of the points were near the 1:1 line, making them good reference values for calculating
the monthly ET0 under the conditions of missing meteorological observations in the future.
Therefore, future ET0 can be simulated using the Hargreaves formula.
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3.3. Temporal Trends and Cyclic Characteristics of ET0

Based on the 1 km high-resolution regional climate data generated by the delta statisti-
cal downscaling and multi-model ensemble, annual ET0 trends were estimated for the YRB
from 1901 to 2100 (Figure 8). The annual ET0 of the basin under the different future emis-
sion scenarios (2022–2100; SSP126, SSP245, SSP370, and SSP585) substantially increased
with time relative to the historical period (1901–2014), and all passed the 99% confidence
test. Among all scenarios, the SSP585 scenario had the most pronounced upward trend in
ET0, increasing at a rate of 22.9 mm/10a, reaching 1170.39 mm in 2100. It was followed
by the SSP370 scenario, which increased at a rate of 16.6 mm/10a, reaching 1120.42 mm in
2100. However, SSP245 and SSP126 scenarios had relatively small trends in ET0, increasing
at rates of 10.4 and 3.3 mm/10a, reaching 1062.71 and 987.68 mm in 2100, respectively. In
general, the annual ET0 in the YRB will rapidly increase with increasing levels of radiative
forcing in the future.
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Figure 8. Interannual variations in ET0 in the Yellow River Basin over the historical period (1901–2014)
and under different future emission scenarios (2022–2100; SSP126, SSP245, SSP370, and SSP585) (p is
an indicator of significance obtained by the F-test).

To comprehensively understand the temporal ET0 variations in the basin, Morlet
wavelet analysis was used to investigate the cyclic variations in ET0 in the YRB under the
four future emission scenarios (Figure 9). In the SSP126 scenario, three distinct peaks were
observed in the wavelet variance of ET0 in the YRB, corresponding to the time scales of 52,
35, and 8 years, with the most pronounced periodic oscillation of approximately 52 years
and a cyclic pattern of 34–38 years for ET0 in the basin under this time scale (Figure 9a,b). In
the SSP245 scenario, the ET0 in the YRB considerably oscillated for approximately 53 years,
and there was a cyclic pattern of approximately 34 years in the basin ET0 at this time
scale (Figure 9c,d). In the SSP370 scenario, the ET0 in the YRB considerably oscillated
for approximately 60 years, and there was a cyclic pattern of approximately 39 years
in the basin ET0 at this time scale (Figure 9e,f). In the SSP585 scenario, the ET0 in the
YRB substantially oscillated for approximately 48 years, and there was a cyclic pattern of
approximately 27–32 years in the basin ET0 at this time scale (Figure 9g,h).

3.4. Spatial Evolution Characteristics of ET0

The EOF analysis of ET0 was conducted under four future emission scenarios in the
YRB for 2022–2100, and the results were tested for modal significance using the North test,
which are presented in Table 2 and Figures 10 and 11. As presented in Table 2, the first three
modes of ET0 in SSP126 passed the North test with a cumulative variance contribution
of 88.68%; the first two modes of ET0 in SSP245 passed the North test with a cumulative
variance contribution of 90.18%; the first two modes of ET0 in SSP370 passed the North
test with a cumulative variance contribution of 94.32%; and the first mode of ET0 in SSP585
passed the North test with a cumulative variance contribution of 93.55%.
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Table 2. Main modes and contributions of ET0 under future climate scenarios in EOF analysis.

Climate Scenarios Corresponding Modes Variance Contribution Cumulative Variance Contribution North Test

SSP126
EOF1 68.12% 68.12% pass
EOF2 13.51% 81.63% pass
EOF3 7.05% 88.68% pass

SSP245
EOF1 81.75% 81.75% pass
EOF2 8.43% 90.18% pass

SSP370
EOF1 89.85% 89.85% pass
EOF2 4.47% 94.32% pass

SSP585 EOF1 93.55% 93.55% pass
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ses. The red dashed lines in (b,c,e,g) are the positive and negative dividing lines of the eigenvectors.

Under the SSP126 scenario, the first EOF modal eigenvector (EOF1) of ET0 in the YRB
was positive, reflecting a spatially consistent trend of ET0 across the region, and exhibited
an increasing trend from the northwest to the southeast, indicating a more pronounced
increase in ET0 in the lower YRB (Figure 10a). EOF2 and EOF3, which explained 20.56% of
the variations, reflected the secondary spatial characteristics of ET0 with opposite trends
from northwest to southeast and from north to south (Figure 10b,c). Combined with the
temporal coefficients (Figure 11a), PC1 and PC2 exhibited roughly the same trend, with an
increasing trend from 2022 to 2100, particularly after the 2150s when PC1 and PC2 remained
positive, indicating that ET0 remained high throughout this period. PC3 fluctuated at a
value of approximately 0, reflecting no significant trend in ET0. Under SSP245 and SSP370,
the EOF1 eigenvectors of ET0 in the basin were all positive, exhibiting spatial trends of
larger values in the upper and middle reaches and smaller values in the lower reaches, as
well as larger values in the central and western parts and smaller values in the northern
and eastern parts (Figure 10d,f). All the EOF2 eigenvectors exhibited a secondary spatial
trend of positive in the northwest and negative in the rest of the basin, with a relatively
larger increase in ET0 near the source area in the upper part of the basin and a relatively
larger decrease in ET0 in the south. Combined with the temporal coefficients (Figure 11b,c),
PC1 and PC2 exhibited an increasing trend from 2022 to 2100 under the SSP245 and SSP370
scenarios, and PC1 increased more than PC2, particularly after the 2060s, when PC1 and
PC2 always maintained positive values, indicating that ET0 remained high during this
period. The distribution of EOF1 eigenvectors for ET0 in the basin under the SSP585
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scenario was similar to that of EOF1 under the SSP245 scenario (Figure 10h), with an
increasing trend in the time coefficient PC1 (Figure 11d), indicating an increasing trend in
ET0 in the basin and a significant increase in ET0 after the 2060s.
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(c) SSP370, and (d) SSP585).

As observed from the spatial variations in annual ET0 in the YRB in the near-, mid-,
and long-term future relative to historical periods in the 21st century (Figure 12), the near-
annual ET0 growth was generally low on an annual scale, and the rate of ET0 change was
even negative in parts of Tai’an, Shandong Province, located in the lower reaches of the
YRB, at −6.09% under the SSP370 scenario. In the mid- and long-term future scenarios,
the ET0 rate of change gradually increased in the whole basin, and the areas with high
ET0 variations were primarily concentrated in the YRB source area and a small part of
the northern basin. In the lower reaches, the ET0 change rate was low, and the variations
were spatially distributed as high in the west and low in the east. As the radiative forcing
increased, the increase in ET0 became more significant, ranging from−3.08 to 50.78% under
SSP126, from −1.32 to 68.88% under SSP245, from −6.09 to 89.30% under SSP370, and from
−1.27 to 112.91% under SSP585. A maximum variation of 112.91% was observed in the
western part of the YRB in the long-term future (2081–2100) under the SSP585 scenario.
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4. Discussion
4.1. Influence of the ET0 Model

The models commonly used internationally for ET0 estimation can generally be di-
vided into four major categories [54]: temperature methods, such as the Hargreaves [50]
and Blaney–Criddle models [55]; mass transfer methods, such as the Rohwer [56] and
Penman models [57]; radiation methods, such as the Priestley–Taylor [58] and Jensen–Haise
models [59]; and synthesis methods, such as the Penman–Monteith model [4]. Although the
Penman–Monteith model is considered the standard method for calculating ET0, accurate
predictions of future ET0 in watersheds require more reliable meteorological data, and
the outputs of existing GCMs and downscaling methods typically have low modeling
accuracy for meteorological parameters such as wind speed, relative humidity, and radia-
tion. Compared to other models, temperature-based models have lower data requirements
and are computationally simple, and downscaling methods have a clear advantage in
modeling temperature [60,61], with correlation coefficients generally above 0.90 (Figure 6),
making them more widely applicable [31]. In addition, several studies have revealed strong
relationships between future ET0 and temperature in other basins or regions. Xing et al. [27]
attributed the increase in ET0 in the 21st century to an increase in temperature, and Ding
and Peng [31] found that global warming led to a change in the main sensitive factor for
potential evapotranspiration in the Loess Plateau from the average temperature in the his-
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torical period to the maximum temperature in the future period. The results of both these
studies theoretically supported the use of the temperature-based ET0 model. Ahmadi and
Baaghideh [25] explored the effect of climate change on ET0 in pistachio cultivation areas
in Iran using the Hargreaves model. Yan and Mohammadian [47] evaluated the perfor-
mance of the evaporation model based on the Hargreaves formulation using various fitting
methods, and the results showed that the simulation was satisfactory. Among the many
ET0 simplification methods, this study also selected the Hargreaves model, a temperature
method recommended by the FAO [4] and researchers [62,63], to estimate the spatial and
temporal characteristics of ET0 in the YRB under four future emission scenarios. The fitted
scatter density plot had an R2 of 0.8523 at the monthly scale (Figure 7). The Hargreaves
model can effectively simulate basin ET0; reflecting the rationality of the formula selection
in this study. Notably, this study only considered the effect of temperature on ET0, thus,
there may be some bias in the estimation results. The applicability of temperature models in
specific regions [64,65] should be improved, and the effect of other meteorological elements
on future ET0 [66] should be explored in future studies.

4.2. Spatial and Temporal Variations in Future ET0

As a result of global climate change, the hydrometeorological elements and hydrologi-
cal environment of the YRB have been significantly affected [67]. Although many studies
have examined the trends and attribution of ET0 in the YRB [36,68], previous studies were
based on site-scale and historical data. Studies on future water balance and hydrological
cycles in the YRB are relatively weak owing to the lack of studies on ET0.

This study predicted ET0 trends in the YRB for different periods under four future
emission scenarios based on CMIP6 temperature data with high spatial and temporal
resolution generated by the delta statistical downscaling method and the Hargreaves
model. This study revealed an overall significant increase in ET0 in the YRB from 2022
to 2100 (p < 0.01) (Figure 8), without the “evaporation paradox” [69], which is similar
to the future ET0 trends predicted by many studies [28,69,70]. Based on the Hargreaves
model (i.e., Equation (2)), the change in ET0 is proportional to tas and the difference
between tasmax and tasmin. With general global warming, tas, tasmax, and tasmin in
the YRB in the future period showed sudden increases relative to the historical period
(Figure S1). Therefore, the abrupt increase of ET0 can be attributed to the abrupt increase
of temperature-like variables in the future period [27]. Radiative forcing is expected to
stabilize at 2.6 W/m2 by 2100 for SSP126 and 8.5 W/m2 by 2100 for SSP585, and radiation
values and temperature are positively related to ET0 [4]. The positive effects of increasing
climatic factors, such as temperature and radiation, on ET0 in the YRB were greater than
the negative effects of other factors, and therefore, the latter trend was greater than the
former as emission concentrations increased in the YRB (Figure 8). The ET0 changes in the
YRB in the near-, mid-, and long-term future under different future scenarios exhibited
high spatial heterogeneity (Figures 10 and 12), with a spatial distribution high in the west
and low in the east, and the ET0 increase became more significant as the radiative forcing
scenario increased. Consistent with the results of Ding and Peng [31], the increase in ET0
was generally greater at higher elevations than at lower elevations in the basin, with the
most pronounced change in ET0 in the western part of the basin, reaching a maximum
variation of 112.91% compared to that in the historical period (Figure 12). According to the
ET0 equation (i.e., Equation (2)) and Figure S2, this change can be attributed to the largest
temperature difference between tasmax and tasmin in the western part of the basin. In
addition, as shown in the change in future precipitation in the YRB relative to the historical
period (Figure S3), precipitation in the western part of the basin showed less growth overall
and even negative growth in some phases. Warming and decreasing precipitation caused
an increase in dryness in the western part of the basin, and the warm-dry trend intensified.
Wang et al. [71] found that the evapotranspiration process was more sensitive to relative
humidity in the western part of the basin, and a decrease in relative humidity caused an
increase in evapotranspiration. Therefore, ET0 predictions based on the Hargreaves model



Remote Sens. 2022, 14, 5674 16 of 21

were greater in these areas. Water loss in the YRB is likely to accelerate in the future than in
historical periods, which will threaten the food and ecological security of the region; thus,
developing flexible mitigation strategies tailored to local conditions is critical to coping
with climate change [72].

4.3. Climate Model Uncertainty Analysis

Because of the differences in the feedback processes of different GCMs, a certain degree
of uncertainty exists in their response to future greenhouse gas emissions, and the actual
generalized optimal climate models and ET0 models cannot be determined [73]. Inevitable
uncertainties exist in future ET0 predictions stemming from climate scenarios, climate
models, and ET0 models [74], which greatly affect the confidence of the prediction results.

In response to the uncertainty of climate scenarios, this study selected the CMIP6
data, which had the largest number of participating models, the richest design of numer-
ical experiments, and the largest amount of simulated data available than other CMIP
generations for more than 20 years of the CMIP [37,75], initiated by the current Working
Group on Coupled Models (WGCM). Compared to previous generations (CMIP3, CMIP5,
etc.), CMIP6 uses a new scenario combining shared socio-economic pathways and typi-
cal concentration pathways to constrain multi-model predictions of key climate change
indicators such as global surface temperature and ocean heat content based on historical
observations, climate simulations, and climate sensitivity awareness, reducing uncertainty
in predictions and providing higher resolution and reliability [76], thereby making the
results more informative and time-sensitive than those based on CMIP5 for future ET0
studies, such as in Ahmadi and Baaghideh [25], Ding and Peng [31], Kundu et al. [6] and Le
and Bae [77]. In response to the uncertainty of climate models, this study selected 24 GCMs
with historical and future emission scenarios, which is more extensive than the studies of
Li et al. [70], which only used one climate model (HadCM3) under two emission scenarios
(A2 and B2), and Nooni et al. [1], which used only one climate model (CNRM-CM6). In
addition, this study reduced the uncertainty of future temperature data by preferentially
selecting climate models based on multiple interpolation methods, multiple evaluation
indicators, and equal weight sets on a downscaling basis. The MAE was controlled within
2.5 mm, S and SS were approximately 1, and TS was approximately 0, indicating very high
simulation accuracy (Table 3). Wang and Chen [24] reduced the spatial resolution of GCMs’
data to 0.5◦ based on the delta method, and the MAE of tas was in the range of 1.6–5.7 ◦C.
However, the MAE of tas in this study was controlled in the range of 2.2–2.6 ◦C and had a
higher spatial resolution of 1 km.

Although this study provides a comprehensive theoretical basis for future ET0 as-
sessments, the uncertainties in the downscaling of GCMs [78] and in the selection and
accuracy of ET0 models [74] may impact the prediction results. To improve ET0 estimates
in future studies, consideration should be given to the long-term goal of the United Nations
Framework Convention on Climate Change (Paris Agreement) to limit the increase in
global average temperature to less than 2 ◦C compared to the pre-industrial period and to
further efforts to limit it to less than 1.5 ◦C [79], as well as to achieve China’s 2060 carbon
neutrality and global carbon neutrality. Describing and quantifying the relative importance
of various uncertainty sources and the risks they pose in the assessment is important in
current and future climate change impact studies and water resource assessments that
should be strengthened to reduce prediction uncertainty.
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Table 3. Evaluation of the fitting error of downscaled climate models for monthly temperatures (tas/tasmax/tasmin) in the Yellow River Basin from January 1995 to
December 2014.

Models
Tas Tasmax Tasmin

MAE S SS TS MAE S SS TS MAE S SS TS

ACCESS-CM2 \ \ \ \ 2.675489 0.999877 0.889805 1.94 × 10−6 2.338917 0.997536 0.915941 0.001035
ACCESS-ESM1-5 2.196449 0.984745 0.926681 0.001749 2.497431 0.974297 0.901489 0.000464 2.295015 0.963689 0.917158 0.004465
AWI-CM-1-1-MR 2.442822 0.999548 0.909236 0.00021 \ \ \ \ 2.837847 0.965667 0.881039 0.003347
AWI-ESM-1-1-LR \ \ \ \ 2.789143 0.987086 0.876886 0.00268 2.470842 0.990019 0.907696 0.000134
BCC-CSM2-MR 2.548259 0.986199 0.904698 7.59 × 10−6 2.886012 0.979498 0.871659 0.000229 2.65175 0.985043 0.89462 0.00095

BCC-ESM1 \ \ \ \ 2.810414 0.954278 0.876325 0.00136 2.617258 0.98485 0.898064 0.005105
CanESM5 2.553748 0.965738 0.900803 0.002406 2.909749 0.980601 0.867035 0.007883 2.572498 0.970803 0.898088 0.000166

CMCC-CM2-SR5 2.273762 0.99501 0.920346 2.77 × 10−6 \ \ \ \ \ \ \ \
CMCC-ESM2 2.393424 0.990247 0.912677 0.001578 \ \ \ \ 2.496331 0.99373 0.905089 0.003913

E3SM-1-0 2.264877 0.990943 0.921241 0.000168 \ \ \ \ \ \ \ \
EC-Earth3 2.345391 0.986413 0.91518 0.001221 2.630697 0.98709 0.887931 0.005839 2.45174 0.980805 0.905882 3.75 × 10−5

EC-Earth3-Veg 2.518135 0.980041 0.901782 0.000944 2.760198 0.9801 0.877507 5.90 × 10−7 2.653931 0.976477 0.887252 0.005208
FGOALS-f3-L 2.392895 0.982742 0.912669 9.79 × 10−8 \ \ \ \ \ \ \ \
FIO-ESM-2-0 2.39042 0.986034 0.913127 0.000604 2.660444 0.989316 0.888524 0.003313 2.483592 0.98829 0.906382 3.56 × 10−6

GFDL-ESM4 2.415156 0.991749 0.911421 0.002598 2.702498 0.984136 0.884943 0.000381 2.479362 0.99217 0.902494 0.006418
GISS-E2-1-G 2.2951 0.992667 0.919373 2.03 × 10−5 2.67767 0.985282 0.885917 0.001097 2.363976 0.997295 0.916792 0.000367
INM-CM5-0 2.313318 0.994196 0.917327 5.45 × 10−5 2.688034 0.976984 0.884853 0.000201 2.494703 0.991961 0.904855 0.000691

IPSL-CM6A-LR 2.366487 0.986157 0.915197 2.53 × 10−5 2.709299 0.959537 0.88337 0.000268 2.433205 0.989767 0.908817 0.001011
MIROC6 2.538982 0.975222 0.903379 0.002419 2.944748 0.977422 0.86446 0.008182 2.534029 0.982993 0.902185 0.000318

MPI-ESM-1-2-HAM 2.426283 0.988153 0.911244 7.45 × 10−5 2.795797 0.97782 0.8774 0.001699 2.472226 0.993353 0.906509 0.000618
MPI-ESM1-2-HR 2.482515 0.985307 0.90934 0.000179 2.813033 0.984801 0.87578 0.000855 2.478992 0.990503 0.906471 2.68 × 10−5

MPI-ESM1-2-LR 2.440139 0.990895 0.912516 0.000608 2.825583 0.987112 0.87801 0.000333 2.44428 0.994861 0.909502 0.001426
MRI-ESM2-0 2.430481 0.99084 0.911775 0.000386 2.754317 0.989183 0.880503 5.16 × 10−7 2.472997 0.993823 0.907291 0.001735

NESM3 2.393744 0.988131 0.913526 0.00115 2.625448 0.989953 0.890104 8.44 × 10−5 2.475125 0.992128 0.907585 0.002775

Note: MAE, S, SS, and TS are mean absolute error, Taylor diagram-based quantifiers, spatial skill scores, and temporal skill scores, respectively. MAE is measured in ◦C, and the others
are dimensionless indicators. The closer MAE and TS are to 0, the better the simulation ability of the model; the closer S and SS are to 1, the better the simulation ability of the model.
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5. Conclusions

Based on the 24 GCMs in CMIP6 and temperature data with high spatial and temporal
resolution generated by the delta statistical downscaling model, this study assessed the
evolution of ET0 in the YRB under four emission scenarios (SSP126, SSP245, SSP370, and
SSP585) for the near (2022–2040), mid- (2041–2060), and long (2081–2100) term future. The
major conclusions are as follows:

The regionally high-precision climate data generated by delta statistical downscaling
based on multiple interpolation methods reduced the uncertainty in the GCM dataset. For
the YRB, tas selected the climate models ACCESS-ESM1-5, CMCC-CM2-SR5, and INM-
CM5-0; tasmax selected ACCESS-CM2, ACCESS-ESM1-5, and MRI-ESM2-0; and tasmin
selected ACCESS-CM2, ACCESS-ESM1-5, and MPI-ESM1-2-LR. The equal-weighted multi-
model ensemble had smaller mean absolute errors and higher correlation coefficients
than single climate models, and CMIP6 efficiently simulated the temperature and ET0 in
the YRB.

Compared with that of the historical period (1901–2014), the annual ET0 in the YRB
under different emission scenarios (SSP126, SSP245, SSP370, and SSP585) in the future
(2022–2100) substantially increased; the rate increased with the increase in emission con-
centration, and the ET0 in 2100 under the SSP585 scenario reached 1170.39 mm. Morlet
wavelet analysis revealed that ET0 in the YRB had cyclic patterns of 34–38, 34, 39, and
27–32 years under the SSP126, SSP245, SSP370, and SSP585 scenarios, respectively.

Compared with that in the historical period, the ET0 variation in the YRB in the
near-, mid-, and long-term future under different future scenarios exhibited strong spatial
heterogeneity. EOF analysis revealed that ET0 had positive EOF1 values under all four
emission scenarios, exhibiting a spatially consistent trend of ET0 variation across the region.
A maximum variation of 112.91% occurred in the western part of the YRB in the long-
term future (2081–2100) under the SSP585 scenario. Without a scientific response, future
increases in ET0 could further reduce the shortage of water resources in the YRB.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14225674/s1. Figure S1: Interannual variations in tas (a)/tasmax
(b)/tasmin (c) in the Yellow River Basin over the historical period (1901–2014) and under different
future emission scenarios; Figure S2: Spatial variations in the near (2022–2040; (a,d,g,j)), mid- (2041–
2060; (b,e,h,k)), and long (2081–2100; (c,f,i,l)) term future difference between tasmax and tasmin of
the Yellow River Basin relative to the historical period (1901–2014) under four SSP scenarios (SSP126,
SSP245, SSP370, and SSP585); Figure S3: Spatial variations in the near (2022–2040; (a,d,g,j)), mid-
(2041–2060; b,e,h,k), and long (2081–2100; (c,f,i,l)) term future annual precipitation of the Yellow River
Basin relative to the historical period (1901–2014) under four SSP scenarios (SSP126, SSP245, SSP370,
and SSP585).
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