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Abstract: Landslides are one of the most dangerous natural disasters, which have affected national
economic development and social stability. This paper proposes a method to indirectly monitor
the deformation characteristics of landslides by extracting the abnormal vegetation information,
especially for the inaccessible high-mountain landslides in southwestern China. This paper extracts
the vegetation anomaly information in the Jizong Shed-Tunnel landslide which is located on the main
traffic road to Tibet by the optical remote sensing Gaofen-1 (GF-1) data, and analyzes the temporal
and spatial characteristics of the vegetation anomaly information through a time series. Then, we
use the small baseline subsets interferometry synthetic aperture radar (SBAS-InSAR) technology
to process Sentinel-1 data to obtain the time-series surface deformation information. Finally, we
analyze and verify the results of the two methods. The results show that there is obvious vegetation
coverage (VC) decline, with a maximum increasing percentage of 8.77% for the low and medium VC,
and obvious surface deformation around the landslide, with the highest settlement rate of between
0 mm/year and 30 mm/year. Through the time-series analysis, we find that the change trends
of the two methods are basically the same. This paper shows that the method of using abnormal
vegetation information to monitor the Jizong Shed-Tunnel landslide has a certain degree of reliability
and practicability. It can provide a new idea and effective supplement for landslide monitoring.

Keywords: landslide monitoring; Jizong Shed-Tunnel landslide; optical remote sensing; vegetation
coverage; SBAS-InSAR; surface deformation

1. Introduction

Landslides are defined as the instability and destruction of rock, soil, or other artificial
materials under the action of gravity. They have become one of the most dangerous natural
disasters due to their suddenness and destructive power and being prone to secondary
disasters, causing huge casualties and economic losses all over the world [1–4]. China is
also one of the countries prone to landslide disasters. Especially in the southwest of China,
due to the large undulation terrain, the loose soil structure, and heavy rainfall, landslide
disasters are extremely prone to occurring [5–10]. The Jizong Shed-Tunnel landslide is
located in the southwestern Yunnan Province. The area is rich in mountains and is located
next to the G214 National Highway known as the “lifeline” of Sichuan and Tibet. Once
a landslide occurs, it will block the normal passage of the G214 National Highway and
cause serious casualties and economic losses. Therefore, the identification and continuous
monitoring of landslides is an effective way to prevent and control landslide hazards.

Many scholars have done a lot of work on landslide monitoring. Common landslide
monitoring methods include the global navigation satellite system (GNSS) methods and the
interferometry synthetic aperture radar (InSAR) methods. The global positioning system
(GPS), as one part of the GNSS system, is widely used. GPS monitoring has the advantages of
high automation degree, high precision, no need to meet the visibility between monitoring
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sites, and all-weather real-time monitoring [11]. In the era of single GPS, GPS methods
already have many precise applications for monitoring landslides [12–14]. In recent years,
with the development of GNSS technology, GNSS technology has more combined applications
and is developing towards low costs. Peng et al. [15] have used the BeiDou Navigation
Satellite System (BDS)/GPS single-point positioning method to effectively monitor sliding
landslides. Notti et al. [16] have used the low-cost GPS to continuously monitor unstable
slopes in northwestern Italy, which verifies the accuracy of the method. At the same time,
Šegina et al. [17] developed a low-cost GNSS monitoring system for a deep-seated landslide
in north-western Sloveni, further demonstrating the effectiveness of low-cost GNSS. However,
GPS satellite signals are easily blocked in complex terrain and dense vegetation coverage
areas, such as high-mountain areas, which affects the accuracy. Moreover, GPS collects data at
points, so it is difficult to monitor landslides comprehensively [18,19].

InSAR technology has the characteristics of all-weather and all-day operation and
can obtain large-area, long-term series of surface deformation information [20]. InSAR
also can generate the regional digital elevation model (DEM) from paired radar images,
which has particular significance for areas without terrain data and can provide basic data
for landslide hazard assessments [21]. In 2016, He et al. [22] used the optical and InSAR
technology to monitor loess landslides and accurately analyzed the change of landslide
surface elevation. In 2019, Huang et al. [23] used the small baseline subsets (SBAS)-
InSAR technology to monitor the deformation trend of Baige landslides, which proves the
feasibility of SBAS-InSAR technology for landslide monitoring. In 2020, Jiang et al. [24]
used the coherent scanner (CS)-InSAR Technology for monitoring potential landslides
in western China. However, InSAR is susceptible to the phase delay of water vapor in
mountainous areas. Simultaneously, the characteristics of InSAR technology slant-range
imaging can easily cause registration errors and spatial baseline decoherence in areas with
large terrain undulations [14,19]. In Yunnan Province, as the southwest region of China, the
terrain is undulating. The high-mountain landslides in this area are mostly lush vegetation,
and the high vegetation coverage can also affect the InSAR results.

Landslide creeping is a stage in the development process of landslide deformation
which is slow for a long time and difficult to be detected at the beginning [25]. During the
creep stage of the landslide, there will be sudden changes to the water level, the uplift of
the soil slope, and the collapse or relaxation of the surrounding rock mass. This is reflected
in the growth status of vegetation on the landslide. Of course, not all the landslides at the
creeping stage show obvious characteristics of changes to surface vegetation, but some
do exist (such as Baige landslide [26] and Su village landslide [27]). At present, many
scholars use remote sensing images to study the vegetation in landslide areas. In 2012, Lu
et al. [28] calculated the normalized difference vegetation index (NDVI) on Landsat5 TM
data before and after the earthquake, and have studied the vegetation recovery status of the
Maoxian landslide in Sichuan after the earthquake. In 2015, He and Zhang [29] used the
NDVI value to set a threshold to identify landslides, extract landslide feature information,
and perform area statistics. In 2020, Piroton et al. [30] used the NDVI difference values
of the pre-landslide image from the post-landslide image as a complementary qualitative
analysis for landslide monitoring. In 2022, Xun et al. [31] selected the NDVI as a feature
describing the vegetation information for the extraction of potential landslides. However,
most studies are aimed at monitoring the restoration of vegetation after landslides or as one
of the characteristics of identifying landslides. The studies on the analysis and monitoring
of landslide creep using vegetation cover changes are few currently.

Both GPS and InSAR methods have certain limitations in the high-mountain areas
of southwest China. In 2020, Guo et al. [32] used Gaofen (GF) satellite data to explore the
relationship between vegetation anomalies and landslides, taking the Xinmocun landslide
as an example. Subsequently, by studying the Baige landslide, Guo et al. [33] believe that
potential landslides in high-mountain areas can be preliminarily investigated economically
and effectively through vegetation change. Therefore, in order to further verify the pos-
sibility of using vegetation changes to monitor landslides, this paper uses the method of
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calculating the vegetation coverage to extract the abnormal vegetation information of the
Yunnan Jizong Shed-Tunnel landslide from optical remote sensing Gaofen-1 (GF-1) data.
Meanwhile, the SBAS-InSAR method, which more easily obtains more comprehensive
monitoring the GPS method, is used to obtain the time-series surface deformation of the
landslide area, to further support the indirect optical monitoring method. The two aspects
are combined to analyze the temporal and spatial characteristics of landslide creep and
verify the feasibility and effectiveness of the method in this paper. This study uses the
abnormal vegetation information to indirectly monitor the Jizong Shed-Tunnel landslides
in an effective and sequential manner and provides a new idea and monitoring technology
for high-mountain landslides in the southwest region, which can effectively supplement
the landslide monitoring methods.

2. Study Area and Data
2.1. Study Area

The Jizong Shed-Tunnel landslide is located in Ladong Mountain on the east bank of
the Jinsha River, in Diqing Tibetan Autonomous Prefecture, Yunnan Province (Figure 1).
The geographic coordinates of the center of the landslide source area are 99◦23′43′′E,
28◦7′53′′N. This is the active landslide that can be seen on the G214 National Highway.
As one of the main highways of the Chinese transportation network, the G214 National
Highway is the only main transportation road from Yushu area to Xining and Sichuan-Tibet.
It is the economic line and lifeline of the surrounding areas. Therefore, maintaining the
safety of G214 National Highway is an important task to guarantee the economic stability
and social stability of the surrounding areas [34].
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Figure 1. The location and Google Earth image of Jizong Shed-Tunnel landslide. (a) Optical GF-1
fused true color image; (b) Site investigation image.

The Jizong Shed-Tunnel landslide is near the normal fault, which is mainly composed
of volcanic rock, slate, and limestone. The overall slope is between 30◦ and 45◦. Moreover,
there is abundant precipitation in the study area. Due to road construction and precipitation,
the Jizong Shed-Tunnel landslide experienced a large slide in 2015, then the landslide was
in a slow creep stage. The landslide moves along the slope layer from the top of the hillside
and slides to the Jinsha River for accumulation, which can be divided into the source area
(Figure 1a(I)) and the accumulation area (Figure 1a(II)) of the landslide. The creep of the
landslide is mainly caused by the slight deformation and cracks at the rear edge of the upper
landslide area. Therefore, the main analysis area is located in the upper landslide area.

2.2. Data

This paper selects GF-1 optical images for vegetation anomaly information extraction,
Sentinel-1 A satellite radar images for deformation monitoring, and shuttle radar topogra-
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phy mission digital elevation model (SRTM DEM) data as the auxiliary external DEM to
eliminate the influence of terrain factors on the deformation monitoring.

2.2.1. GF-1 Optical Image

The GF-1 satellite is equipped with a panchromatic/multispectral PMS camera. The
PMS camera can acquire panchromatic (PAN) images with a resolution of 2 m and multi-
spectral (MS) images with a resolution of 8 m (blue, green, red, and near-infrared 4 bands),
while the imaging width is 60 km. Thus, the GF-1 satellite provides reliable data formations
for Earth observation.

Because the high cloud cover in the Jizong Shed-Tunnel landslide in the summer and
the growth of vegetation in spring is easily affected, this paper selects eight GF-1 datapoints
around November from 2013 to 2020 to analyze the abnormal vegetation information in
order to avoid the influence of the season on the growth of plants. The image data are
shown in Table 1.

Table 1. GF-1 image data.

Number Image Time Number Image Time Number Image Time

1 5 November 2013 4 22 December 2016 7 24 November 2019
2 8 November 2014 5 11 November 2017 8 30 November 2020
3 16 November 2015 6 19 November 2018

2.2.2. Sentinel-1 A Radar Image

The Sentinel-1 satellite which carries a C-band synthetic aperture radar is composed
of Sentinel-1 A and Sentinel-1 B. It provides reliable and repeated wide-area monitoring
all-day and through all weather, so it can be used to obtain surface deformation and monitor
large-scale resources. It has four working modes: stripmap (SM), interferometric wide
swath mode (IW), extra wide swath mode (EW), and wave mode (WM). The Sentinel-1
satellite has an ultra-high radiation resolution and excellent coverage performance and
revisit performance, which meets the research requirements of this paper.

Since the time interval of the Sentinel-1 satellite data in the study area from 2014 to
2016 was too large, and this paper mainly studies the subsequent landslide creep stage
after 2015, in order to ensure the correlation between the InSAR data, this paper selects
57 scenes of the Sentinel-1 A satellite’s single look complex (SLC) data with the IW working
mode from 2017 to 2020 with the largest time interval of 24 days. All images are from the
ascending orbit data with the same orbit path number 99 and frame number 1270. The
image data are shown in Table 2.

Table 2. Sentinel-1 A image data.

Number Image Time Polarization Number Image Time Polarization

1 18 March 2017 VV 30 12 February 2019 VV
2 30 March 2017 VV 31 8 March 2019 VV
3 23 April 2017 VV 32 1 April 2019 VV
4 17 May 2017 VV 33 25 April 2019 VV
5 10 June 2017 VV 34 19 May 2019 VV
6 4 July 2017 VV 35 12 June 2019 VV
7 9 August 2017 VV 36 6 July 2019 VV
8 2 September 2017 VV 37 30 July 2019 VV
9 26 September 2017 VV 38 23 August 2019 VV
10 20 October 2017 VV 39 16 September 2019 VV
11 13 November 2017 VV 40 10 October 2019 VV
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Table 2. Cont.

Number Image Time Polarization Number Image Time Polarization

12 7 December 2017 VV 41 3 November 2019 VV
13 31 December 2017 VV 42 27 November 2019 VV
14 24 January 2018 VV 43 21 December 2019 VV
15 17 February 2018 VV 44 14 January2020 VV
16 13 March 2018 VV 45 7 February2020 VV
17 6 April 2018 VV 46 2 March 2020 VV
18 30 April 2018 VV 47 26 March 2020 VV
19 24 May 2018 VV 48 19 April 2020 VV
20 17 June 2018 VV 49 13 May2020 VV
21 11 July 2018 VV 50 6 June 2020 VV
22 4 August 2018 VV 51 30 June 2020 VV
23 28 August 2018 VV 52 24 July 2020 VV
24 21 September 2018 VV 53 17 August 2020 VV
25 15 October 2018 VV 54 10 September 2020 VV
26 8 November 2018 VV 55 4 October 2020 VV
27 2 December 2018 VV 56 28 October 2020 VV
28 26 December 2018 VV 57 21 Nevember 2020 VV
29 19 January 2019 VV

2.2.3. SRTM DEM Data

SRTM DEM data are synthesized in the United States using the SRTM system to obtain
the radar image data from 60 degrees north latitude to 60 degrees south latitude.

SRTM DEM data can be divided into SRTM 1 (resolution of 30 m) and SRTM 3 (resolution
of 90 m) data. This article uses SRTM 1 data with a latitude and longitude span of 1◦ × 1◦. In
order to cover the study area, we selected the SRTM N28E099 and N27E099 data.

3. Methods
3.1. Image Pre-Processing Method

Image fusion can complement the feature attributes of different data and make up
for the incompleteness and uncertainty caused by single pieces of information, which is
beneficial to the target recognition, analysis, and application of remote sensing [35].This
paper adopts and compares the five fusion methods which are generally accepted by the
public: nearest neighbor diffusion (NND) [36], principal component analysis (PCA) [37],
Gram-Schmidt (GS) [38], high pass filter (HPF) [39], and Pansharpening fusion [40], and
analyzes the fusion method suitable for the Jizong Shed-Tunnel landslide area. This enables
MS images to improve the spatial resolution while ensuring the spectral information is
unchanged as much as possible, so as to enhance the visual interpretation effect of the
Jizong Shed-Tunnel landslide and improve the ability to detect vegetation growth and
change information.

3.2. Vegetation Abnormal Information Extraction Method

In ideal theory, since this paper obtains optical images at nearly the same time every
year for the same study area, the vegetation information is basically unchanged. Therefore,
when there is obvious vegetation change information, it means that the vegetation in this
area is abnormal. We use the vegetation coverage (VC) to obtain the information about
vegetation abnormalities caused by the landslide creep. The VC is an important parameter
to describe the ground vegetation cover. The commonly used remote sensing calculation
method for VC is to estimate it based on the vegetation index. This paper adopts the
pixel dichotomy model proposed by Li [41] and uses the vegetation index to estimate the
VC. Since the vegetation in the study area is susceptible to the influence of the bare soil
background, NDVI which is commonly used is difficult to apply to this area, while other
vegetation indexes such as the green normalized difference index (GNDVI) can avoid this
phenomenon. Therefore, this paper chooses the GNDVI to conduct the experiment and
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finds that GNDVI can indeed be well applied in the study area. So, we finally chose GNDVI
as the vegetation index of the study area. GNDVI, as the vegetation index that extracts the
vegetation information and accurately reflects the vegetation coverage through the ratio
processing, can eliminate the errors of the altitude of the Sun, the atmospheric attenuation,
and the terrain changes. The formula is shown in Formula (1):

GNDVI =
ρNIR − ρG
ρNIR + ρG

(1)

Herein, ρNIR is the reflectivity in the near-infrared band, and ρG is the reflectivity in
the green band.

The specific formula of the pixel dichotomy model to calculate VC is shown in (2):

VC =


0 , GNDVI ≤ GNDVIsoil

GNDVI−GNDVIsoil
GNDVIveg−GNDVIsoil

, GNDVIsoil ≤ GNDVI ≤ GNDVIveg

1 , GNDVI ≤ GNDVIsoil

(2)

Herein, VC is the value of vegetation coverage. GNDVIsoil is the value of GNDVI in
the bare soil or areas without vegetation cover, and GNDVIveg is the value of GNDVI in
areas completely covered by plants, which are pure vegetation pixels. Low VC values near
0 represent completely barren surfaces (rock or soil) or no vegetation-covered areas, while
high VC values near 1 represent luxuriant vegetation.

When using the pixel dichotomy model to calculate the VC, the most important thing
is to obtain the values of GNDVIsoil and GNDVIveg. In the actual situation, according to
the definition of the parameters, these two values will change with time and space [42].
At present, we mainly count the value of GNDVI from the remote sensing images and
set the confidence interval according to the cumulative percentage to define the value of
GNDVIsoil and GNDVIveg. Because there are many remote sensing images in this article,
in order to avoid the result analysis error caused by different confidence interval selections,
this article makes multiple adjustments and calculations to obtain a unified confidence
interval. The VC calculation flow chart is in Figure 2, and the specific operation steps are
as follows:

(1) Calculate the initial GNDVIsoil and GNDVIveg values of each time phase. We count the
cumulative percentage of each GNDVI value in the image at first and select the initial
confidence interval based on empirical values. We first use the 5–95% confidence
interval [43] as the initial value to try. Then, we calculate the initial GNDVIsoil and
GNDVIveg based on the left and right boundaries of the confidence interval;

(2) Adjust the confidence interval for each time phase. We calculate the VC by using the
values of GNDVIsoil and GNDVIvegGNDVIveg determined in step (1) and enhance
results through the pseudo color density segmentation to visually judge the agreement
degree of the bare land and vegetation area between in the VC map and in the original
image. If not, repeat the above steps to redefine the confidence interval and perform
the calculation again until the obtained result is the optimal fit;

(3) Determine the final uniform confidence interval. In order to unify the thresholds of
each time phase and obtain the consistent and best-fitting VC as much as possible, we
comprehensively consider the confidence intervals of each phase and unify them to
obtain the final confidence interval consistent with each time phase.
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3.3. SBAS-InSAR Method

The traditional differential (D)-InSAR method is affected by factors such as the baseline
length, atmospheric propagation delay, and spatial resolution, so it cannot be monitored
well in most areas [44,45]. In recent years, researchers have successively proposed time-
series InSAR methods such as the permanent scatterer (PS)-InSAR technology [46,47] and
SBAS-InSAR technology [48] with the development of InSAR technology. The coherence
requirements of PS points are higher than those obtained by SBAS, so PS-InSAR technology
is often used for deformation monitoring in urban areas, and the SBAS-InSAR method is
more effective than the PS-InSAR method in monitoring landslides in mountainous areas.
Meanwhile, SBAS-InSAR is based on multi-master images, which overcomes the poor
coherence shortcoming of some interferograms caused by using only one master image.
Moreover, in SBAS-InSAR where only interferograms with small baselines are selected
for the time-series analysis, the deformation results are denser and more reliable. At the
same time, SBAS-InSAR method can still monitor the deformation rate in the vegetation
coverage area [49]. The study area of this paper is with the vegetation coverage and in
the mountainous area, so this paper chooses the SBAS-InSAR method to study the surface
deformation of the Jizong Shed-Tunnel landslide.

The SBAS-InSAR method is a time-series InSAR method proposed by Berardino
et al. [48]. This method mainly uses multiple synthetic aperture radar (SAR) images as
the main image and forms different short baseline subsets according to the principle of
short baseline interference to generate differential interference images. Then, based on
the least square rule, the average surface deformation rate of the study area and the time
series of the surface deformation are obtained by using the singular value decomposition
(SVD) [48,50].

The basic principles of the SBAS-InSAR method are as follows:

(a) When there are N scenes of SAR images in the study area, each SAR image will be
differentially interfered with by at least another N-1 scenes image to form an interfer-
ence image pair. Finally, M interference image pairs will be obtained. Meanwhile, the
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image with most interference pairs is chosen as the main image, and the rest of the
images are the slave images. The value range of M is shown in Formula (3) [51]:

N/2 ≤ M ≤ (N(N − 1))/2 (3)

(b) Differential interferogram is collected from M interferometric pairs by using the InSAR
phase deformation extraction method. The final interferogram is obtained through
the phase filtering and unwrapping. The interference phase of the j-th interferogram
ϕj can be expressed as Formula (4):

∆ϕj (x, y) = ϕB (x, y)− ϕA (x, y) ≈ 4π/λ [d(tB, x, y)− d(tA, x, y)] (4)

Herein, tA is the acquisition time of the main image, tB is the acquisition time of the
slave image, λ is the central wavelength, and x, y are the azimuth and distance coordinates
of the image, respectively, ϕA, ϕB are the interference phase of the main image and the
slave image, respectively.

The interferograms after the phase filtering and unwrapping are arranged in the
time order of the image, and then, the vector phase of the interferogram can be directly
expressed in the form of matrix. In the matrix, each row corresponds to a differential phase
interferogram and each column corresponds to the SAR images at different times. The
column of the main image and the slave image in the matrix is ±1, and the remaining
columns are all 0, as shown in Formula (5):

Gϕ = ∆ϕ (5)

Herein, G is an M × N matrix, expressed as: G =


0 −1 0 1 · · · 0 0 0
−1 0 1 0 · · · 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 · · · −1 0 1

,

ϕ is the interference phase.

(c) The G matrix is solved by using the SVD method through the least square rule, as
shown in Formula (6):

G = USVT (6)

Herein, U is the orthogonal matrix, S is the diagonal matrix, VT is the average phase
rate. The solving equation of VT is as shown in Formula (7):

VT =

[
V1 =

ϕ1

t1 − t0
, · · ·VN =

ϕN − ϕN−1

tN − tN−1

]
(7)

(d) Through the above steps, the optimal solution of the velocity vector can be obtained,
and thus, the surface deformation information can be obtained. The surface deforma-
tion information still has the atmospheric delay and other errors, so they need to be
filtered to obtain the final accurate surface deformation information [8].

4. Results
4.1. Evaluation of Image Preprocessing Results

In this paper, we first performed radiometric correction to convert the DN value into
the surface reflectance in PAN and MS images and performed geometric correction to
eliminate geometric distortion. Then, we performed five fusion methods for PAN image
and MS image: NND, GS, PCA, HPF, and Pansharpening fusion. This paper uses the
ENVI tool to perform NND, GS, and PCA fusion, uses the ERDAS IMAGINE 9.2 tool to
perform HPF fusion, and uses the PIE tool to perform Pansharpening fusion. The five fusion
methods have achieved good visual effects. At the same time, the fidelity of the spectral
performance is an important index for evaluating image fusion applications. Therefore,
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we focus on the comparison and analysis of these five fusion methods from the aspect of
spectral performance. After the comprehensive evaluation of these indicators, the fusion
method with the best overall performance will be adopted.

4.1.1. The Spectral Curve of Image Fusion Features

Since we need to mainly extract the abnormal vegetation information in optical images
for our landslide research, it is important to distinguish the vegetation from the bare land.
In this paper, we compare and analyze the five fusion methods by viewing the shape
and range of the spectral reflectance curves of vegetation and bare land, as shown in
Figures 3 and 4.
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It can be seen from Figure 3 that in the vegetation reflectance spectrum curve, the
vegetation spectrum curves of the five fusion images are consistent with the curve trend
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of the MS image. In terms of the reflectance spectrum curve range, GS, PCA, HPF, and
Pansharpening fusion images are all lower in the near-infrared, and only the NND fusion
images tend to have the same range as a whole, which preserves the good spectrum
information of NND.

For Figure 4, about the reflectance spectrum curve on the bare ground, the curve trend
of the HPF fusion image is obviously inconsistent with that of MS image, and the trends of
the other fusion images are relatively consistent. In terms of the reflectance spectral curve
range, the NND, PCA, and Pansharpening fusion image and MS image tend to be the same,
but the overall reflectance of the GS fusion image was relatively lower.

According to the spectral reflectance curves of bare land and vegetation, the over-
all quality of the five fusion methods is NND fusion method > PCA fusion method >
Pansharpening > GS fusion method > HPF fusion method.

4.1.2. GNDVI Results

This paper needs to calculate the VC in the subsequent extraction of abormal vegetation
information. The basis of calculating the VC is to calculate the GNDVI. Therefore, this
paper chooses the GNDVI as the index of image fusion quality evaluation. The GNDVI
results calculated from the above five fusion images are shown in Table 3.

Table 3. Comparison of GNDVI statistical results of different fusion images.

GNDVI MS NND GS PCA HPF Pansharpening

Mean 0.27 0.27 0.26 0.28 0.28 0.28
Max 0.68 0.69 0.75 0.72 0.74 0.74
Min 0.03 0.03 −0.39 −0.17 −0.22 −0.27

According to the GNDVI data in Table 3, it can be seen that the overall GNDVI value
of the fused image is not much different from the MS image. Among them, the GNDVI
value of the NND fusion image is the closest to the MS image, and the fidelity of the NND
spectral information is the best.

After comprehensive evaluation of the above three different indicators, the NND
fusion image has better performance in the details of the visual effect and the fidelity of the
spectral curve. At the same time, the obtained GNDVI value of the NND fusion is also the
closest to the MS image, which proves that it is reasonable and effective to use NND fusion
images for subsequent vegetation monitoring.

4.2. Vegetation Abnormal Information Extraction Results Based on GF-1 Images

This paper determines 6% and 94% as the confidence interval of GNDVI according to
the above method of determining the confidence interval. Finally, the VC is calculated and
displayed in pseudo color. The VC results between 2013 and 2020 are shown in Figure 5.

During the creeping stage of the landslide, the slight deformation of the slope and the
shear failure will cause cracks in the trailing edge. Based on this phenomenon, this paper
mainly analyzes the vegetation cover change at the trailing edge of the landslide. Therefore,
this paper mainly analyzes the change in VC at the trailing edge of the landslide. However,
there are the landslide body and landslide trailing edge in the pseudo-color map of VC in
Figure 5. In order to make an accurate analysis, this paper uses a black line to distinguish.
On the left side of the black line, it is the landslide body. On the right side of the black line,
it is the vegetation on the trailing edge of the landslide and the hillside.

According to the pseudo-color VC map of the landslide trailing edge shown in Figure 5,
the overall VC shows a downward trend from 2013 to 2014 due to the large landslide in 2015.
Compared with 2015, the VC at the trailing edge of the landslide has a certain recovery
in 2016. The overall VCs change a little from 2017 to 2020, but from the perspective of
subdivision areas, the changes in VC can be observed between the red box area and the
green box area in Figure 5.
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2016; (f) VC Map in 2017; (g) VC Map in 2018; (h) VC Map in 2019; (i) VC Map in 2020.

In the red box at the upper right corner, the bare land at the back edge of the landslide
has a trend of gradual upward development and the VC is decreasing from 2013 to 2015,
which corresponds to the known landslide in 2015. It provides a certain basis for the
method of monitoring the Jizong Shed-Tunnel landslide creep with abnormal vegetation
information. After 2016, the red area with high VC on the trailing edge of the landslide in
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the red box gradually moves backward, and the original red area changes into yellow and
green, which shows that the VC decreased.

In the green box at the lower right corner, from 2013 to 2015, the area next to the high
vegetation red area protruding from the trailing edge of the landslide changes from red to
yellow and green, which is consistent with the trend of the landslide in 2015. In 2016, the
areas on both sides are slightly eased. After 2016, the protruded part on the trailing edge of
the landslide in the green box gradually shrinks, and the bare land part gradually moves
upward. The area under the green box also changes from red to yellow and green from
2016 to 2020, which expresses the decreased VC.

The above research and analysis are mainly based on the visual interpretation of
the vegetation cover classification map of time series for qualitative analysis. In order to
more accurately analyze the VC change and monitor the vegetation growth in the area of
Jizong Shed-Tunnel landslide, the quantitative analysis and discussion are needed. For the
whole area in Figure 5, we use the classification grade [52] to divide the VC and calculate
the number and percentage of corresponding pixels for quantitative analysis. In order to
correspond to the actual situation of the study area and reduce the influence of the shadow
part of the landslide body on the result analysis, the low and medium VC is set VC ≤ 0.85
(VC above 0.85 is the red area in the subplots of Figure 5). The statistics of the number of
pixels and the cumulative percentage of low and medium VC are shown in Table 4. At the
same time, the curve is made as shown in Figure 6.

Table 4. Number and percentage of pixels with low and medium VC.

Image Time Fv ≤ 0.85 Pixels Number Fv ≤ 0.85 Pixels Percentage

5 November 2013 21,103 76.39%
8 November 2014 22,317 80.78%

16 November 2015 23,525 85.16%
22 December 2016 22,506 81.47%
11 November 2017 22,138 80.14%
19 November 2018 22,280 80.65%
24 November 2019 22,522 81.53%
30 November 2020 22,547 81.62%
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According to the statistical results in Table 4 and Figure 6, the number and percentage
of low and medium pixels gradually increased between 2013 and 2015, indicating that the
vegetation growth situation gradually deteriorated, which is consistent with the above
analysis results based on the VC classification map. With the time approaching the landslide
in 2015, the vegetation growth became worse, with the maximum increasing percentage,
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8.77%, of the low and medium VC, and the range of abnormal vegetation information
expands. From 2015 to 2017, the number of the abnormal vegetation pixels decreased,
which indicates that the vegetation had a certain recovery. After 2017, the pixels with low
and medium coverage increased slowly, which is consistent with the conclusion that the
overall VC change a little, but change in small areas.

According to the statistical results in Table 4 and Figure 6, the number and percentage
of low and medium pixels gradually increased between 2013 and 2015, indicating that the
vegetation growth situation gradually deteriorated, which is consistent with the above
analysis results based on the VC classification map. With the time approaching the landslide
in 2015, the vegetation growth becomes worse, and the range of abnormal vegetation
information expands. From 2015 to 2017, the number of the abnormal vegetation pixels
decreases, which indicates that the vegetation has a certain recovery. After 2017, the pixels
with low and medium coverage increase slowly, which is consistent with the conclusion
that the overall VC change a little, but change in small areas.

4.3. Surface Deformation Extraction Results Based on SBAS-InSAR

This paper uses the ENVI SARscape tool to process Sentinel-1 A data to obtain the
average deformation rate of the ground highcoherence points and the cumulative surface
deformation along the line of sight (LOS) of the satellite in the study area. However,
because these points are scattered and only have latitudes and longitudes, it is inconvenient
for visual interpretation and impossible to clearly observe and verify the specific surface
deformation of the study area. Therefore, the average deformation rate map obtained
by the SBAS-InSAR technology is superimposed with the GF-1 image. In order to better
analyze the surface subsidence, only the coherent points (with the threshold 0.2 of the
coherent points) of subsidence along the LOS direction are displayed, as shown in Figure 7.
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We can find that the settlement rate of the Jizong Shed-Tunnel landslide along LOS
direction is mostly between 0 mm/year and 30 mm/year from Figure 7a. According to
the sliding speed threshold in Table 5, that is also the annual average surface deformation
rate, this landslide is identified as the very slow type or the slightly slow type [53], so we
find that the Jizong Shed-Tunnel landslide is in the landslide creep stage after a large slide
in 2015. From Figure 7b, it can also be found that the Jizong Shed-Tunnel landslide has
obvious settlements as a whole, reaching more than 50 mm in some places, which also
proves that the landslide is sliding.
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Table 5. Classification of landslide type according to the sliding speed [53].

Speed
Grade Landslide Type Sliding Speed Threshold Destructive Force Description

1 Very slow <0.016 m/year No damage will occur to buildings that have been
protected in advance.

2 Slightly slow 0.016 m/year~1.6 m/year Some permanent buildings are not damaged;even if the
building cracks due to sliding, it is repairable.

3 Slow speed 1.6 m/year~13 m/month

If the slip time is short and the movement of the edge of
the landslide is distributed over a wide area, the road and

fixed structures can be preserved after several
major repairs.

4 Medium speed 13 m/month~1.8 m/h
Fixed buildings at a certain distance from the foot of the
landslide can’t be damaged; the buildings located on the
upper part of the sliding body are extremely damaged.

5 Fast speed 1.8 m/h~3 m/min It has time for escape and evacuation; houses, property
and equipment are damaged by landslide.

6 High fast 3 m/min~5 m/s
The destructive power of the disaster is large, and due to
its high speed, it is impossible to transfer all personnel,

resulting in some casualties.

7 Super fast >5 m/s
The destructive force is huge, the surface buildings are

completely destroyed, and the impact or disintegration of
the sliding body causes huge casualties.

From the perspective of the spatial subdivision of landslides, the trailing edge of
the landslide is the main deformation area. Not only are most of the coherent points
located at the trailing edge of the landslide, but also the settlement rate and cumulative
deformation of the trailing edge of the landslide are relatively large. In addition, the upper
part of the landslide body has partial deformation, while the lower part of the landslide
has no obvious deformation information, which is in line with the movement pattern of the
landslide creep stage.

5. Discussion

Refarding the spatio-temporal analysis of surface deformation in abnormal vegetation
areas, this paper superimposes the vegetation anomaly area information on the optical
GF-1 image and compares it with the average land subsidence rate obtained by using the
SBAS-InSAR technology in Section 4.3, as shown in Figure 8.
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According to Figure 8, this paper superimposes the abnormal vegetation A and B
areas extracted from the GF-1 image to the surface subsidence rate map and finds that
these two areas are located in the subsidence area of the coherent point in the surface
subsidence rate map. At the same time, the subsidence range of these areas is 10 mm/year
to 30 mm/year, which belongs to the landslide creep stage, reflecting the consistency
between the monitoring of landslides through the abnormal vegetation information in
optical images and the monitoring of landslides using the InSAR method.

Similar to the time series analysis of the abnormal vegetation information area, we
also analyze the time series deformation of the A and B areas. Since the cumulative surface
deformation obtained in SBAS-InSAR is displayed by points, this paper selects the center
point of the vegetation anomaly area to approximate the cumulative surface deformation
of the two areas. Moreover, we extract the low and medium VC in A and B areas for the
quantitative analysis and make a specific comparison analysis, as shown in Figure 9.
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(a) Time series surface deformation of A area; (b) Time series of VC changes in A area; (c) Time series
surface deformation of B area; (d) Time series of VC changes in B area.

According to Figure 9a, the overall deformation of the center point of A area is de-
creasing, and the maximum accumulated settlement is 40 mm. The time series deformation
in this area rises slightly from June 2017 to March 2019, and the maximum amount of uplift
is 9 mm, which may be caused by the surface movement of the surrounding area of the
center point squeezing each other. Although the area has undergone certain deformation
during this time period, it is still in a relatively stable state. In the percentage change curve
of VC in Figure 9b, it is also found that the decrease in the percentage of low and medium
VC from 2017 to 2018 indicates that the vegetation has recovered to a certain extent. This
indicates that the surface deformation trend is consistent with the change trend of the VC.
From January 2019 to November 2019, the overall time series surface deformation has a
sudden downward trend. It seems that this area is unstable. After 2020, the time series
deformation is not large, and the cumulative deformation is 7 mm, indicating that the area
is still creeping. Similarly, in the percentage change curve of VC in Figure 9b, it is also
found that the percentage of low and medium VC in 2019 has a rapid upward trend. It is
basically consistent with the time series deformation trend of the ground surface. In 2020,
the VC is slightly restored compared to 2019 but the overall trend is still declining.

According to Figure 9c, the maximum cumulative settlement at the center of B area
is 45 mm. Except for a certain uplift from March to November 2017, the cumulative
deformation of this area shows a downward trend, indicating that the area has been
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creeping and deforming. From the percentage change curve of VC in Figure 9d, it can also
be seen that the percentage of low and medium VC increased from 2017 to 2020, indicating
a decline in VC. The overall trend is the same as the change in the surface deformation.

In order to more accurately analyze the correlation between vegetation anomaly
information and surface deformation, this paper evaluates the accuracy of the two methods
through the correlation and linear regression. In the previous comparison and analysis of
the curves of the two methods, we find that the forms of surface activities in A area are
relatively changeable, and B area is always in a creeping state and the form of the surface
activity in B area is relatively stable. Moreover, since our study area is often covered by
clouds, the optical images that we obtain most suitable for our conditions are all in autumn,
which may cause the vegetation change to be less obvious. Therefore, we select B area as
the typical analysis. Simultaneously, since the time of the used optical and SAR image
is very difficult to be completely matched, and the time of the last SAR image in 2020 is
earlier than that of the optical image, in order to maintain the time consistency, we select
the SAR image time (20 October 2017, 8 November 2018, 3 November 2019, 21 November
2020) earlier than but closest to the optical image time (11 November 2017, 19 November
2018, 24 November 2019, 30 November 2020) for accuracy analysis, as shown in Figure 10.
The x coordinate is the statistical average of the surface deformation. The y coordinate is
the abnormal vegetation information, that is the percentage of the medium and low VC.
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Figure 10. The correlation and regression analysis of the abnormal vegetation information and the
surface deformation.

According to Figure 10, the correlation coefficient between the cumulative surface
deformation and VC is 0.988, and the R2 of the linear regression model is 0.977, indicating
that the two methods have a significant linear correlation. When the deformation of the
land surface subsidence increases, the pixels with medium and low VC also gradually
increase, which provides reliable support for monitoring the Jizong Shed-Tunnel landslide
using abnormal vegetation information. Simultaneously, the root mean squared error
(RMSE) values of the error analysis and the upper and lower limits of the 95% confidence
intervals are both small. This further proves the reliability of the accuracy analysis in B area.

Based on the comparative analysis and accuracy assessment of the cumulative time
series variables and the changes in vegetation anomalies in these two areas, it was found
that the vegetation anomalies are similar to the surface deformation variables, which
proves that the use of abnormal vegetation information to monitor the Jizong Shed-Tunnel
landslide has a certain degree of correctness and reliability.
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6. Conclusions

In order to make up for the deficiencies of traditional GPS and InSAR technologies in
monitoring landslides with large ups and downs, inaccessible by manpower, and lush with
vegetation, based on the correlation between landslide creep and vegetation abnormality,
this paper proposes a method to indirectly monitor the deformation characteristics of
landslides by extracting the abnormal vegetation information from optical remote sensing
images. We use the GF-1 optical data from 2013 to 2020 to monitor the vegetation anomaly
information of the Jizong Shed-Tunnel landslide and use the SBAS-InSAR technology to
extract the surface deformation information of the study area from 2017 to 2020. Then, we
compare and analyze them. The results are as follows:

(1) This paper calculates the GNDVI index based on GF-1 time series data, and finally, ob-
tains the vegetation coverage information of each scene. Through the multi-temporal
qualitative and quantitative analysis of the extracted vegetation anomaly information,
the VC decreased from 2013 to 2015. In reality, the landslide did occur in the study
area in 2015, indicating that the early creep stage of landslides brings about a decrease
in the VC. This verifies that the method of using vegetation anomaly information
to monitor the Jizong Shed-Tunnel landslide is feasible. At the same time, it was
discovered that there were two areas on the trailing edge of the landslide showing a
downward trend in VC after 2017.

(2) Through the SBAS-InSAR technology based on the Sentinel-1 data, the main defor-
mation area is located at the rear edge of the landslide, and the surface subsidence
rate ranges from 0 mm/year to 30 mm/year, indicating that the Jizong Shed-Tunnel
landslide is in a slow creep stage.

(3) After superimposing the abnormal vegetation area in the optical data with the surface
deformation information in the radar data and performing time series analysis and
accuracy assessment, it is found that the vegetation abnormality and the change trend
of the surface deformation are basically consistent. When the surface deformation
of the landslide decreases, the VC also shows a downward trend. When the defor-
mation accelerates, the change in VC also intensifies. Even when the decline in the
deformation is not large, the vegetation growth status can reflect these changes, which
indicates the effectiveness and reliability of using vegetation abnormalities to monitor
the Jizong Shed-Tunnel landslide, and the results of the two methods are similar. This
method can provide new ways and ideas for the high-mountain landslide monitoring
in southwestern China and can make up for some of the shortcomings of existing
landslide monitoring methods.

Nevertheless, not all landslides at the creeping stage show obvious characteristic
changes on surface vegetation, but some do exist. So, the landslide monitoring method
in this paper is suitable for landslides with vegetation or vegetation change. Since the
vegetation information needs to select the appropriate optical image with similar imaging
time in each year, and the optical image is easily occluded by clouds, this method has some
limitations in areas with cloud coverage. In addition, the impact of landslides on vegetation
is a complex process, and this method has high monitoring accuracy for landslides that
are in the creeping stage for a long time. In the future, we will also explore accurate pixel
distinction models to improve the accuracy of vegetation information extraction.
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