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Abstract: Unmanned Aerial Vehicles (UAVs) can be employed as low-altitude aerial base stations
(UAV-BSs) to provide communication services for ground users (GUs). However, most existing
works mainly focus on optimizing coverage and maximizing throughput, without considering the
fairness of the GUs in communication services. This may result in certain GUs being underserviced
by UAV-BSs in pursuit of maximum throughput. In this paper, we study the problem of UAV-assisted
communication with the consideration of user fairness. We first design a Ratio Fair (RF) metric by
weighting fairness and throughput to evaluate the tradeoff between fairness and communication
efficiency when UAV-BSs serve GUs. The problem is formulated as a mixed-integer non-convex
optimization problem based on the RF metric and we propose a UAV-Assisted Fair Communication
(UAFC) algorithm based on multi-agent deep reinforcement learning to maximize the fair throughput
of the system. The UAFC algorithm comprehensively considers fair throughput, UAV-BSs coverage,
and flight status to design a reasonable reward function. In addition, the UAFC algorithm establishes
an information sharing mechanism based on gated functions by sharing neural networks, which
effectively reduces the distributed decision-making uncertainty of UAV-BSs. To reduce the impact of
state dimension imbalance on the convergence of the algorithm, we design a new state decomposing
and coupling actor network architecture. Simulation results show that the proposed UAFC algorithm
increases fair throughput by 5.62%, 26.57% and fair index by 1.99%, 13.82% compared to the MATD3
and MADDPG algorithms, respectively. Meanwhile, UAFC can also meet energy consumption
limitation and network connectivity requirement.

Keywords: Unmanned Aerial Vehicles (UAVs); Multi-Agent Deep Reinforcement Learning (MADRL);
fair communication; information sharing mechanism

1. Introduction

At present, the establishment and realization of mobile communication networks
mainly rely on terrestrial base stations and other fixed communication equipment, which
requires time-consuming network planning with the consideration of many practical factors.
Unmanned Aerial Vehicles (UAVs) with high flexibility, low cost, and wide coverage have
aroused widespread concern in academia and industry [1,2], e.g., UAV-assisted base station
communications [3], relay communications [4], data collection [5], and secure communica-
tions [6]. In the area of UAV-assisted communications, UAVs are mainly regarded as mobile
base stations to provide high-quality communication services to ground users (GUs) [7].
The mobility and flexibility of UAV Base Stations (UAV-BSs) can establish communication
connections quickly and improve data transmission efficiency and communication range
significantly [8–11]. For example, when the ground communication infrastructure is dam-
aged by natural disasters, UAVs can be employed as temporary base stations to provide
emergency communication services for GUs.

Remote Sens. 2022, 14, 5662. https://doi.org/10.3390/rs14225662 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7657-6100
https://doi.org/10.3390/rs14225662
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225662?type=check_update&version=4


Remote Sens. 2022, 14, 5662 2 of 23

UAVs as aerial base stations have many advantages compared to terrestrial base
stations. (1) UAVs can establish good Line-of-Sight (LoS) links with GUs [12]. (2) For mobile
GUs, UAVs can adjust flight trajectory or follow the GUs to provide better communication
services [13]. It is worth noting that due to limited communication resources and coverages,
UAV-BSs cannot serve all GUs by merely optimizing the locations of UAV-BSs. Thus,
UAV-BSs mainly face two challenges in UAV-assisted communication. (1) How to select the
GUs to be served by optimizing the locations of the UAVs to maximize the communication
efficiency (e.g., throughput). (2) How to adopt a service strategy to ensure fairness among
GUs when providing communication services for multiple GUs.

For the problem of maximizing the efficiency of UAV-assisted communication, most
studies regard the energy efficiency and throughput as the primary optimization objective.
In [14], the authors proposed a centralized multi-agent Q-learning algorithm to maximize
the energy efficiency of wireless communication. In [15], a Deep Reinforcement Learning
(DRL) algorithm based on Q-Learning and convolutional neural networks is proposed to
maximize spectral efficiency. However, maximizing communication efficiency results in
the tendency of UAV-BSs to hover approaching a small subset of GUs. This will lead to
communication mission interruptions for other GUs due to being out of the communication
range of the UAV-BSs. For the fair communication problem, previous works focus on fair
coverage. For example, an algorithm based on DRL is proposed in [16] to deploy UAV-BSs.
UAV-BSs can provide fair coverage and reduce collisions among UAVs. In [17], a DRL-based
control algorithm is proposed to implement energy efficient and fair coverage with energy
recharge. A mean-field game model is proposed in [18] to maximize the coverage score
while ensuring fair communication range and network connectivity. These studies [16–18]
focus on fair coverage of ground areas or users. In the pursuit of regional fairness, UAVs
need to serve all cell as much as possible. Thus, focusing only on fair coverage will cause
partial task interruption and the degradation of communication efficiency. It is necessary to
consider both communication efficiency (throughput) and user fairness in UAV-assisted
communications, which has been overlooked in the literature [14–18].

1.1. Related Work

In this subsection, we review relevant work on UAV-assisted communication and
point out the inadequacy of these works.

1.1.1. UAV-Assisted Communication

UAV-assisted communication has been extensively researched. For example,
Jeong et al. [19] proposed an optimization algorithm based on a concave-convex procedure
to maximize the transmission rate by designing the flight trajectory and the transmitting
power of the UAV. Yin et al. [20] studied UAV as aerial base stations serving multiple
GUs and proposed a deterministic policy gradient algorithm to maximize the total uplink
transmission rate. These works [19,20] focus only on the communication performance of
UAV-assisted communication networks, the energy consumption of the UAV is also a cru-
cial issue due to the limited onboard energy. In [21], an Actor–Critic-based deep stochastic
online scheduling algorithm is proposed to minimize the overall energy consumption of
the communication network by optimizing the data transmission and hovering time of
the UAV. The proposed algorithm can reduce energy by 29.94% and 24.84% compared
to the DDPG and PPO algorithms. Yang et al. [22] investigated UAV-assisted data col-
lection, where the data transmission rate and the energy consumption of the UAV are in
conflict with each other during the data collection process. Theoretical expressions for the
energy consumption of the UAV and GUs are derived to achieve different Pareto-optimal
trade-offs. The results provide a new insight for future energy efficiency of UAV-assisted
communication. Zhang et al. [23] considered post-disaster rescue scenarios where energy
is limited due to the collapse of the power system. To satisfy energy constraints and ob-
stacle constraints, a safe deep Q-learning-based UAV trajectory optimization algorithm is
proposed to maximize uplink throughput. Its weakness is that it cannot be applied to a
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larger disaster area due to the limited communication range and on-board energy of single
UAV. The above studies [21–23] take full consideration of the energy consumption of the
UAV during the trajectory design, enabling the UAV to perform communication services
with greater energy efficiency. These studies [19–23] consider single UAV scenarios and the
GUs are stationary. Thus, the methods designed in the above references are only applicable
to small-scale simple scenarios.

For complex scenarios, it is particularly important that multiple UAVs collaborate with
each other to accomplish complex communication tasks. Shi et al. [24] proposed a dynamic
deployment algorithm based on hierarchical Reinforcement Learning (RL) to maximize the
long-term desired average throughput of the communication network. The proposed algo-
rithm can increase throughput by 40%. To meet the Quality of Experience (QoE) of all GUs
with limited system resources and energy, Zeng et al. [25] jointly optimized GUs scheduling,
UAVs trajectory, and transmit power to maximize energy efficiency and meet GUs QoE.
The proposed algorithm increases energy efficiency by 12.5% compared to the baseline
algorithm. Ding et al. [26] modeled the UAVs and GUs as a hybrid cooperative-competitive
game problem, maximizing throughput by simultaneously optimizing the trajectory of
UAVs and the access of GUs. The above studies [24–26] focus on the multiple UAVs and
multiple GUs scenario to maximize throughput and energy efficiency by designing the
flight trajectory. However, the optimization objectives of [19–26] focus on communication
performance and ignore fairness among GUs. This leads to UAVs allocating more commu-
nication resources to GUs with high throughput or following the movement of the GUs.
As a result, the UAV-BSs ignore service requests of other critical GUs.

1.1.2. UAV-Assisted Fair Communication

It is also a crucial issue to consider service fairness in UAV-assisted communication.
Diao et al. [27] studied the problem of fair perceptual task allocation and trajectory op-
timization in UAV-assisted edge computing. The non-convex optimization problem is
transformed into multiple convex sub-problems for solution by introducing auxiliary vari-
ables to minimize energy consumption while meeting fairness. In [28], Ding et al. derived
an expression for the energy consumption of UAV. Based on the energy consumption of
UAV and the fairness of GUs, a DRL-based algorithm is proposed to maximize the system
throughput by jointly optimizing the trajectory and bandwidth allocation. The proposed
method increases the fair index by 15.5%. The works in [27,28] study the issue of single
UAV-assisted fairness communication and the proposed algorithms are not applicable to
multi-UAV scenarios.

For multi-UAV scenarios, Liu et al. [29] studied the fair coverage problem of UAVs and
proposed a DRL-based control algorithm to maximize the energy efficiency while guaran-
teeing communication coverage, fairness, energy consumption, and connectivity. The study
improves coverage scores and fairness index by 26% and 206%. A novel distributed control
scheme algorithm is proposed in [30] to deploy multiple UAVs in an area to improve cover-
age with minimum energy consumption and maximum fairness. The proposed algorithm
covers 84.6% of the area and improves the fair index by 3% on the same network conditions.
Liu et al. [31] investigated how to deploy UAVs to improve service quality for GUs and
maximize fair coverage according to the designed fair index. The above studies [29–31]
focus on the problem of fair coverage in multi-UAV-assisted communication by optimizing
the locations of UAVs to cover the ground area in a fair manner. In contrast with the above
studies, we are concerned with maximizing system throughput while considering user
fairness in a multi-UAV mobile network.
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1.2. Motivation and Contribution

UAV-assisted mobile wireless communication networks have many advantages com-
pared with traditional terrestrial fixed communication infrastructures. However, UAVs
as mobile base stations still face the following two problems. (1) Existing research mainly
focuses on the communication efficiency. The research objectives aim to maximize commu-
nication metrics such as throughput, transmission rate, and energy efficiency by optimizing
the flight trajectory and resource allocation of the UAVs. However, these studies ignore
the fairness among GUs. For example, service user A can obtain high throughput and user
B needs more urgent communication service. If we select throughput as the service goal,
it will cause the UAVs to allocate more communication resources to user A maximizing
the goal. Thus, the service request of user B is ignored despite the more urgent service
request. (2) Another important problem in UAV-assisted communication is the optimiza-
tion problem of UAV location, which is a typical optimal sequential decision problem.
The computational complexity of heuristic and convex optimization algorithms grows
exponentially with the increase of numbers of GUs and UAVs, which is not suitable for
multi-UAV and multi-user scenarios.

Motivated by communication efficiency and user fairness, this paper investigates fair
communication in UAV-BSs-assisted communication systems. We propose an information
sharing mechanism based on gated functions and incorporate it into Multi-Agent Deep Re-
inforcement Learning (MADRL) to obtain near-optimal strategies. The main contributions
of this paper are summarized as follows:

• To evaluate the trade-off between fairness and communication efficiency, we design
a Ratio Fair (RF) metric by weighing fairness and throughput when UAV-BSs serve
GUs. Based on the RF metric, we formulate the UAV-assisted fair communication
as a non-convex problem and utilize DRL to acquire a near-optimal solution for
this problem;

• To solve the above continuous control problem with an infinite action space, we pro-
pose the UAV-Assisted Fair Communication (UAFC) algorithm. The UAFC algorithm
establishes an information sharing mechanism based on gated functions to reduce the
distributed decision uncertainty of UAV-BSs;

• To address the dimension imbalance and training difficulty due to the high dimension
of the state space, we design a novel actor network structure of decomposing and
coupling. The actor network utilizes dimension spread and state aggregation to obtain
high-quality state information.

The remainder of this paper is organized as follows. Section 2 introduces energy
consumption and communication models. In Section 3, we describe the problem and
formulate it as a Markov decision process. Section 4 describes the implementation process
of the UAFC algorithm. The results and analyses of the experiments are presented in
Section 5. We discuss some of the limitations of this paper and future research work in
Section 6. Section 7 concludes our paper.

Notations: In this paper, variables are denoted by italicized notation and vectors are
denoted by bold notation. || � || denotes L2 parametric; RW denotes a W-dimensional vector
space. {�} denotes set. For convenience of reading, the important symbols are listed in
Table 1 with the corresponding descriptions.
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Table 1. Table of Important Symbols.

Symbol Description Symbol Description

D, D, d Set, number, and index of
UAVs H The hover altitude of

the UAVs
K, K, k Set, number, and index of GUs dmin Minimum safe distance

ud(t), ωk(t) Location of the UAVs and GUs sd, ad
The states and actions of the

UAVd

distd(t), ϑn(t)
Flight distance and flight

direction r Reward value

Em(t)
Propulsion energy

consumption π
µ
d , Qθi

d Actor and critic networks

Ec(t)
Communication energy

consumption π
µ′

d , Qθ
′
i

d

Target actor and
critic networks

Emax, Ed(t)
Maximum energy and

residual energy of UAVd
µn, µ

′
n

Parameters of actor and target
actor networks

fc, Pt
Carrier frequency and

transmit power θ1
n, θ2

n
Parameters of critic and target

critic networks

X, Y The parameter of path loss
model λ, u Learning and updating rate

ELoS, ENLoS
Additional path loss for LoS

and NLoS links Mb, Mr Buffer size and mini-batch

2. System Model

In this paper, we consider a wireless communication scenario in an area. The scenario
contains multi-UAV and mobile GUs. UAVs provide communication services for GUs by
optimizing the trajectories, as shown Figure 1. Air-to-Ground (A2G) links exist between

UAV-BSs and GUs. K GUs are randomly distributed, and the set of GUs is denoted as K ∆
=

{1, 2, . . . , K}. The location of GUk (k ∈ K) at time t is denoted as ωk(t) = [xk(t), yk(t), 0] ∈
R3. D UAVs are deployed as mobile base stations to provide communication services for

GUs, and the set of UAV-BSs is denoted as D ∆
= {1, 2, . . . , D}. In the three-dimensional

Cartesian coordinate system, the location of UAVd (d ∈ D) at time t is denoted as
ud(t) = [xd(t), yd(t), zd(t)] ∈ R3. To reduce the additional energy overhead in the climbs
of UAVs, we assume that UAVs fly at a fixed altitude H, i.e., zd = H (d ∈ D).

Multi-UAV Network Aerial

Ground

Control 

Center

C
o
n
tr

o
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 D
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Downlink Transmission

Uplink Transmission

( )n t

( )ddist t

UAVd

[ ( ), ( ), ( )]d d dx t y t z t

[ ( 1), ( 1), ( 1)]d d dx t y t z t+ + +

[ ( ), ( ), ( )]k k kx t y t z t

Figure 1. Multi-UAV-assisted communication scenario.
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2.1. UAV Movement and Energy Consumption Model

The movement of GUs leads to the change of the channel quality between UAVs
and GUs. Thus, the position of the UAV-BSs needs to be optimized to provide better
communication services. As shown in Figure 1, the coordinate of UAVd at time t is denoted
as [xd(t), yd(t), zd(t)]. UAVd flies towards the next position according to the moving
distance distd(t) and the flight angle ϑd(t) , where the maximum flying distance and
flight angle of UAVd are denoted as distd(t) ∈ [0, distmax] and ϑd(t) ∈ [0, 2π], respectively.
Therefore, the next position of UAVd is calculated as{

xd(t + 1) = xd(t) + distd(t) · cos(ϑd(t)),
yd(t + 1) = yd(t) + distd(t) · sin(ϑd(t)).

(1)

The energy consumption of UAVs mainly depends on propulsion energy consumption
and communication energy consumption. According to [32], the propulsion energy con-
sumption is related to the speed and acceleration of the UAV. To simplify the system model
and computational complexity, the effect of acceleration on propulsion energy consumption
is ignored [33]. In time t, the energy consumption Em(t) due to the movement of the UAVd
can be expressed as

Em(t) =
∫ t

0
Pd(τ)dτ, (2)

where Pd(τ) is the propulsion power of UAVd at time τ. The remaining energy of UAVd
(denoted as Ed(t)) is calculated as

Ed(t) = Emax − (Em(t) + Ec(t)), (3)

where Emax is the maximum energy value of UAVd being fully charged. The communication
energy consumption of UAVd in the [0, t] period is denoted as Ec(t).

2.2. Communication Model

The transmission links between UAVs and GUs are modeled as a probabilistic channel
model [34], and the probability PLoS(t) of establishing LoS connection between UAVs and
GUs is given by

PLoS(t) =
1

1 + X exp{−Y(arctan( zd(t)
rd,k(t)

)− X)}
, (4)

where X and Y are the coefficients related to the environment, respectively. rd,k(t) denotes
the horizontal distance between UAVd and GUk.

The link path loss models between UAVd and GUk are given for the LoS link and
Non-Line-of-Sight (NLoS) link (denoted as LLoS and LNLoS), respectively, as follows:

LLoS = 20 log( 4π fcdd,k(t)
c ) + ELoS,

LNLoS = 20 log( 4π fcdd,k(t)
c ) + ENLoS,

(5)

where dd,k(t) denotes the distance between UAVd and GUk, and fc denotes the carrier
frequency. ELoS and ENLoS denote the additional path loss of the LoS link and NLoS

link [35], respectively. 20 log( 4π fcdd,k(t)
c ) is the free space path loss. c is the speed of light.

Therefore, the average path loss between UAVd and GUk (denoted as PLd,k(t)) is
calculated by

PLd,k(t) = PLoS(t)× LLoS + (1− PLoS(t))× LNLoS. (6)
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In this model, the path loss threshold γdk is defined, and the link is considered bro-
ken when PLd,k(t) ≥ γdk. Thus, a binary variable βd,k(t) is defined, which denotes the
association of the UAVd to the GUk at time t.

βd,k(t) =
{

1, i f UAVd is connected to GUk.
0, otherwise.

(7)

The transmission rate between UAVd and GUk (denoted as Rk
d(t)) is expressed as

Rk
d(t) = Bkβd,k(t)log2(1 +

Pt

n0 × Gd,k(t)
), (8)

where Gd,k(t) = 10PLd,k(t)/10 denotes the channel power gain, Pt is the fixed transmit
power of the UAVd, Bk indicates the communication bandwidth allocated to GUk, and n0
represents the noise power spectral density.

3. Problem Formulation and Transformation
3.1. Problem Formulation

To maximize the system throughput while guaranteeing user fairness, we design
an RF metric to evaluate the trade-off between fairness and communication efficiency
when UAVs serve GUs. The aim is to provide communication services for GUs with
high communication efficiency. The throughput priority for GUk (denoted as fk(t)) and is
calculated by

fk(t) =
Rk(t)
T(t)

, (9)

where Rk(t) represents the total throughput of GUk in the period [0, t], and T(t) is the
throughput of all GUs. Rk(t) and T(t) are given by Equations (10) and (11), respectively.

R̄k(t) =
∫ t

0
Rk

d(τ)dτ (10)

T̄(t) =
K

∑
k=1

R̄k(t) (11)

However, UAVs tend to follow GUs with high throughput to maximize the total
throughput and ignore service request from other GUs, leading to unfairness among GUs.
Due to the unfair behavior of GUs, the communication resource allocation of UAVs is
unbalanced, which affects the quality of service for GUs. To maximize throughput while
ensuring user fairness, we design the RF metric based on priority and the Jain’s index [36]
to measure the user fairness, which can be calculated by the following formula

Wk(t) =
(∑K

k=1 fk(t))
2

K(∑K
k=1 fk(t)

2
)

. (12)

Then, the RF index is employed to obtain a weight coefficient that considers fair-
ness and priority comprehensively, and the total fair throughput is defined as weighted
throughput and is denoted as

Rtoal(t) =
K

∑
k=1

∫ Tt

0
Wk(τ)Rk(τ)dτ. (13)
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The optimization objective of this paper is to maximize the fair throughput by opti-
mizing the location of the UAVs (referred to as problem P1). Problem P1 can be formulated
as follows:

(P1) : max Rtoal(t)
{ud(t)}d∈D

=
K

∑
k=1

∫ Tt

0
Wk(τ)Rk(τ)dτ

s.t. C1 : Ed(0) = Emax, Ed(Tt) = Emin,

C2 :
K

∑
k=1

βd,k(t) ≤ 1, ∀d ∈ D, ∀k ∈ K,

C3 : βd,k(t) ∈ {0, 1}, ∀d ∈ D, ∀k ∈ K,

C4 : PLd,k(t) ≤ γdk,

C5 : ‖ ui(t)− uj(t)‖2 ≥ dmin, ∀i, j ∈ D, and i 6= j,

C6 : xd(t), xk(t) ∈ [Xmin, Xmax], ∀d ∈ D, ∀k ∈ K,

C7 : yd(t), yk(t) ∈ [Ymin, Ymax], ∀d ∈ D, ∀k ∈ K,

(14)

where constraint C1 represents the energy consumption constraint of the UAV-BSs. Con-
straints C2 and C3 indicate that a GU can only connect to one UAV-BS at time t. Constraint
C4 requires that the path loss between the UAVd and the GUk should not be greater than the
threshold to avoid transmission interruptions. Constraint C5 represents the safe distance
between UAVi and UAVj. Constraints C6 and C7 represent the movement area constraints
of UAVs and GUs.

3.2. Problem Transformation

Since the locations of the UAV-BSs change continuously, the optimization variables
are continuous and exist nonlinear coupling. To make the problem P1 trackable, the entire
task time is divided into Nt timeslots and the duration of each timeslot is expressed as
δt = Tt/Nt. Thus, the continuous optimization problem P1 can be transformed into discrete
problem P2

(P2) : max Rtoal(n)
{ud(n)}d∈D

=
Nt
∑

n=1

K
∑

k=1
Wk(n)Rk(n)δt

s.t. C1 ∼ C7.
(15)

Since the constraints are non-convex, problem P2 is a complex non-convex optimiza-
tion problem. Traditional heuristic algorithms [37–39] can obtain optimal strategy at the
expense of high computational complexity and are not suitable for dynamic environment.
DRL is a learning-based approach in which agents obtain optimal strategies by interacting
with the environment and it requires little prior experience. Thus, DRL is commonly
employed to solve optimal decision problems. However, single-agent DRL algorithms are
not applicable to multi-agent problems. The main reason is that a centralized controller is
needed to collect global information and control all the agents, leading to the increase of
communication costs [40]. To address the problem, the MADRL algorithm can be employed,
in which each UAV acts as an agent to learn the optimal collaboration policy.

First, the problem P2 is described as a multi-agent Markov Decision Process (MDP)
which consist of five parts < S, A, P, R, γ > [41]: The state set S, the action set A, the state
transition probability function P, the reward function R, and the reward discount factor γ.
The state space, action space, and reward function are designed as follows:

State: In time slot n ∈ [0, Nt], state sd = {{ud(n)}∀d∈D , {ωk(n)}∀k∈K, Ed(n)∀d∈D}
consists of three parts.

• {ud(n)}∀d∈D represents the coordinates of UAVd at time slot n;
• {ωk(n)}∀k∈K represents the coordinates of the GUk at time slot n;
• {Ed(n)}∀d∈D represents the remaining energy of UAVd at time slot n.

Action: In time slot n ∈ [0, Nt], action ad = {distd(n), ϑd(n)}∀d∈D consists of two parts;
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• distd(n) ∈ [0, Vd(t)δt] represents the distance that UAVd flies in time slot n. Vd(t)
represents the maximum flight speed;

• ϑd(n) ∈ [0, 2π] represents the direction of UAVd in time slot n.

Reward: Since the goal of the action taken by the agents is to maximize the system
reward, the setting of the reward function plays an important role in MADRL. The reward
mainly includes the following three components:

• Fair throughput r1 =
K
∑

k=1
Wk(n)Rk(n)δt: In the UAV-assisted fair communication

problem, to trade off the user fairness and communication efficiency, we define the
weighted sum of the fairness index and throughput as fair throughput and as part of
the reward function. Wk(n) is an RF metric utilized to weigh communication efficiency
and communication fairness.

• Coverage reward r2 =
D
∑

d=1

K
∑

k=1
ed,k: To accelerate the convergence of the UAFC algo-

rithm, we design the coverage reward of the UAV in the reward function. The coverage
reward is proportional to the number of GUs covered by the UAVs. ed,k = 1 indicates
that GUk is covered by UAVd, and ed,k = 0 otherwise. Note that the coverage range is
not strictly a communication range, and covering more GUs only provides a direction
for the UAVs to search for the optimal strategy.

• Punishment: The UAVs will receive large negative reward when one of the following
requirements are fulfilled:
(1) The UAVs fly out of the mission boundary area, i.e., xd,k(t) /∈ [Xmin, Xmax] or
yd,k /∈ [Ymin, Ymax], where Xmin, Xmax, Ymin, and Ymax represent the values of the
abscissa and ordinate of the mission area, respectively;
(2) UAVi and UAVj collide with each other, i.e., ‖ ui(t)− uj(t)‖2 ≤ dmin, where dmin
represents the safety distance threshold;
(3) The remaining energy of the UAVd is lower than the threshold, i.e., Ed ≤ Emin.
A binary variable ξi ∈ {0, 1} is employed to indicate whether violation occurs in the
above condition. ξi = 1(i ∈ {1, 2, 3}) means that violation occurs and a fixed penalty
pi (i ∈ {1, 2, 3}) will be given to the UAVs.

In summary, the reward function is formulated as

r = r1 + r2 − ξ1 p1 − ξ2 p2 − ξ3 p3. (16)

In MDP, the UAVs aim to maximize the reward function by optimizing policy π and
thus the problem P2 is rephrased as

max
π

E(
Nt
∑

n=1
r|π, s, a)

s.t.C1 ∼ C7.
(17)

4. The UAFC Algorithm

Since multi-agent systems are sensitive to the change in the training environment [42],
the policies obtained by agents may fall into local optimization. The Multi-Agent Twin
Delayed Deep Deterministic policy gradient (MATD3) algorithm [43] is based on the Actor–
Critic architecture and incorporates policy smoothing technique in the actor network.
The target policy smoothing technique is utilized to compute the target Q value, which is
beneficial to improving the accuracy of the target Q value and ensure the stability of the
training process. Thus, the proposed UAFC algorithm employs the MATD3 algorithm as
the basic algorithm and adopts the MADRL framework with centralized training and dis-
tributed execution [44] as shown in Figure 2. In the centralized training stage, the MATD3
algorithm learns a policy by jointly modeling all agents. Specifically, the observations of
all the agents are employed as input to the actor network, which outputs the joint actions
of the agents. Thus, the problem of environment non-stationarity is solved according to
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centralized training. In the distributed execution stage, the UAVs cannot fully obtain the
state information of the environment and other agents due to the limited perception ability.
Thus, the unknown state information results in the uncertainty of strategy and makes it
challenging for the agent to obtain the optimal strategy quickly. To reduce the distributed
decision-making uncertainty of UAVs, the information-sharing based on gated functions is
designed in the UAFC algorithm.
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Figure 2. The architecture of the UAFC algorithm.

4.1. MATD3 Algorithm

As shown in Figure 2, agents adopt the TD3 algorithm. Two main techniques are
introduced to enhance the performance of the TD3 algorithm: clipped double-Q learning
and target policy smoothing.

• Clipped Double-Q Learning: The TD3 algorithm consists of an actor network with pa-
rameter µd and two critical networks with network parameters θ1

d and θ2
d, respectively.

We assume that the actions, states, and rewards of all agents are accessible during
training. The actor network makes decisions based on the local state information,
and the critic network utilizes the state–action pair to learn two centralized evaluation
functions Qθi

d (s(t), a(t))(i ∈ {1, 2}) to evaluate the policy. To avoid the overestimate
of the Q value in a single critical network, the Q value is updated with the minimum
value of the two critic networks. Thus, the target values yi can be formulated as

yi = ri + δmin
i=1,2

Qθi
d (s

′
, ã), i = 1, 2. (18)

where s
′

indicates next moment state, ã denotes the action generated by the target
actor network.

• Target Policy Smoothing: Furthermore, clipped Gaussian noise ξ is added to the actor
network to prevent overfitting of the Q value, which can achieve smoother state–action
estimation and the modified target action.

4.2. Information Sharing Mechanism Based on Gated Functions

In addition, to reduce the uncertainty of distributed decision-making. The information-
sharing mechanism based on gated functions is designed, which enables UAVs to establish
state information sharing through a central memoryM with a storage capacity of M [45].
The memory is used to store the collective state information m ∈ RM of the UAVs. As shown
in Figure 2, with the information sharing mechanism, the strategy of each UAV becomes
sd ×M(d ∈ D). The policy is determined by observation sd and the information in the
memory. Each UAV accesses the central memory to retrieve information shared by other
UAVs before taking action. The neural networks are utilized to build policy networks
for DRL. Furthermore, the gated functions are employed to characterize the information
interaction between the agent and memory.
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4.2.1. Encoding and Reading Operations

The encoding operation and reading operation are shown in Figure 3. Each UAV
maps its own state vector to an embedding vector (denoted as ed) representing the state
information and is given by

ed = ϕenc
θe

d
(sd), (19)

where ϕenc
θe

d
is a neural network with network parameters θe

d.

Concatenation

Encoding Linear mapping Nonlinear mapping

de
dh dk

dr

h

dWe

d
[ , , ]d de h m k

dW

ds
Concatenation

Encoding Linear mapping Nonlinear mapping

de
dh dk

dr

h

dWe

d
[ , , ]d de h m k

dW

ds

Figure 3. Encoding and reading operations.

The UAVs perform the reading operation to extract the associated information stored
inM after encoding the current information. A latent vector hd is generated to learn the
temporal and spatial dependency information of the embedded vector ed

hd = Wh
ded, hd ∈ RH , Wh

d ∈ RH×E, (20)

where Wh
d denotes the network parameters of the linear mapping. H denotes the dimension

of the context vector and E denotes the dimension of the embedding vector. The state
embedding vector ed, the context vector hd, and content m in current memoryM contain
different information, respectively.

ed, hd, and m are employed jointly as input to learn a gated mechanism. kd is utilized
as a weighting factor to adjust the information reading from the memory and is given by

kd = σ(Wk
d[ed, hd, m]), kd ∈ [0, 1]M, Wk

d ∈ RM×(E+H+M), (21)

where [ed, hd, m] denotes the concatenation operation of the vectors and σ(�) conducts the
calculation of the sigmoid activation function. M represents the dimension of the content
m. Thus, the information reading fromM (denoted as md) is given by

md = m� kd, (22)

where � indicated the Hadamard product.

4.2.2. Writing Operation and Action Selection

The writing operation regulates the keeping and discarding of the information through
gated functions, and the framework is shown in Figure 4. UAVd obtains a candidate
storage vector cd based on the state embedding vector ed and the shared information m by
nonlinear mapping

cd = tanh(W c
d [ed, m]) cd ∈ [−1, 1]M, W c

d ∈ RM×(E+M), (23)

where W c
d is the network parameter. The input gate gd is employed to regulate the contents

of the candidate, and fd is utilized to decide the information to be kept. These operations
can be expressed as

gd = σ(W g
d [ed, m]) gd ∈ [0, 1]M, W g

d ∈ RM×(E+M),

fd = σ(W f
d [ed, m]) fd ∈ [0, 1]M, W f

d ∈ RM×(E+M).
(24)
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dc

dg
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'
m

Concatenation

de

m

[ , ]de m

c

dW

g

dW

f

dW

Figure 4. The writing operation framework.

Then, UAVd finally generates newly updated information m
′

by weighting the histori-
cal state information and real-time state information, and it is calculated as

m
′
= gd � cd + fd �m. (25)

After completing the reading and writing operations, UAVd obtains the action ad,
which depends on the current state and the information reading from theM

ad = π
µ
d (sd, md). (26)

According to the above description, the pseudo code of the reading and writing
operation based on gated functions is given in Algorithm 1.

Algorithm 1 Memory-Based Reading and Writing Operations

Input: State information of UAVs: sd = {{ud(n)}∀d∈D , {ωk(n)}∀k∈K, Ed(n)∀d∈D};
Output: Decisions of UAVs: ad = {distd, θd}∀d∈D ;

1: Initialize the state sd, memoryM;
2: Initialize each actor networks of UAVd with weights µd and µ

′
d, respectively;

3: for d = 1 to D do
4: Obtain state sd and the share information m;
5: Set md = m;
6: Generate observation encoding ed according to Equation (19);
7: Generate read vector md according to Equation (22);
8: Generate new message m

′
according to Equation (25);

9: Update information in memory;
10: Select action ad = π

µ
d (sd, md) according to Equation (26);

11: end for

Both reading and writing operations in Algorithm 1 are the core of the information
sharing mechanism. The agents utilize gated functions to select the required information
from the memory based on own observations. Thus, unknown state information can be
obtained through reading operation. The read information and observations are jointly used
as input to the policy network. Hence, the actions depend on observations and the state
information of other agents. With the dynamic changes of both agents and environments,
the information in the memory needs to be dynamically updated. The writing operation
regulates the keeping and discarding of the information through gated functions. As a
result, Algorithm 1 enables the sharing of state information among UAVs and avoids policy
uncertainty due to the partial state information.
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4.3. The Architecture of Actor Network

Furthermore, the actor network of the UAFC algorithm consists of more than one
network. The input of actor network can be divided into three categories:

(1) The remaining energy of UAVs (se). It determines whether the UAVs perform
the mission.

(2) The location of UAVs and GUs (sl). They determine whether the UAVs should
move to optimal location to provide great communication services.

(3) The information read from memory (md). They can help UAVs create optimal policies.
The final actions of the UAVs depend on the comprehensive impact of these three

categories of input information. If we directly input all the state information and share
information into an actor network, it may hardly output desirable policy due to the im-
balance and high dimension of state information. Thus, we design a novel actor network
architecture of decomposing and coupling. The architecture decouples the input vector
into three categories. Then, it expands the dimension of part state information (se) and
aggregates three parts of information as a total input vector. This method of state dimension
spread and state aggregation can address the dimension imbalance problem and reduce
state dimension to generate higher-quality policy.

The actor network architecture is shown in Figure 5. It aims to avoid the crash and
service interruption of the UAVs due to insufficient power. Thus, the energy state of
dimension size D is very important. Furthermore, the energy state information dimension
is much smaller than the position information dimension of the UAVs and GUs. There
exists a dimension imbalance problem, which makes the algorithm difficult to converge.
The dimension spread and linear mapping are utilized to process energy state, location
state, and the information read from memory to obtain three state vectors with the same
dimension, respectively. After the state decomposing and linear mapping, the input
dimension is reduced and the vectors are denoted as Ne, Nl , and Nd. Then, network 4
combines Ne, Nl , and Nd into a new vector and as the input, and outputs the final action.
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Figure 5. The network architecture of the actor in the UAFC algorithm.

4.4. Training of UAV-Assisted Fair Communication

Algorithm 2 summarizes the UAFC algorithm for UAVs-assisted fair communication.
First, the training data are randomly sampled from the experience replay pool. sj and s

′
j are

input into the evaluation and target critic network to generate state-action value function

Qθi
d and target state-action value function target Qθi

′

d , respectively. The loss function is

constructed according to Qθi
d and Qθi

′

d to train the critic network.
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Algorithm 2 UAFC Algorithm

Input: State information of UAVs: sd = {{ud(n)}∀d∈D , {ωk(n)}∀k∈K, Ed(n)∀d∈D};
Output: Decisions of UAVs: ad = {distd, θd}∀d∈D ;

1: B Parameter initialization
2: Initialize actor and critic networks parameters µd, µ

′
d, {θi

n}i=1,2 and {θi′
d }i=1,2, respec-

tively;
3: Initialize replay buffer B;
4: for each episode do
5: B Action generation
6: Obtain the action of UAVd from Algorithm 1;
7: Set s = (s1, s2, . . . , sD)and Φ = (m1, m2, . . . , mD);
8: B Experience storage
9: UAVd take selected actions a = (a1, a2, . . . , aD);

10: UAVd obtain the reward R, state s transfers to new s
′
;

11: The experience (s, a, Φ, R, s
′
) is stored in replay pool B;

12: B Parameter updating
13: for d = 1 to D do
14: Sample a random mini-batch of (sj, aj, φj, Rj, sj

′
) from B;

15: Update weights {θi
d}i=1,2 of evaluation critic networks by minimizing loss function

Loss(θi
d) according to Equation (28);

16: Update weights µd of evaluation actor network according to Equation (30);
17: Update the weights of the three target networks according to Equations (31) and

(32);
18: end for
19: end for

Initialization (lines 2–3): During the centralized training phase, the actor network and
critic network parameters are randomly initialized. Furthermore, the two storage spaces of
the experience replay pool and the memory are initialized.

Generate action (lines 4–7): Each UAV through the current observation value sd and
the information md of other UAVs obtains the action according to the policy function
π

µ
d (sd, md).

Experience storage (Lines 9–11): The experience of each UAV can be expressed as a
tuple (sd, ad, md, Rd, sd

′
). After performing the action, UAVd obtains the reward Rd, and the

current state will transfer to the new state at the next moment. Finally, the experience
(sd, ad, md, Rd, sd

′
) is stored into replay pool B with a capacity of Mr.

Parameter update (lines 13–17): During the training process, experience
(sj, aj, mj, Rj, sj

′
) of size Mb is randomly sampled from the experience replay pool. The eval-

uation actor network generates a policy π
µ
d (sj, mj) according to sj and mj. The parameters

of the evaluation actor network are updated according to the following policy gradient [46]

∇µd J(µd) =
1

Mb

Mb

∑
j=1
∇µd π

µ
d (s

j
d, mj

d)∇ad Qθ1
d (sj, aj

1, aj
2, . . . , aj

D)|ad=π
µ
d (s

j
d ,mj

d)
. (27)

Based on the policy π
µ
d (sj, mj), two Q values, i.e., Qθ1

d (sj, π
µ
d (sj, mj)) and Qθ2

d (sj,
π

µ
d (sj, mj)), are obtained by two evaluation critic networks. The parameters of the critic

networks are updated by minimizing the loss function Loss(θi
d)

Loss(θi
d) =

1
Mb

Mb

∑
j=1

[yi −Qθi
d (sj, aj)]

2
, i = 1, 2. (28)
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According to the above loss function, each UAV updates three evaluation networks

θi
d ← θi

d − λ · ∇θi
d
L(θi

d), i = 1, 2 , (29)

µd ← µd − λ · ∇µd J(µd) , (30)

where λ denotes the learning rate, and the target network parameters are updated as follows

µ
′
d = u · µd + (1− u) · µ′d, (31)

θ
j
′

d = u · θi
d + (1− u) · θ j

′

d , i = 1, 2 (32)

where u denotes the updating rate.

4.5. Complexity Analysis

We evaluate the efficiency of the UAV-assisted fair communication algorithm by
complexity analysis. The non-linear mapping of states to actions is achieved by a deep
neural network during the offline training and online execution phases. The actor and critic
networks contain J-th layer and F-th layer neural networks, respectively. Thus, the time
complexity of the UAFC algorithm (denoted as TUAFC) is given by

TUAFC = 2×
J

∑
j=1

Uactor,j ·Uactor,j+1 + 4×
F

∑
f=1

Ucritic, f ·Ucritic, f+1

= O(
J

∑
j=1

Uactor,j ·Uactor,j+1 +
F

∑
f=1

Ucritic, f ·Ucritic, f+1) ,

(33)

where Uactor,j represents the number of neurons in the j-th layer of the actor network,
and Ucritic, f represents the number of neurons in the f -th layer of the critic network.

A matrix of P×Q and a bias of Q exist in a fully connected neural network. Therefore,
the number of storage unit required by a fully connected neural network is (P + 1)×Q ,
and thus, the space complexity is O(G). In addition, it is also necessary to allocate storage
space to the experience replay pool and memory to store information in the process of
training, and the space complexities are O(Mr) and O(M), respectively. Hence, the space
complexity of the UAFC algorithm (denoted as SUAFC) is formulated as

SUAFC =
J

∑
j=1

(Uactor,j + 1) ·Uactor,j+1 + 2×
F

∑
f=1

(Ucritic, f + 1) ·Ucritic, f+1 + Mr + M

= O(
J

∑
j=1

Uactor,j ·Uactor,j+1 +
F

∑
f=1

Ucritic, f ·Ucritic, f+1)︸ ︷︷ ︸
O(G)

+O(Mr) + O(M) .
(34)

In the distributed execution stage, only the trained actor network is needed. Thus,
the space complexity of the execution phase is

O(
J

∑
j=1

Uactor,j ·Uactor,j+1) + O(M), (35)

and the time complexity is

O(
J

∑
j=1

Uactor,j ·Uactor,j+1). (36)
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5. Performance Evaluation

In this section, we introduce the detailed settings of the algorithm and simulation
parameters, and conduct extensive simulation experiments to verify the effectiveness of the
UAFC algorithm.

5.1. Simulation Settings

We verify the performance of the UAFC algorithm through extensive experiments.
The experimental platform is built based on Intel Core i9-11900H, NVIDIA GeForce
RTX3090, and Tensorflow-CPU-1.14. GUs are randomly deployed in a target area
(500 m × 500 m) and move in random directions and speeds. The UAVs initializes their po-
sition randomly to provide communication services for GUs. The experimental parameters
are shown in Table 2. The two metrics are chosen for performance evaluation: A novel
fairness index Wk and fair throughput are expressed as Equation (12) and Equation (13),
respectively.

Table 2. Simulation Settings.

Parameters Values

Number of UAVs (D) {2, 3}
Number of Gus (K) {10∼15}

Carrier frequency ( fc) 2.4 GHz
Maximum and minimum energy of UAVs (Emax, Emin) 500 KJ, 50 KJ

The parameters of channel model (X, Y) 4.88, 0.33
Additional path loss for LoS and NLoS (ELoS, ENLoS) 1.6, 2.1

The hover altitude and minimum safe distance of the UAVs (H,dmin) 100 m, 10 m
Learning rate(λ) 0.001

Buffer size and mini-batch (Mb, Mr) 60,000, 256
Memory capacity (M) 256

Discount factor (γ) 0.99
Updating rate (u) 0.01

Penalty value (pi, i ∈ {1, 2, 3}) {500, 100, 100}

5.2. Training Results

To verify the impact of RF metric and state decomposing and coupling on algorithm
performance. We compare the accumulative reward, fair throughput, and fair index of the
UAFC algorithm with the UAFC-NSDC and UAFC-NRF algorithms.

• No state decomposing and coupling (UAFC-NSDC): Compared with the UAFC algo-
rithm, this algorithm directly involves complete state information without employing
state decomposing and coupling.

• No RF (UAFC-NRF): The UAFC-NRF algorithm maximizes throughput while ignoring
the fairness of the GUs in communication services.

From Figure 6a, we can observe that the UAFC algorithm achieves higher accumulative
reward than the other two algorithms. This is because the UAFC algorithm takes into
consideration the GUs fairness to serve more GUs and obtain higher coverage reward.
Furthermore, the UAFC algorithm utilizes state decomposing and coupling to eliminate
the influences of state dimension imbalance. Thus, UAVs can obtain high-quality policies
to achieve great reward.

From Figure 6b, we can observe that the UAFC-NRF algorithm converges to optimal
value quickly. This is due to the fact that the UAFC-NRF algorithm ignores the fairness
among GUs where the UAVs tend to hover close to partial GUs to achieve higher through-
put. Compared to the UAFC-NRF algorithm, the throughput values of both UAFC and
UAFC-NSDC are lower, since these two algorithms trade off the communication efficiency
and fairness. To ensure fair communication services for GUs, the throughputs of UAVs are
sacrificed, especially in the case of a limited number of UAVs.
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The mean fairness index is employed as the evaluation indicator. From Figure 6c,
we can observe that the mean fair index of the UAFC algorithm outperforms the other
two algorithms, because UAFC considers the fairness of GUs and the state information is
involved into the actor network after state decomposing and coupling.
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Figure 6. The training process of the UAFC, UAFC-NSDC, and UAFC-NRF algorithm. (a) Accumula-
tive reward per episode. (b) Total fair throughput per episode. (c) Mean fair index per episode.

5.3. Performance Comparisons with Two Related Algorithms

In this subsection, we compare the accumulative reward, fair throughput, and fair
index of the UAFC algorithm with another two existing algorithms.

• MADDPG: The MADDPG algorithm in [47] is utilized as the benchmark for designing
the trajectory of UAV-BSs to maximize throughput without considering fairness.

• MATD3: The MATD3 algorithm in [48] is employed as a UAV trajectory planning and
resource allocation algorithm based on MATD3 to minimize the time delay and energy
consumption of UAV tasks.

Figure 7 shows the convergence curves of the UAFC algorithm and the three
baseline algorithms for accumulative reward value, total fair throughput, and mean
fair index, respectively.

• Figure 7a shows the results of accumulative reward. The reward value of UAFC
converges to around 6500 at 30,000 episodes. UAFC outperforms both MATD3 and
MADDPG. This is because the information sharing mechanism makes full use of the
shared states information among UAVs. The information is conducive to finding the
optimal policy and avoiding falling into the local optimum. Furthermore, the training
curves of the three algorithms have obvious oscillations. This is because MADRL is
different from supervised learning, since it has no clear label information.

• Figure 7b shows the convergence curve of fair throughput. We can observe that the
total fair throughput of the MATD3 algorithm is better than the UAFC algorithm
in the first 25,000 episodes. This is due to the fact that the actor network of UAFC
contains reading and writing operations, which are implemented through a multi-layer
fully connected (FC) layer neural network. In the FC network, the gradient becomes
smaller as the hidden layers propagate backwards. This means that neurons in the
previous hidden layers learn more slowly than neurons in the later hidden layers.
Thus, the UAFC is harder to train than that of MATD3. The total fair throughput curve
of UAFC converges at 40,000 episodes and outperforms both MADDPG and MATD3
as the training time increases. This is because: (1) UAVs share state information with
each other to obtain the optimal policy; (2) State information is processed by state
decomposing and coupling. Thus, the input of actor network gains a low-dimension
state vector which includes complete state information and reading information
fromM.

• The experimental results of the three algorithms on mean fair index are shown in
Figure 7c. In the first 20,000 episodes, the UAFC algorithm fluctuates greatly and
the numerical value is lower than that of both MATD3 and MADDPG algorithms.
By decoupling and coupling the input of the actor network, the overall actor network
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has more layers and more complex structures. Furthermore, the distribution of GUs is
changing, and it is difficult to obtain the best strategy for UAVs cooperative search.
Both MATD3 and MADDPG converge to the local optimal value quickly, which can
also be seen from the final convergence value. The fairness index keeps increasing
and it finally converges to 0.72. Compared with the MADDPG and MATD3 algo-
rithms, the mean fairness index of the UAFC algorithm is improved by 18.13% and
6.31%, respectively.
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Figure 7. The training process of the UAFC, MATD3, and MADDPG algorithms. (a) Accumulative
reward per episode. (b) Total fair throughput per episode. (c) Mean fair index per episode.

To demonstrate the performance of the UAFC algorithm more intuitively, we present
the result of the UAFC algorithm and the four compared algorithms regarding the evalua-
tion metrics in Table 3. It can be seen that the UAFC algorithm outperforms the comparison
algorithm in terms of reward function and fair index. Table 4 shows a comparison of the
results on reward function, equity throughput, and fair index. Compared with UAFC-NRF,
UAFC has a 9.09% decrease in fair throughput. The main reason is that the UAFC-NRF
algorithm does not consider fairness among GUs. As a result, the UAV can always serve
GUs with high throughput. The results also show that the UAFC algorithm obtains a higher
fair index by sacrificing part of the throughput.

Table 3. Results of five algorithms on reward function, fair throughput, and fair index.

Algorithm Reward Fair Throughput Fair Index

UAFC 6290.319 4558.494 0.667
UAFC-NSDC 5902.323 4465.863 0.645
UAFC-NRF 6098.576 5014.304 0.559

MATD3 5323.756 4341.374 0.654
MADDPG 4588.57 3601.502 0.586

Table 4. Comparison of results on reward function, fair throughput, and fair index.

Algorithm Reward Fair Throughput Fair Index

UAFC VS
UAFC-NSDC 6.57% 2.07% 3.41%

UAFC VS UAFC-NRF 3.14% −9.09% 19.32%
UAFC VS MATD3 18.15% 5.62% 1.99%

UAFC VS MADDPG 37.09% 26.57% 13.82%

Figure 8 shows the impact of GU numbers on system performance. The results
indicate the following:

• From Figure 8a, we can observe that the average fair throughput of the three algo-
rithms increases as the number of GUs increases. As the number of GUs served by the
UAVs will increase as the number of GUs increases, there is an upward tendency in
the average fair throughput. It is worth noting that as the number of GUs increases,
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the performance of the UAFC algorithm on fair throughput outperforms both MAD-
DPG and MATD3. This is because each UAV can obtain the state information of other
UAVs, and perform state decomposing and coupling. Thus, the UAVs can obtain
complete state information of the environment and other UAVs;

• Figure 8b shows the changing trend of the fairness index of the three algorithms with
the increase of GUs. As the number of mobile GUs increases, the fairness of the three
algorithms does not change much. The fairness index of the MADDPG algorithm is
the lowest. This is because the absence of target policy smoothing regularization in the
actor network of MADDPG leads to convergence to a local optimum. Furthermore,
the UAFC algorithm numerically outperforms the MATD3 algorithm in fairness index.
This is due to the fact that the UAVs can provide fair communication services for GUs
in a collaborative way by sharing the states information of the UAVs.
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Figure 8. The impact of the number of GUs on system performance. (a) Average fair throughput.
(b) Average fair index.

Figure 9 shows the impact of number of UAV-BSs on system performance. From the
results, we can conclude that:

• More GUs can be served as the number of UAVs increases, thus, the fair throughput
of the three algorithms gradually increases. The performance of the UAFC algorithm
outperforms both MADDPG and MATD3 in terms of fair throughput. Thus, the UAFC
algorithm can provide fair communication services. This is due to the fact that: (1) The
information sharing mechanism is vital and reduce the distributed decision-making
uncertainty of UAVs. Thus, the UAFC algorithm still performs well when the number
of UAVs increases; (2) The dimension of state information increases with the number
of UAVs. The state decomposing and coupling can address the dimension imbalance
problem and reduce state dimension to generate higher-quality policy;

• As shown in Figure 9b, the fair index of the three algorithms increases as the number
of UAVs increases. The reason is that more UAVs means more extensive coverage
and the ability to cover almost all GUs. When the number of UAVs is 3, the UAFC
algorithm improves the fairness index by 16.4% and 9.6% compared to the MADDPG
and MATD3 algorithms. This is because the information mechanism and actor network
architecture can help UAVs make decisions.
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Figure 9. The impact of the number of UAV-BSs on system performance. (a) Average fair throughput.
(b) Average fair index.

6. Discussion

In this section, we focus on some of the limitations of this paper. The main limitations
of this paper are: (1) We model the UAV-assisted fair communication problem as a complex
non-convex optimization problem that is an NP-hard problem. It is difficult to find an
analytic solution. We utilize a DRL algorithm to solve it. The DRL algorithm cannot
obtain an optimal solution, but it can be trained to obtain an approximate optimal solution.
In addition, experimental results show that our algorithm is more effective than other
algorithms. (2) UAVs can flexibly adjust their positions to establish good LoS communica-
tion links with GUs and provide reliable wireless communication environment. However,
in some complex environments (e.g., urban scenarios), it is inevitable that the LoS link
between the UAVs and the GUs will be blocked by high buildings or trees, affecting the
quality of communication. In this paper, we assume that the links between the UAVs and
the GUs is unaffected by obstructions. (3) In addition, UAVs carry very limited energy
due to their limited size. This paper considers the residual energy consumption of UAVs
only as a constraint and does not design methods to extend the flight time of UAVs, such
as utilizing wireless power transfer technology to recharge the UAVs. In future work,
we consider building more realistic mathematical models and designing more accurate
solution algorithms.

7. Conclusions

UAV-assisted communication has been expected to be a suitable method for wireless
communication. In this paper, we have studied the problem of UAV-assisted communica-
tion with the consideration of user fairness. First, a novel metric to evaluate the trade-off
between fairness and communication efficiency is presented to maximize fair system
throughput while ensuring user fairness. Then, the UAV-assisted fair communication
problem is modeled as a mixed-integer non-convex optimization problem. We reformu-
lated the problem as an MDP and proposed a UAFC algorithm based on MADRL. Further,
inspired by the communication among agents, the information sharing mechanism based
on gated functions is designed to reduce the distributed decision-making uncertainty of
UAVs. To solve the problem of state dimension imbalance, a new actor network architecture
is designed to reduce the impact of dimension imbalance and dimensional catastrophe on
policy search through dimensional expansion and linear mapping techniques. Finally, we
have verified the effectiveness of the proposed algorithm through extensive experiments.
Simulation results show that the proposed UAFC algorithm increases fair throughput by
5.62%, 26.57% and fair index by 1.99%, 13.82% compared to the MATD3 and MADDPG
algorithms. Intelligent Reflecting Surface (IRS) is a new technology in 6G that has received
widespread academic attention. Combining IRS and wireless power information trans-
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mission technology is a good option to further improve the performance of UAV-assisted
communication. In future, we will extend this paper to design a novel algorithm based
on IRS.
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