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Abstract: The millimeter-wave frequency-diverse imaging regime has recently received considerable
attention in both the security screening and synthetic aperture radar imaging literature. Considering
that the minor systematic errors and alignment errors could still produce heavily corrupted images,
these complex-based imaging reconstructions rely heavily on the precise measurement of both phase
and amplitude of radiation field patterns and echo signals. In the literature, it is shown that by
leveraging phase-retrieval techniques, salient reconstruction images can still be acquired, even in the
presence of significant phase errors, which could ease the phase error calibration pressure to a large
extent in practical imaging applications. In this paper, in the regime of phaseless frequency-diverse
imaging, with the powerful feature inference and generation power of unsupervised generative
models, an end-to-end deep prior generative neural network is designed to achieve near real-time
imaging. The harsh imaging reconstruction with both the high radiation mode correlations and
extremely low scene compression sampling ratio, which are extremely troublesome to tackle for
generally applied matched-filter and compressed sensing approach in the current frequency-diverse
imaging literature, can still be preferably handled with our reconstruction network. The well-trained
reconstruction network is constituted by prior inference and deep generative modules with excellent
generative capabilities and significant prior inference abilities. Using simulation experiments with
radiation field data, we verify that the integration of phase-free frequency-change imaging with
deep learning networks can effectively improve reconstruction capabilities and improve robustness
to systematic phase errors. Compared with existing imaging methods, our imaging method has
high imaging performance and can even reconstruct targets under low compression ratio conditions,
which is somewhat competitive with current state-of-the-art algorithms. Moreover, we find that the
proposed method has good anti-noise and stability.

Keywords: real-time imaging; frequency-diverse imaging; phaseless imaging; deep prior genera-
tive network

1. Introduction

Frequency-diverse imaging has gained popularity in both metasurface antenna design
and synthetic aperture radar imaging [1–3] applications in recent trends. In principle,
the capacity to shape complicated radiative wave-fronts and couple energy from the
reference wave to the desired radiation pattern offers the potential to generate diverse beam
patterns with less hardware complexity than traditional electronic beam steering arrays.
The key feature of frequency-diverse imaging is that the scene information is encoded
onto a collection of spatially distinct radiation field patterns and reconstructed under a
forward imaging model. Despite that data acquisition in frequency-diverse imaging is
performed in an all-electronic manner, and no mechanical scanning is required, the complex-
based scene image reconstructions still rely on the precise measurement of both phase
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and amplitude of the echo signal, as any tiny antenna positional misalignments and field
pattern characterizations would degrade the phase coherence accuracy of an imaging
system, yielding phase error calibration techniques [4,5] to be leveraged.

In general, systematic errors including misalignment of the transmitter and receiver
apertures predominantly introduce phase error into the system, and antenna modula-
tion errors can contribute further to phase errors. In [6], various misalignment types,
including displacement, rotation, and direction on the performance of a sparse, bi-static,
frequency-diverse imaging system, are elaborately studied, and the impact of phase errors
are quantitatively evaluated. In [7], phase-retrieval techniques are leveraged to minimize
the impacts of phase calibration and alignment errors on image reconstruction. Given
that the complex-value-based image reconstruction places heavy requirements on accurate
system characterization of the RF cables and connectors, the technique to relax the phase
coherency requirement would be the integration of the frequency-diverse technique with
phase-retrieval techniques, as demonstrated in [8]. Note that phase retrieval has been
shown to be a viable technique in conventional microwave and millimeter-wave SAR
imaging and diagnostics applications [9,10].

In more recent research trends, a large body of literature on programmable compu-
tational meta-images used as trainable physical layers for data interpretation have been
demonstrated [11–14]. One such approach, proposed in [12,13], is based on the radiation
of illumination patterns specific to different types of scenes to be imaged, necessarily re-
quiring the use of reconfigurable systems for scene-dependent beam synthesis. Provided
prior knowledge about the nature of the scene to be imaged is available, these works have
shown that it is possible to limit the number of sequential captures necessary for image
reconstruction compared with the use of purely random patterns. Recent work in [14]
took this idea even further by directly integrating a model of the physical layer into an
artificial neural network in order to jointly learn optimal measurement and processing
strategies based on a priori knowledge of scene, task, and measurement constraints. Since
this “learned sensing” strategy enables one to minimize the acquisition of task-irrelevant
information, it is highly task-specific and requires a supervised learning technique.

Note that the primary challenge of the generally applied compressed sensing (CS)
[15] reconstruction techniques in the current frequency-diverse imaging literature is that
the success of the reconstruction process depends heavily on the randomness as well as
the condition number of the measurement matrix. Furthermore, when it comes to the
imaging scenario of extremely large dimensionality, the computation costs will drastically
increase given the needed memory and storage usage for matrix inversion and iteration. CS
techniques with an ill-conditioned measurement matrix still suffer from the prohibitively
high signal-to-noise ratio to maintain a preferable imaging performance.

Given that the deep learning technique has been broadly used in various applications,
such as image super-resolution, phase recovery, and scattering medium imaging [16–22], a
cascaded complex U-net (CCU-Net) model was put up in [23] as a solution to the complex
domain of phaseless-data inverse scattering problems (PD-ISPs). In [24], the method that
combines concepts from the projected gradient descent approach for solving linear inverse
problems using generative priors and the alternating minimization (AltMin) approach for
nonconvex sparse phase retrieval was proposed, and an analysis of sample complexity
using Gaussian measurements was provided to verify the performance. In [25], a generative
prior-assisted compressive phase-retrieval algorithm was proposed, and the effectiveness
for physically realizable coded diffraction pattern measurements in low measurements and
high noise regimes was demonstrated.

In this paper, we marry the concept of deep prior generative neural networks with
the phaseless frequency-diverse imaging technique. By employing a prior feature extractor
network [26], the underlying structural regularity of the target image is effectively learned.
Furthermore, with the knowledge of the extracted prior features, the generator network [27]
can produce images with high-quality texture structures. In particular, the scene image
amplitude data are described by the probability distribution defined by the generative
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network model; considering the observation data still contain the information of the original
target, the latent features describing the basic laws of the original image are extracted from
the compressed target amplitude data. To further manifest these extracted features, a latent
variable with a Gaussian distribution is employed, and the output of the generator network
is accessed with multiple convolutional layers.

With the goal of quickly converging to the local minima, the Adaptive Momentum
Estimation (ADAM) optimizer [28,29], with a tailored learning rate and relatively low
memory usage, is used to update the network weight parameters. Both the complicated
target FMNIST [30] data and the widely known sparse target MNIST [29] dataset are
utilized to train the network. The trained reconstruction network is therefore able to directly
recover the scene reflectivities with high fidelity and handle the large dimensionality of the
measurement matrix. The effectiveness and reliability of our PFDI-Net method is confirmed
through extensive imaging simulations using the collected radiation field data.

Traditional frequency-diverse computational imaging methods, such the CS and SBL
methods, suffer from issues with sluggish target reconstruction speed and inadequate use
of measurement data. Aside from that, the effect of phase error and phase calibration
brought on by improper recovery of acquired phase data on the initial target scene image
with echo data amplitude is also taken into consideration. In our present work, phaseless
imaging is leveraged to relax the phase coherency requirements of imaging system; deep
prior generative neural networks are designed to perform scene image reconstruction,
and the capability of the inference network could effectively extract the prior information
from the collected echo data and assist the generative network to resolve the scene image.
In this model, the information in the observations, which is disregarded in earlier models,
influences the learning of the characteristics and the creation of the original images.

Additionally, the suggested model can recover the test data through quick mapping
rather than iterative optimization thanks to inferred networks in order to completely utilize
the remaining information in the observations, to produce a more well-structured output,
and to restore the original image for the reconstructed imaging problem of huge scene
targets. In contrast to the existing works [23–25,31], the approach we propose here applies
deep networks to the sensing matrix rather than the specific expected scene. Consequently,
our approach is not scene-dependent and does not require the use of sequential mea-
surements relying on active reconfigurable antennas. We propose a system-dependent
but scene-independent method relying on a frequency sweep to generate a succession of
random illumination patterns that interrogate the scene to be imaged. Since the antenna
measurement modes are frequency-dependent, the superior image reconstruction capabil-
ity could therefore reduce the need for large operation bandwidth and, more importantly,
the antenna radiation efficiency could be enhanced in the antenna design process to some
extent so as to maintain a relatively high SNR level, which is crucial for near-field computa-
tional imaging. Via the optimized deep neural reconstruction network, the dimensionality
of the measurement matrix can be limited, and thereby the computational complexity of
the image reconstruction can be reduced; in addition, from the aspect of imaging system
implementation, the large needed operation frequency band and optimal designing burden
of current metasurface antennas’ front-end could be eased to some extent.

2. Imaging Principle

The frequency-diverse imaging system based on metasurface antennas initially ana-
lyzes the entire working mechanism of the system before constructing a suitable mathemat-
ical model. The basic concept of frequency-diverse imaging is to construct a subwavelength
resonant aperture structure to regulate the polarization characteristics of electric and mag-
netic dipoles and produce different polarization characteristics by designing subwavelength
basic resonant units with different geometric structures. As the driving frequency changes,
the radiation field excited from different subsets of resonators changes. Objects within the
scene scatter the incident fields, producing the backscattered components detected by the
waveguide probe at the transmitting antenna plane.
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The frequency measurements collected through the receiving probe are related to
the scene reflectivities by the measurement matrix (transfer function) constituted by the
product of the electric fields from the transmitting antenna and the receiving probe at each
position in the scene. The schematic diagram of a metasurface antenna imaging system
with a single transmitter and receiver is shown in Figure 1. The following proportionality
applies to all fields that propagate into the OEWG:

g( f ) ∝
∫

V
ETX(~r′; f ) · ERX(~r′; f ) · σ(~r′)d3~r′ (1)

where the transmitted and received fields are denoted as ETX(~r′) and ERX(~r′), respectively.
Scene target reflectivities are represented by σ. The conventional way of solving for an esti-
mate of the scene reflecectivity vector, σest, involves using various computational imaging
algorithms, from the single-shot matched filter technique to iterative compressed-sensing-
based methods. Different from complex-based, leveraging phase-retrieval techniques, σest
is reconstructed from intensity-only measurements of the signal scattered from the object,
|g|2. Considering the imaging system is both diffraction- and bandwidth-limited, a more
compact measurement equation to reconstruct σ can be expressed as:

|g|2 = |Hσ + n|2 (2)

The intensity-only measurements of the scene could significantly reduce the effect
of phase errors on image reconstruction. In Equation (2), g ∈ RM×1 is the intensity-only
measurements of the signal scattered from the object, and n ∈ RM×1 represents the noise
vector. In the simplest fashion, assuming additive white Gaussian noise, a matched filter
(MF) reconstruction suitably solves (2) as |σ̂|2 = |H†g|2, where † denotes the conjugate
transpose operator. Additionally, more advanced reconstruction algorithms such as the
least squares algorithm and regularization methods are also widely used. In general,
these direct and iterative image reconstruction techniques rely heavily on the matrix
inversion, in which the measurement mode orthogonality and scene sampling ratio play
a key role. Additionally, a minor perturbance induced by phase error could drastically
damage the image reconstruction. In this consideration, in the framework of phaseless
imaging, image reconstruction is performed with a deep reconstruction neural network;
the effect of measurement mode correction and extremely low scene sampling ratio on
image reconstruction can be reduced in comparison with conventional complex-based,
matrix-inversion-based reconstruction techniques.

MAA

Scene Target

Echo SignalcELC Element Probe

 Reconstructed 

Target

Terminal

Real-Time 

Imaging

Figure 1. Schematic diagram of the frequency-diverse imaging system.
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3. Imaging Network Model

In the deep learning literature, GAN has recently performed well in describing the
prior distribution of imaging targets. The network is capable of generating very clear and
realistic images, and it is even difficult for the human eye to judge whether the images
are real or fake. At the same time, VAE is also a very effective generative model, which
can extract latent features of descriptive data through an effective inference network. This
paper integrates these two models well, which makes the model proposed in this paper
have its own advantages. The characteristics of the two are introduced separately below.

3.1. Feature Inference Network

As a form of deep generative models, a variable autoencoder is a generative net-
work structure based on variable Bayesian inference, proposed by Kingma et al. in 2014.
Unlike traditional autoencoders that describe the bit space numerically, it describes the
observations of the bit space in a probabilistic way, showing great application value in
data generation.

A variational autoencoder essentially learns the hidden relationship between the input
variable x and the hidden variable z. Given x, the conditional probability distribution of
the hidden variable is p(x|z). After learning this distribution, different samples can be
generated by sampling p(x|z).

From a probabilistic point of view, we assume that any dataset is sampled from some
distribution p(x|z). Z is a hidden variable representing some internal feature. For example,
pictures x and z of a handwriting dataset can represent some settings, such as bootstrap
size, writing style, bold, italics, etc., which fit some prior distribution p(z). Given a
particular hidden variable z, we can sample a series of generated samples from the learned
distribution p(x|z) that have a commonality denoted by z.

When the distribution p(z) is known, we want to learn to generate a probabilistic
model p(x|z); here, we can use maximum likelihood estimation: a good model should have
a good chance of producing the observed samples x ∈ D. If the generative model p(x|z)
is parameterized with θ, for example, we learn p(x|z) through a neural network that is a
decoder, then θ is the weights w, b, etc., of this decoder, so the optimization goal of the
neural network is:

max
θ

p(x) =
∫

z
p(x|z)p(z)dz (3)

Since z is a continuous variable, the above integral cannot be converted to a discrete
form, making it difficult to directly optimize the above formula. Using the idea of varia-
tional inference, use the distribution qφ(z|x) to approximate p(x|z), that is, the distance
between the two needs to be optimized:

min
φ

DKL(qφ(z|x)|p(x|z)) (4)

KL divergence DKL is a measure of the gap between distributions q and p, defined as:

DKL(q|p) =
∫

x
q(x) log

q(x)
p(x)

dx (5)

Strictly speaking, the distance is generally symmetric, while the KL divergence is not,
and the KL divergence is expanded as:

DKL(qφ(z|x)|p(z|x)) =
∫

z
qφ(z|x) log

qφ(z|x)
p(z|x) dz (6)
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For the optimization objective function L(θ, φ), our goal is to maximize the likelihood
probability max p(x) or max log p(x), so we can use max l(θ) to achieve this. As shown in
the following formula:

L(θ, φ) =
∫

z
qφ(z|x) log

pθ(x, z)
qφ(z|x)

= −DKL(qφ(z|x)|p(z)) +Ez∼q[log pθ(x|z)] (7)

Therefore, the encoder network parameterizes the qφ(z|x) function, and the decoder
network parameterizes the p(x|z) function, it can be obtained by computing the KL di-
vergence between the decoder output distribution qφ(z|x)) and the prior distribution p(z)
and by the loss function of the likelihood probability log p(x|z) between the decoder targets
to optimize L(θ, φ).

3.2. Deep Generative Adversarial Network

With the development of deep learning, people hope to find richer hierarchical models
to better describe the probability distribution of various complex data encountered in
real life. By far the most successful applications of deep learning are models that map
high-dimensional informative sensor inputs to class labels. These remarkable successes
are mainly based on backpropagation and dropout algorithms, which use piecewise linear
functions and can generate particularly efficient gradients. Because deep generative models
will suffer from some problems, such as many complex high-dimensional probability
calculations, it is difficult to approximate in maximum likelihood estimation and similar
learning strategies, and it is even more difficult to use piecewise linear functions in the
generation process to generate efficient gradient.

In the proposed generative adversarial network framework, the generative model
competes in the training phase with an adversary, which is a discriminative model, which
determines whether a sample comes from the generative model’s distribution or the learned
data distribution. The generative model can be viewed as a counterfeit-like team trying to
produce counterfeit money and deceive the police by using it; the discriminative model
is like the police, trying to detect counterfeit money. In the process of confrontation, both
sides try to improve their methods by learning until they can not tell the difference between
the real and the fake.

For the generator to learn to describe the distribution pg of the data x, define a prior
distribution pz(z) of the input noise variable, and then denote a mapping from z to the
data space as G(z; θg). Moreover, define another multilayer perceptron D(x; θd) capable
of outputting a single scalar. D(x) represents the probability that x comes from the data
rather than the generator G(·) by training D(·) to maximize the probability of assigning
the correct label to the generated samples from G(·) and samples from the real data. At the
same time, G(·) is trained to minimize log(1−D(G(z)), that is, by simultaneously training
D(·) and G(·) to play the following two-player max-min game V(G, D):

min
G

max
D

V(G, D) = EX∼Pdata(x)[log D(x)] + Ez∼pz(x)[log(1− D(G(z)))] (8)

Essentially, under nonparametric conditions, the training criterion enables the genera-
tive distribution G(·) to accurately describe the data distribution when D(·) is sufficiently
discriminative. In practical applications, iterative numerical methods are generally used to
implement the game, and the optimization process usually takes l steps D(·) optimization
and one step G(·) optimization. Alternating between the two results in that as long as G(·)
changes slowly enough, D(·) can stay near its optimal solution.

3.3. PFDI-Net: Architecture and Training

For VAE, when it is simply used to generate images, the generated images are more
regular but blurred; for GAN, its training process is not so stable, and it is prone to problems
such as mode collapse or gradient disappearance. In order to solve the respective problems
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of VAE and GAN, this paper adopts the combined use of the two models to give full play
to the advantages of the two models to compensate for their respective shortcomings.

From the perspective of VAE, the target generated by VAE is relatively vague, and a
large part of the reason is that it does not know how to better define the loss between the
generated target and the real target. The traditional VAE will define the loss by comparing
the pixel difference between the generated target and the real target, and then take the
mean value, which results in the generated target being blurred. To solve this problem, we
can add a discriminator to the VAE. At this time, when the decoder of the VAE generates
the target, not only should the loss between the generated target and the original target be
small but also the generated target should be deceived by the discrimination. The addition
of the discriminator forces the decoder of the VAE to generate clear targets.

From a GAN perspective, the generator of a traditional GAN receives guidance from
the discriminator when generating targets, thereby gradually generating realistic targets
as training progresses. In a simple GAN structure, however, since the capabilities of the
generator and discriminator are difficult to balance, it is easy to cause instability in training.
One of the important reasons is that the generator of GAN has never seen a real target and
tries to generate a target directly from a large amount of data. At this time, the ability of the
generator has difficultly competing with the discriminator to achieve confrontation. In this
case, we usually need to adjust the parameters of the generator multiple times or train for a
long time to make the model converge. The function of adding a VAE encoder to GAN is
to add a loss to the generator, that is, the loss between the generated target and the real
target, which is equivalent to telling the generator what the real target looks like, and the
generator has an additional loss as a guide; it will be more stable when training.

In the proposed PFDI-Net, as shown in Figure 2, the imaging network mainly consists
of three main components: encoder, generator, and discriminator. Specifically, the encoder
consists of four fully connected layers with 500, 1000, 500, and 40 neurons, each layer
activated by the Relu function. The generator has four convolutional layers with channels
of 256, 128, 64, and 1, a corresponding convolution kernel of 3× 3, 4× 4, 4× 4, 4× 4, and a
fully connected layer of 784 neurons sent to the convolutional layer after receiving the
feature hidden vector extracted by the encoder for feature learning. Four convolutional
layers and a fully connected layer form the discriminator. The structure of the generator
and discriminator is symmetrical, with the four convolution layers having channels of 1, 64,
128, and 256, and the convolution kernel sizes are all 4× 4. The only fully connected layer
helps the discriminator’s output discrimination probability. It should be emphasized that
Leaky Relu is used in all imaging network layers to activate the function. The Leaky Relu
function is a variant of the traditional and well-known Relu activation function; solving
the problem of Relu function in the negative interval improves the model training and
test fitting ability because the derivative is always nonzero and reduces the development
of silent neurons in order to produce a better generation effect. The above content was
updated and added in the revised version of the manuscript.

The PFDI-Net proposed by us, and the overall structure of the imaging network
model, is shown in Figure 2, which is made up of three primary components—an encoder,
a generator, and a discriminator. Where σ represents the original scene target, σ̂ represents

the reconstructed scene target, |g|2 represents the echo measurement, ˆ|g|2 represents
the reconstructed echo measurement, and z represents the original scene compressed
by the encoder. The hidden vector of the target feature, ε , represents the discriminator
output probability: output 1 is true; output 0 is false. Additionally, the associated loss
varies for each component since the generative model is represented by the mapping
G : RK×1 → RN×1, where K is the dimension of the feature latent vector and N is the
number of grid cells in the imaging space; moreover, K � N. We assume that the scene
target in Equation (3) is σ ∈ RN×1 and that the inferred model mapping relationship is
E : RN×1 → RK×1. To better describe the latent features of the scene target image data, we
introduce a Gaussian random latent variable z ∈ RK×1, so that there will be a generative
model: pθ(σ, z) = pθ(σ|z)p0(z). Among it, p0(z) ∼ N(0, I) is the prior distribution of z,
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which is used to describe the cognition of the data. pθ(σ|z) is described by a generative
network G(·), and θ contains all the parameters for generating the network.

Encoder Generator

Discriminator

z

L1

L2

Original 

Target

Reconstructed 

Target

ε
 

Feature latent 

vector

ˆ
2

gσ̂

Figure 2. Model diagram of PFDI-Net.

With the target scene picture σ ∈ RN×1 as a starting point, the encoder condenses
the inferred features to create a low-dimensional latent vector z = E(σ) ∈ RK×1, which
is then supplied to the generator for imaging training to create a new sample G(z) that
closely resembles the target scene. Following the aforementioned training procedure,
the model is stored for quick recall of test imaging. We suggest minimizing the following
objective function in order to be able to extract information exclusively from the magnitude
measurements in (9) and to more accurately reconstruct the target image:

σ̂ = arg min
∥∥∥|g|2 − |Hσ|2

∥∥∥2
(9)

Finding the target σ in (10), which ideally only comprises samples taken from the
image distribution, with σ = G(z), and falling within the range of the generator, is our
goal. In the low-dimensional latent representation space, the reduction technique in (10)
can be expressed equivalently as follows:

ẑ = arg min
z∈Rk

∥∥∥|g|2 − |HG(z)|2
∥∥∥ (10)

The idea behind this optimizer is to modify the latent representation vector z until the
generator generates an image σ that is consistent with (10). Due to the modular operator
and nonlinear deep generative model, the optimization process in (10) is nonconvex and
nonlinear. To locate the local minimum |g|2, we use a gradient descent approach. It is
important to note that when entering the method as a pretrained model, the generator’s
weights are always fixed. Through the forward pass of the generator G(·), z is solved to
provide the estimated image. The desired result is σ = G(z), and the ideal z, denoted ẑ, is
the one that has the minimum reconstruction error.

For parametric inference, the true posterior distribution of the latent variable p(z|σ, g) =
pθ(σ, g|z)p0(z)/(

∫
p(σ, g, z)dz) is very complicated. Therefore, it is difficult to obtain the

desired explicit solution by expected maximum (EM), mean field variance Bayesian, Monte
Carlo sampling (MCMC), and other methods. Furthermore, the number of samples to
be processed in compressed sensing tasks is usually very large, which presents a test for
the algorithm to handle large sample data. In view of this, the algorithm combines the
characteristics of VAE, and effectively solves the parameters of the model by combining the
prior inference network E(·) and the generative network G(·).
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Inference qφ(z|g) through the prior feature network, i.e., the variational distribution of
the output of the deep neural network has sufficient statistics to approximate the complex
and true posterior distribution p(z|σ) of the hidden variable z:

qφ(z|g) = N (µz(g), diag(σ2
z (g))) (11)

where it represents a Gaussian distribution whose mean is qφ(z|g) = N (µz, diag(σ2
z )),

the diagonal covariance matrix is diag(σ2
z ), and the vector diag(σ2

z ) is its diagonal elements.
Any nonlinear function can be implemented µz(g) and diag(σ2

z )(g), such as a deep neural
network, and φ contains all the parameters of the inference network.

The parameters of the prior inference network E(·) and the generative network G(·)
are jointly optimized by the following cost function:

L1(E, G) = min
E,G
‖|g| − |HG(E(g))|‖2

2 + λKL(qφ(z|g)||p0(z)) (12)

In Equation (12) above, the first term describes the error between the generated mea-
surements and the actual measurements, while the second term is the prior regularization
constraint on the implicit vector z, and the KL divergence is used for regularization.

To better enable the generated network to map the hidden variable z to the space of
the original image, an adversarial learning method is adopted in this paper. The generator
G(·) and the discriminator D(·) train the imaging network alternately with the following
min–max cost function:

L2(E, G) = min
G

max
D

Eσ∼Pdata(σ)
[log D(σ)] + Ez∼qφ(z|g)[log(1− D(G(z)))] (13)

By alternately optimizing the cost functions L1 and L2 , the above imaging network
model can be well trained by Algorithm 1.

Algorithm 1 PFDI-Net training algorithm.

Input: H: measurement matrix; T: maximum training epochs; {g1, g2, · · · gm} : Echo signal
testing dataset; {σ1, σ2, · · · σn} : Scene target training dataset.

1: Initialize E(·), G(·), D(·);
2: Iteration via a gradient descent scheme:
3: for T do
4: Sampling a batch of s training samples {σ1, σ2, · · · σs}
5: For the i-th training sample , calculate |gi|2 = |Hσi|2
6: Regarding the cost function (12) , the inference network E(·) and the generative

network G(·) are updated by the ADAM optimization algorithm.
7: The discriminator network D(·) is updated by the ADAM optimization algorithm

with respect to the cost function : − 1
s ∑s

i=1[log D(σi) + log(1− D(G(E(gi))))].
8: The generator network G(·) is updated by the ADAM optimization algorithm with

respect to the cost function : − 1
s ∑s

i=1[log(1− D(G(E(gi))))];
9: end for

10: σ̂ = G(E(ĝi))
Output: The target reflection coefficient estimate σ̂.

3.4. Measured Field Data

The measured radiation field data in this section serve to validate the proposed PFDI-
Net approach. In this portion, a two-dimensional parallel-plate waveguide metasurface
antenna with a waveguide slot feeding mechanism is designed and constructed to show
the effectiveness of CI. By using the near-field scanning method, or measurement matrix,
to measure the radiation field of various frequencies, a distance of 0.5 m must separate
the scanning plane from the antenna platform. The image can then be recreated using the
measured measurement matrix. Use an open-waveguide (OEWG) probe as the receiving
antenna, including the panel-top probe configuration, to provide appropriate backscattered
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signal collection from all feasible directions and all frequencies. The antenna panel is
250 mm2 in size, has a dielectric constant of 3.66, and a loss tangent of 0.003. The upper
conductor of the waveguide uses 125 × 125 cELC metamaterial resonators, each of which
has a Q value between 50 and 60. The substrate thickness between the copper ground
layer and the conductive copper metamaterial hole is 0.5 mm. Table 1 displays the system
specifications of antennas.

Table 1. Main system parameters of metasurface antenna.

Parameters Values

Operation bandwidth 33∼37 GHz
Antenna panel size 250× 250 mm2

Number of resonance units 125× 125
Frequency sampling interval 10 MHz

Field of view (Azimuth) −60◦∼60◦

Field of view (Elevation) −60◦∼60◦

Azimuth sampling interval 2◦

Elevation sampling interval 2◦

Dimensions of T 400× 3721

The imaging experiment is based on the simulated metasurface antenna radiation field
pattern data and imaging scene. The operation bandwidth of the antenna is 33∼37 GHz,
the frequency sampling interval is 10 MHz, and the pattern of each frequency point is
sampled along the two-dimensional spherical coordinate system of elevation and azimuth.
The size of the field of view (FOV) is the elevation angle (−60◦∼60◦), and the sampling
interval is 2◦; the azimuth angle sampling line of sight is (−60◦∼60◦), and the sampling
interval is 2◦, so the size of the original pattern T is 400× (61× 61).

The original target that contains the sparse target and extended target is employed to
qualitatively evaluate the imaging ability of the measurement matrix for the scene. In order
to qualitatively evaluate the ability of the measurement matrix to image the scene, the image
containing the point-scattering target in the same dimension as the measurement matrix is
used as the original image. It should be emphasized that the measurement matrix at this
time is the pattern data, not the metamaterial in the actual imaging space. The measurement
matrix is formed by the radiated field of the aperture antenna.

Figure 3 shows the singular value curves corresponding to the selected measurement
matrix in different measurement modes, wherein the measurement modes are 400, 200,
and 100 corresponding to M/N of 0.1, 0.05, and 0.025, respectively. In general, the number
of nonzero singular values determines the accuracy of scene reconstruction using the
pseudo-inverse operation, in the presence of measurement noise. The smaller singular
value of the denominator term will diverge when the inversion operation is performed,
which makes the reconstructed solution of the matrix inversion seriously deviate from the
optimal solution.

(a) (b) (c)

Figure 3. Singular values corresponding to the number of different measurement modes in the
measurement matrix. (a) 400 (M/N = 0.1). (b) 200 (M/N = 0.05). (c) 100 (M/N = 0.025).
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3.5. Data Preparation

This paper uses the MNIST and Fashion-MNIST datasets to construct the target
datasets required for our simulation tests. The original target scattering coefficients and
associated echo measurement magnitudes should be included in the target datasets. Both
datasets consist of 60,000 training images and 10,000 testing images, each of size 28 × 28.
The initial images of the two datasets built above were modified to 61 × 61 in accordance
with the experimental demands and the actual imaging specifications of the metasurface
antenna used in the preceding section. Consider this adjustment to be an image made
up of a number of scatter points with random scatter coefficient values between 0 and 1,
and think of it as such. In order to create the datasets needed for our imaging, referred
to as PFDI-MNIST and PFDI-FMNIST, respectively, 20,000 target images from each of the
two datasets mentioned above were chosen. Each dataset contains the amplitude value of
the echo measurement and the original target picture. The PFDI-MNIST dataset and the
PFDI-FMNIST dataset under imaging settings were generated by the imaging algorithm
and were separated into 70% training set, 20% validation set, and 10% test set.

Additionally, the Adam optimization algorithm is employed with a learning rate of
0.0001 and a batch size of 256 to optimize the complete imaging network model utilizing
mean square error (MSE) and KL divergence as loss functions, and we employ the imaging
quality metrics Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure
(SSIM), which are noted alongside imaging outcomes. The imaging model is configured to
train for 1000 epochs, and the latent vector z dimension is set at 40. It takes a lot of time
to validate findings and generate them after each training period, but it is necessary to
track network performance. Following the completion of the network training, the network
model is saved, the measured scene echo measurement value’s amplitude value is fed into
the network, and the network model is called to produce the target image in real time.

The batch processing of the above data sets is carried out on the MATLAB platform.
The network model is implemented on python 3.7 using tensorflow version 2.5 and is
trained on a desktop computer with Nvidia 3070 Ti GPU and CUDA version 11.1. The desk-
top computer is ×64 compatible, with a Windows 10 64 bit operating system, Intel (R) core
(TM) i7-10700 cpu@ 2.90 GHz, and 32 GB memory.

3.6. Numerical Tests

The PFDI-Net algorithm that we proposed can adopt a combination of an a priori in-
ference model and generative adversarial model and performs imaging simulation training
on the common sparse target image dataset PFDI-MNIST and the extended target dataset
PFDI-FMNIST, respectively, to test the performance of our system’s target power genera-
tion capability. In order to conduct numerical experiments and performance evaluation
more logically, we separately selected three targets for imaging comparisons in the above
datasets. The measurement mode of the measurement matrix is selected as 400, which
is equivalent to a scene information sampling rate M/N of 0.1, and the imaging result is
shown in Figure 4.

It should be emphasized that the imaging simulation process, with an emphasis
on the application of our suggested approach, takes noise-free scenarios into account
throughout. The experimental results demonstrate that the proposed algorithm can extract
the prior information of the target contained only by inputting the amplitude value of
the echo measurement value and cannot only reconstruct the regular sparse target but
can also successfully restore the extension target under the condition of a fixed number of
measurement modes and scene compression ratios. Additionally, the algorithm that we
proposed can generate high-quality rebuilt images.
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Origin Target

PFDI-Net

Origin Target

PFDI-Net

Figure 4. Reconstruction results from PFDI-Net with different scene target.

To further assess the efficiency of our suggested approach in reconstructing pictures
using just amplitude information in the phaseless state, we ran a number of simulation
experiments. First, the performance of our suggested approach is evaluated using the
PFDI-Net in sparse and extended target datasets at various scene information compression
ratios. The results are displayed in Figures 5 and 6. It can be observed that our model
can still provide a reconstruction target with a distinct target contour and good resolution
when M/Ns are as low as 0.025, 0.05, and 0.1. Our approach passed the test even when the
information compression ratio is lower, demonstrating strong resilience and efficiency.

Origin 

Target
PFDI-Net SBL

M/N=0.025

M/N=0.05

M/N=0.1

TCAI-CNN CCU-Net

Figure 5. PFDI-MNIST: Reconstruction results in four imaging algorithm with different scene infor-
mation sampling ratios.
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Origin 

Target
PFDI-Net SBLTCAI-CNN CCU-Net

M/N=0.025

M/N=0.05

M/N=0.1

Figure 6. PFDI-FMNIST: Reconstruction results in four imaging algorithm with different scene
information sampling ratio.

Then, the imaging outcomes of our suggested approach for resolving the inverse
problem are contrasted with those of a traditional sparse Bayesian learning (SBL) algorithm,
a cascaded complex U-net (CCU-Net) model [23], and a Terahertz Coded-Aperture Imaging
network (TCAI-CNN) [21]. In Figures 5 and 6, although the TCAI-CNN reconstruction
imaging results show the approximate shape, they cannot capture the detailed features
specific to the target. Additionally, the original target contour features cannot be precisely
reconstructed in the CCU-Net imaging results, the SBL algorithm is unable to operate
in the case of extremely low compression ratios, and the imaging outcomes essentially
show no details of the original target. In contrast, the target contour information could
be perfectly retrieved with our method, and our approach comes closer to the actual
scenario in the target building. In general, in comparison with the other three methods,
while the other three approaches can recreate the target’s overall shape, the details are still
missing and come with some strong artificial points. Our PFDI-Net approach yields higher
resolution results with more accurate scattering intensity and a sharper target profile under
all M/N situations. Moreover, the imaging quality steadily improves as M/N increases.
The algorithm that is proposed by us offers higher resolution results with more realistic
scattering intensities and sharper target contours than the other three algorithms under all
M/N conditions.

Additionally, the proposed algorithm offers imaging more quickly than the classical
SBL algorithm. According to an average of 10 experiments for each approach, Table 2
displays the time needed for various techniques. Given how easily neural-network-based
methods may be parallelized, we also monitor the reconstruction time while using GPUs to
implement the suggested method. The end-to-end network, on the other hand, can directly
translate the echo signal’s amplitude value into the target after compression, whereas
classical imaging methods need numerous iterations to predict a viable solution. Therefore,
it is not unexpected that generative model-based approaches are faster.
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Table 2. Imaging runtime.

Methods Values

SBL 1.02 s
CCU-Net [23] 0.40 s

TCAI-CNN [21] 0.29 s
PFDI-Net (CPU) 0.23 s
PFDI-Net (GPU) 0.04 s

In order to reflect the imaging performance of the respective algorithms, we further
use image Peak Signal-to-Noise Ratio (PSNR) and the Structure Similarity Index Measure
(SSIM) value with the reference target image as two criteria to quantitatively evaluate the
quality of the recovered targets, as illustrated in Figures 7 and 8; as the M/N varies for
PSNR in Figures 7a and 8a, our approach produces greater reconstruction quality and is
numerically superior to the other three methods. In terms of SSIM in Figures 7b and 8b,
our method is likewise significantly superior, thus attesting to the success of the PFDI-Net
approach in reconstructing the intricate scene targets. Compared with previous imaging
methods, our PFDI-Net is added to the feature prior inference network model. Due to
the learning ability of the prior inference network, it can better learn the real distribution
of the targe, and gradually generate realistic targets with training. No matter the M/N,
the proposed approach performs better than the SBL, TCAI-CNN, and CCU-Net algo-
rithms. The results demonstrate how effective the PFDI-Net approach is at reconstructing
complicated scene items.

(a) (b)

Figure 7. PFDI-MNIST: Imaging results in two imaging algorithm with different scene information
sampling ratio. (a) PSNR performance. (b) SSIM performance.

(a) (b)

Figure 8. PFDI-FMNIST: Imaging results in two imaging algorithm with different scene information
sampling ratio. (a) PSNR performance. (b) SSIM performance.

4. Discussion

The PFDI-Net algorithm that we proposed displays preferable imaging capacity under
noise-free settings compared with the widely used classical MF method for addressing
inverse issues and the SBL method using sparse prior information. Imaging mistakes can
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be modified adaptively. We incorporate additive noise into the dataset generation process
to further assess the proposed algorithm’s resilience and noise resistance.

The PFDI-MNIST and PFDI-FMNIST target datasets have scene information sampling
rates set to 0.1. We separated the dataset into three noise-free scenarios, namely SNR = 0
dB, SNR = 5 dB, and SNR = 10 dB, after 1000 rounds of testing in order to analyze noise
and its effects on network performance. Both datasets are subjected to both qualitative and
quantitative assessments. The results of the image reconstruction are displayed in Figure 9.
According to the Figure 8, the proposed approach can rebuild not only standard sparse
targets but also extended targets under varying SNR and fixed scene compression ratio
circumstances. Additionally, when the scene information sampling rate is 0.1, the proposed
approach also produces high-quality reconstruction images with improved anti-noise
performance and resilience. PSNR and SSIM are quantitatively determined using the
proposed approach at various SNR, and the results are displayed in Figure 10.

Origin Target

PFDI-Net

(20dB)

PFDI-Net

(10dB)

PFDI-Net

(5dB)

PFDI-Net

(0dB)

Figure 9. Reconstruction results from PFDI-Net with different SNR.

(a) (b)

Figure 10. Imaging results with different SNR. (a) PSNR performance. (b) SSIM performance.

These findings demonstrate that our network can be tested with or without noise in
the training data with little to no influence on target reconstruction accuracy. In the event
of inadequate antenna front-end hardware design, our suggested approach generally com-
pensates for the drawbacks of real-time frequency-diverse imaging. This study highlights
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the significant potential of generators using target prior knowledge in the area of phaseless
frequency-diverse imaging with good efficiency and resilience.

5. Conclusions

This study propose a noniterative method to perform a real-time phaseless frequency-
diverse imaging method which incorporates the adversarial generative model with the prior
inference model. The intensity-based echo signal can be well resolved through the proposed
deep prior generative neural network. Both the inference model and conditional prior
model are embedded in the generative model to preferably define the original data space.
Simulations results show that the proposed deep reconstruction network can perform near
real-time, high-quality scene object reconstruction in both the classical sparse and extended
target scenarios, even under extremely low scene sampling ratios and SNR levels, yielding
a relatively narrow needed operation frequency band and alleviating the optimal designing
burden of current metasurface antennas’ front-ends. Moreover, the proposed method has
some advantages in terms of imaging efficiency and robustness. With these advantages,
this method has potential applications in nondestructive testing, anti-terrorism inspection,
and terminal guidance. Future works will focus on the practical imaging demonstrations
with the dedicated trained deep reconstruction network and experimentally verifying our
method with the measured scene target datasets and echo signals.
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