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Abstract: Fast and robust detection of infrared small targets in a single image has always been
challenging. The background residue in complex ground–sky background images leads to high
false alarm rates when traditional local contrast methods are used because of the complexity and
variability of the ground–sky background imaging environment. A weighted local ratio-difference
contrast (WLRDC) method is proposed in this paper to address this problem and detect infrared small
targets in the ground–sky background. First, target candidate pixels are obtained using a simple facet
kernel filter. Second, local contrast saliency maps and weighted mappings are calculated on the basis
of the local ratio-difference contrast and the spatial dissimilarity of the target, respectively. Third,
the final weighted mapping can be obtained through the multiplication fusion strategy. Finally,
a simple threshold segmentation method is employed to extract the target. Experimental results
on six real ground–sky infrared scenes showed that the proposed method outperforms existing
state-of-the-art methods.

Keywords: ground–sky infrared small target; local ratio-difference contrast (LRDC); block difference
product weighted (BDPW)

1. Introduction

Infrared small target detection is an important component of infrared search and
tracking systems that has been utilized extensively in space surveillance, remote sensing,
missile tracking, and other domains [1–3]. Fast and reliable detection of infrared small
targets is crucial in these applications. However, small targets usually contain only a
few pixels and lack detailed shape and texture feature information due to long-range
target imaging [4–6]. Noise disturbances, including grassland, poles, trees, buildings,
and high-brightness clutter on the ground, commonly found in the complex and changeable
imaging environment of the ground–sky scene typically result in targets with extremely
low signal-to-noise ratios (SNRs). Very low SNRs of targets increase their susceptibility to
background interference from nearby ground objects. Therefore, detecting infrared small
targets in ground–sky scenes is challenging.

Many different methods have been proposed for detecting infrared small targets in
complex backgrounds. Existing methods can be typically divided into single-frame and
sequential detection methods [7]. The sequential detection method requires reference to
temporal characteristics of multiple successive frames. Background interference clutter is
eliminated on the basis of consistency of motion of the moving target and high correlation
of the background in adjacent frames [8]. However, background variation is easily caused
by the jitter of the photoelectric tower itself in practice, thereby affecting the performance
of the sequential detection method. Meanwhile, the computationally complex sequential
detection method and requirement of high hardware performance limit its applicability
to practical infrared search systems. Compared with the sequential detection method, the
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single-frame detection method can more easily obtain satisfactory real-time performance.
Traditional single-frame detection methods include Top-Hat [9,10], Max-mean and Max-
median filtering [11], two-dimensional least mean square (TDLMS) [12,13], and multi-scale
directional filtering approaches [14]. Although these morphology filtering-based methods
generally demonstrate satisfactory detection performance in infrared images with uniform
background and are easy to implement, they usually cause high rates of false alarms in
complex backgrounds. Notably, the method based on a human visual system (HVS) is intro-
duced into the field of infrared small target detection. The background is usually a uniform
area with some noise in the local region, while the target and the adjacent region are con-
centrated and discontinuous. Therefore, the region of interest can be extracted from the dif-
ference between features of the target and the background in the local region, and the most
appropriate among the responses can be obtained using multi-scale calculations [15]. Chen
et al. [16] proposed the initial local contrast method (LCM) for detecting infrared small tar-
gets. A series of extended LCM methods, such as an improved LCM (ILCM) [17], a novel lo-
cal contrast measure (NLCM) [18], a multi-scale relative local contrast measure (RLCM) [19],
and a multi-scale patch-based contrast measure (MPCM) [20], was subsequently proposed.
Cui et al. [21] put forward a high-speed local contrast infrared small target detection
method that achieves fast detection of infrared small targets using local contrast combined
with a machine learning classifier to solve the problem of calculation inefficiency of LCM-
based methods. Xia et al. [22] designed a multi-scale local contrast measure based on a local
energy factor (LEF). Han et al. [23] subsequently proposed a weighted strengthened local
contrast measure (WSLCM). Hence, these methods primarily utilize the gray difference
between the target and the background in a local region to measure infrared small targets.

Some scholars have improved the window detection framework in LCM-based meth-
ods, as shown in Figure 1. For example, Han et al. [24] proposed a multi-scale triple-layer
local contrast measurement (TLLCM) method utilizing a new window, and its triple-layer
window detection framework is shown in Figure 1b. Wu et al. [25] put forward a double-
neighborhood gradient measure for the detection of infrared small targets of different sizes
through a designed double-neighborhood window and effective avoidance of the “ex-
pansion effect” of traditional multi-scale LCM-based methods. The double-neighborhood
window is presented in Figure 1c. Lu et al. [26] devised a weighted double local contrast
measure utilizing a new sliding window that further subdivides the central block in the
window detection framework and fully considers the contrast information within the
central block. This new sliding window is shown in Figure 1d. The improvement of the
window detection framework allows the enhanced capture of energy in the central region
and contrast with the adjacent background while avoiding multi-scale calculations and
improving computational efficiency.

(a) (b)

Figure 1. Cont.
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(c) (d)

Figure 1. Window detection framework: (a) traditional window detection framework; (b) triple-layer
window detection framework; (c) double neighbor window detection framework; (d) double-layer
nested window.

At present, methods based on matrix decomposition can successfully improve the
detection performance of infrared small targets in complex scenes. The core idea of these
kinds of methods is to transform the small target detection problem into a low-rank
and sparse optimization problem according to sparse a priori characteristics of targets.
Gao et al. [27] established an infrared patch image (IPI) model for infrared small target
detection, expressed the small target detection as an optimization problem of low-rank
sparse matrix recovery, and solved it effectively using stable principal component tracking.
Wang et al. [28] then created a novel stable multi-subspace learning (SMSL) method
by analyzing the background data structure. On the basis of the IPI model, Dai and
Wu [29] designed an infrared patch tensor (IPT) model, exploited the target sparse prior
and background non-local self-correlation prior, and modeled the target–background
separation as a robust low-rank tensor recovery problem. On the basis of an infrared patch
tensor (IPT) model, a novel non-convex low-rank constraint named partial sum of tensor
nuclear norm (PSTNN) [30] with joint weighted `1 norm was employed to suppress the
background and preserve the target efficiently. However, these methods are inefficient in
the face of complex backgrounds with multiple or structural sparse targets and commonly
result in high false alarm rates.

Many sequential detection methods based on multiple frames have been proposed
to detect infrared small targets and achieve enhanced detection results in complex back-
grounds with the improvement of computer performance. For instance, Deng et al. [31]
and Zhao et al. [32] realized the detection of motion point targets by fusing the spatial and
temporal local contrast information. Du et al. [33] proposed a new spatio-temporal local
difference measurement method. Liu et al. [34] put forward an infrared video small target
detection method based on the spatio-temporal tensor model. Pang et al. [35] established
a novel spatio-temporal saliency method for detecting low-altitude slow infrared small
targets in image sequences. These sequential detection methods use the information from
anterior-posterior multiple frames to enhance the suppression of background clutter and
extraction of targets. However, the output results of these sequential detection methods are
usually lagging.

With the development of deep learning (DL) technology, many DL-based methods
have been put forward to detect infrared small targets. Wang et al. [36] designed a YOLO-
based feature extraction backbone network for infrared small target detection. Subsequently,
an infrared small target detection method based on Generative Adversarial Network (GAN)
was proposed in [37]. Dai et al. [38] incorporated a visual attention mechanism into
a neural network to improve target detection performance. Kim et al. [39] utilized a
GAN framework to obtain synthetic training datasets, and the detection performance was
effectively improved. Zuo et al. [40] designed the attention fusion feature pyramid network
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specifically for small infrared target detection. The method based on deep learning has
achieved some relatively good detection results in infrared small target detection. However,
the above methods usually require rich infrared image data. Regrettably, there are few
publicly available datasets to support the research of these methods.

A weighted local ratio-difference contrast (WLRDC) method is proposed in this paper
to detect infrared small targets and improve the robust detection performance in ground–
sky complex backgrounds. Specifically, the innovation of the proposed WLRDC method is
as presented follows:

1. A local ratio-difference contrast (LRDC) method that can simultaneously enhance the
target and suppress complex background clutter and noise is proposed by combining
local ratio information and difference information. LRDC uses the mean of the Z max
pixel gray values in the center block to effectively solve the problem of poorly enhancing
the target at low contrast when the traditional LCM-based method is applied.

2. A simple and effective strategy of block difference product weighted (BDPW) mapping
is designed on the basis of spatial dissimilarity of the target to improve the robustness of
the WLRDC method. BDPW can further suppress background clutter residuals without
increasing the computation complexity given that this strategy is also calculated using
the gray of the center and adjacent blocks.

The rest of the paper is organized as follows: in Section 2, we present the related work.
The proposed WLRDC method is described in Section 3. In Section 4, we conduct extensive
experiments in various scenes to verify the effectiveness of the proposed method. Finally,
the paper is discussed and summarized in Sections 5 and 6, respectively.

2. Related Work

In recent years, some infrared small target detection methods based on LCM have
been extensively investigated. Existing local contrast calculation types can usually be
divided into three types: ratio, difference, and ratio-difference (RD) form. We briefly review
the RD-based form of infrared small target detection method in this section because the
proposed method is based on the RD form.

RLCM [19] is a typical method of the RD form method that uses the average gray
of the K1 and K2 max pixels in the central and adjacent cell blocks for calculation to
suppress the interference of various noises effectively. Guan et al. [41] utilized a multi-scale
Gaussian filter combined with RD contrast and proposed an infrared small target detection
method. Although the RD-based contrast method achieved relatively excellent detection
performance compared to the traditional LCM-based method, the detection capability
was weak in complex backgrounds. Moreover, the weighted function was developed
to improve the detection capability and robustness of the method further. For instance,
Han et al. [42] put forward a multi-directional two-dimensional least mean square product
weighted RD-LCM method for infrared small target detection, which has better detection
performance for different types of backgrounds and targets. Subsequently, Han et al. [43]
also offered a weighted RD local feature contrast method with improved robustness to noise.
With the combination of weighting function with the RD contrast, the detection performance
of these methods was effectively improved.

The RD form of the contrast calculation method integrates the advantages of both
the ratio and difference forms, enhances the target, and effectively suppresses background
clutter. Although the weighting function is an excellent method for improving the detection
performance, existing weighting functions are overly complex and increase the computa-
tional complexity. Therefore, rapidly and reliably detecting infrared dim and small targets
in complex backgrounds remains an important challenge to overcome.

3. Materials and Methods

The overall target detection process of the proposed WLRDC method is shown in
Figure 2. This process is mainly divided into the following stages: (1) preprocessing (facet
kernel filtering and square calculation are used to enhance the target) and (2) detection
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(LRDC is first calculated from the local ratio-difference contrast and on the basis of spatial
dissimilarity of the target to measure the BDPW) stages. WLRDC mapping is obtained
from the fusion multiplication strategy of the LRDC and BDPW to extract the target easily
using a simple threshold segmentation method.

3.1. Preprocessing: Target Enhancement
3.1.1. Facet Kernel Filtering

The target presents low contrast in the ground–sky scene due to the existence of
high-brightness buildings, grass, roads, and other strong interference clutter in the ground–
sky background. Here, facet kernel [44] filtering is employed to highlight the target
area significantly different from the adjacent background by traversing the whole image.
In this way, targets of different sizes and shapes can be effectively enhanced. The literature
demonstrates the effectiveness of the facet kernel [45,46]. The target-enhanced image H is
expressed as follows:

H = I(x, y) ∗ F (1)

where ∗ represents the convolution operation, and F denotes the facet kernel.

Figure 2. The overall target detection process of the proposed WLRDC method. The detection process
includes facet kernel filtering, calculation of LRDC and BDPW, and WLRDC obtained by fusing the
LRDC and BDPW.

The facet kernel model uses a bivariate cubic function to approximate the gray intensity
surface formed by gray values of all pixels in its neighborhood. Here, the size used is 5 × 5,
and its two-dimensional discrete orthogonal polynomial set Pi can be expressed as follows:

Pi ∈ {1, r, c, r2 − c, rc, c2 − 2, r3 − 17
5

r, (r2 − 2)c, r(c2 − 2), c3 − 17
5

c} (2)

where r ∈ {−2,−1, 0, 1, 2} and c ∈ {−2,−1, 0, 1, 2} are the respective row and column
coordinates in the 5× 5 neighborhood. The pixel surface function f(r,c) in the neighborhood
is expressed as follows:

f (r, c) =
10

∑
i=1

Ki · Pi(r, c) (3)
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where Ki is the fitting coefficient of the polynomial that can be derived using the least
square method as follows:

Ki =
∑r ∑c Pi(r, c) f (r, c)

∑r ∑c P2
i (r, c)

(4)

Ki can be calculated using the convolution of f(r,c) and Wi. Wi is expressed as follows:

Wi =
Pi(r, c)

∑r ∑c P2
i (r, c)

(5)

According to Equations (2) and (3), second-order partial derivatives of the central pixel
(0,0) of the r × c window along the row and column directions can be obtained as follows:

∂2 f (r, c)
∂r2 = 2K4,

∂2 f (r, c)
∂c2 = 2K6 (6)

Equation (6) shows that the sum of K4 and K6 can be calculated to enhance the target
region effectively. K4 and K6 can be obtained from the convolution of Wi with I(x,y). Notably,
the relative results of filtering for each region of the image remains unaffected because
of the denominator term in Equation (7). Thus, we can further eliminate denominator
coefficients and substitute Pi(r, c) into Equation (5) to obtain kernel coefficients.

W4 =
1

70


2 2 2 2 2
−1 −1 −1 −1 −1
−2 −2 −2 −2 −2
−1 −1 −1 −1 −1
2 2 2 2 2

, W6 = WT
4 (7)

Therefore, F = −2(W4 + W6). The weighted kernel coefficients are inverted to detect
bright targets in the ground–sky background where the central region presents greater gray
areas than the adjacent regions. Enabling the detection of bright targets where the central
gray is greater than the adjacent gray leads to the positive weight of the central coefficients.
The final facet kernel is expressed as follows:

F =


−4 −1 0 −1 −4
−1 2 3 2 −1
0 3 4 3 0
−1 2 3 2 −1
−4 −1 0 −1 −4

 (8)

3.1.2. Square Calculation

The square of H is calculated to improve the energy of the target further and obtain
the enhanced target response map R as follows:

R = H2 (9)

Figure 3 shows that the target energy enhances but the noise also enhances after the
calculation of the square for each pixel in H. However, the target is maximally salient in H.
The square calculation will obtain greater energy relative to the noise.
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(a) (b) (c)

Figure 3. Target enhancement process. (a) original image; (b) result of facet kernel filtering; (c) result
of square calculation. Red boxes indicate the targets.

3.2. Calculation of LRDC

We utilize local features of the target and background to calculate the local ratio-
difference contrast; that is, the ratio and difference information of the central and eight
directional adjacent blocks within the local region are applied to calculate the LRDC saliency
map. Here, a sliding window with nine unit blocks is used to traverse the whole image,
as shown in Figure 4. The LRDC is expressed as:

LRDC(x, y) =
SZ

mmax
(Dmax − Dmin) (10)

where SZ is the mean of the Z maximum pixel gray values in the center block. Dmax and
Dmin are the maximum and minimum values of Di, respectively; mmax is the maximum of
mi. Values of Z on different scales, which will be discussed in Section 5, can be obtained
as follows:

SZ =
1
Z

Z

∑
j=1

Gj
T (11)

mi =
1
L2

L2

∑
j=1

I j
i , (i = 1, 2, . . . , 8) (12)

Di = (SZ −mi)
2, (i = 1, 2, . . . , 8) (13)

where Z, L, Gj
T , and I j

i indicate the number of maximum pixel gray values in the center
block, length of the block, jth maximum gray value of the center block T, and gray value of
the jth pixel in the ith block, respectively.
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Figure 4. Structure of the nested sliding window, where L is the length of the block.

We will now analyze the motivation for the design of the LRDC. The local ratio-
difference contrast combination can simultaneously enhance the target and suppress com-
plex backgrounds. Different from traditional local contrast methods, the proposed method
utilizes the SZ/mi in the ratio calculation and is mainly based on the following facts:

1. False alarms easily occur when pixel-sized noises with high brightness (PNHB) appear
in the background, the maximum gray value of the center block is used in the ratio
calculation, and PNHB is easily taken as the target. SZ improves the accurate represen-
tation of gray features of the central block and avoids the weighting of PNHB in the
calculation of LRDC.

2. Compared with the method that only uses the gray mean of the central block, our
method uses the mean of Z maximum gray values in the center block SZ to expand the
contrast between the target and the background further as well as enhance the target.

The difference calculation presents the advantage of effectively eliminating
high-brightness backgrounds. The contrast is calculated using the difference between
SZ of the central block and mi of adjacent blocks to reduce the effect of high-brightness
backgrounds effectively. Section 3.1.2 demonstrated that the squared calculation enhances
the energy of the target. Therefore, (SZ −mi)

2 is used to calculate Di. Meanwhile, back-
ground clutter can be further attenuated with Dmax − Dmin.

3.3. Calculation of BDPW

The weighted mapping mainly exploits spatial features of the target and the back-
ground. Targets exhibit discontinuities of features with surrounding backgrounds in local
regions and minimal similarities to the background given that they usually satisfy a Gaus-
sian distribution. Hence, the increased dissimilarity between the central and adjacent
regions indicate a high probability that the central region is the target. The spatial dissim-
ilarity between the central and adjacent blocks is used as the weighting function for the
LRDC to suppress noise residuals in the LRDC further. Weighted mapping is defined as:

BDPW(x, y) =
8

∏
i=1

(SZ −mi) (14)

We will discuss the weighted enhancement mechanism of BDPW in different
local regions.

1. If the central block is the target, then we can easily obtain the following because the
target is the most significant in the local region:

SZ −max mi > 0, (i = 1, 2, . . . , 8) (15)

BDPW > 0 (16)

2. If the central block is the background, then we can easily obtain the following because
the background is a uniform area with some noise in the local region:
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SZ −max mi ≤ 0, (i = 1, 2, . . . , 8) (17)

BDPW ≤ 0 (18)

As shown in Equations (15) and (17), if the central region is the target, then the
LRDC will obtain a large weight value. If the central region is the background, then the
LRDC will obtain a negative weight value. Therefore, BDPW can realize the weighted
enhancement of LRDC.

3.4. Multi-Scale Calculation of WLRDC

The local ratio-difference contrast (LRDC) and the block difference product weight
(BDPW) are obtained by calculations. WLRDC is defined as:

WLRDC(x, y) = LRDC(x, y)× BDPW(x, y) (19)

The obtained WLRDC saliency map must be normalized to facilitate the subsequent
threshold segmentation. The normalization result is expressed as follows:

WLRDC(x, y) =
LRDC(x, y)× BDPW(x, y)

max{LRDC(x, y)× BDPW(x, y)} (20)

The sliding detection window is the vital component of the LCM-based method.
Ideally, the detection window should be the same size as the target size for a more accurate
measurement of local contrast. In practical applications, the dataset may contain targets of
multiple sizes. However, the size of the detection window is fixed. To solve this problem, a
multi-scale calculation method was adopted in [16–20]. Typically, the detection window is
set to 3 × 3, 5 × 5, 7 × 7 and 9 × 9. Multi-scale operation is necessary because the size of
targets in infrared images cannot be determined in advance. Multi-scale WLRDC is defined
as:

WLRDC = max{WLRDCn(x, y)}, n = 1, 2, . . . , s (21)

where n and s represent the nth scale and the total number of scales, respectively.

3.5. Target Extraction

The real target is properly enhanced according to the previous calculations and is
most significant in the WLRDC saliency map. Thus, the target can be extracted using the
following threshold segmentation operation:

Th = µ + kσ (22)

where µ and σ are the mean and standard deviation of the WLRDC saliency map, respec-
tively, and k is an adjustable parameter.

In summary, the whole process of WLRDC calculation is described in Algorithm 1.
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Algorithm 1 Detection steps of the proposed WLRDC method.

Input: Infrared image I, size of sliding window block L×L, facet kernel, and parameters
Z, k and s
Output: Detection result

1: Calculate the facet kernel filter map H using (1).
2: Calculate the enhanced target response map R using (9).
3: for 1 to s do
4: Calculate the SZ, mi and Di by (11)–(13), respectively.
5: Calculate the LRDC saliency map using (10).
6: Calculate the weighted mapping BDPW using (14).
7: Obtain WLRDC mapping by fusing LRDC and BDPW.
8: end for
9: Obtain maximum pooling for multi-scale WLRDC using (21).

10: Obtain the final detection result using (22).

3.6. Complexity Analysis

We briefly analyze the computation complexity of the proposed method in this section.
Suppose the size of the input infrared image is M × N. The preprocessing process consists
of facet kernel filtering (kernel operator size is q × p) and square calculation with a
computation complexity of O(qpMN) and O(MN), respectively. The saliency map needs
to be computed pixel-by-pixel in the target detection stage, and the computation complexity
of the whole process is O(n2MN), where n(n = 1, 2, . . . , s) is the scale of the sliding
window. The total computational complexity of the multi-scale target detection stage is
O(s3MN). In conclusion, the whole computation complexity of the proposed method is
O(qpMN + s3MN).

4. Experimental Results and Analysis

A series of evaluation metrics is used to evaluate the detection performance of different
methods in this section to validate the effectiveness and robustness of the proposed method.
Six real scenes were utilized in the experiments, and the proposed method was compared
with the baseline methods. We adjust the parameters of the baseline method in the next
experiments to achieve the optimal detection results. Finally, we analyze the computational
efficiency of the proposed and baseline methods.

4.1. Experimental Setup
4.1.1. Datasets

In this paper, we use the public dataset from the ATR Key Laboratory of the National
University of Defense Technology and the 25th Institute of the Second Research Institute of
China Aerospace Science [47]. The dataset contains multiple image sequences with complex
and variable imaging backgrounds, including cluttered grass, high-brightness ground, and
forests. The sensor used for dataset acquisition was a cooled mid-wave infrared camera. We
choose six typical ground–sky scenes for analysis to validate the efficiency and robustness
of the proposed method. Note that the background in Scene 1 contains high-brightness
dotted noise similar to the real target. Some targets in Scenes 4 and 5 are mixed with
the high-luminance ground background, thereby significantly increasing the difficulty of
detection. A detailed description of all datasets is presented in Table 1. Each scene contains
one target and is marked with a red box.
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Table 1. Details of the six test datasets.

Data Number of Frames Image Resolution Background Description Target Type

Scene 1 259 256 × 256 Ground–sky background, high voltage towers,
and strong radiation buildings UAV

Scene 2 151 256 × 256 Ground–sky background, high-brightness roads,
and forests UAV

Scene 3 131 256 × 256 Ground–sky background, grasslands, and strong
radiation ground UAV

Scene 4 75 256 × 256 Ground–sky background, trees, and
high-brightness ground UAV

Scene 5 100 256 × 256 Ground–sky background, telegraph poles, and
high-brightness ground UAV

Scene 6 150 256 × 256 Ground–sky background, forests, and strong
ground disturbance clutter UAV

4.1.2. Evaluation Criteria

Several evaluation metrics commonly used in the field of infrared small target detec-
tion are introduced to evaluate the performance of different infrared small target detection
methods quantitatively. Signal-to-noise ratio gain (SNRG) is usually used to describe the
target enhancement ability of methods and related to the SNR before and after image
processing. SNR is expressed as follows:

SNR = (Imax − Imean)/σ (23)

where Imax is the maximum gray value of the image, Imean is the mean value of the image,
and σ is the standard deviation. The SNRG is defined as follows:

SNRG = 20× log10(SNRout/SNRin) (24)

where SNRout and SNRin represent the SNR of the original image and the output
result, respectively.

Background suppression factor (BSF) is used to describe the background suppression
ability of the corresponding method as follows:

BSF =
Cin
Cout

(25)

where Cin and Cout represent the standard deviation of the original image and the output
result, respectively. Receiver operating characteristic (ROC) curve is used as a common
evaluation index to quantify the effectiveness of methods at the pixel level. The ROC curve
represents the relationship between the probabilities of detection (Pd) and false alarm (Pf ).
Pd and Pf are expressed as follows:

Pd =
nt

Nt
, Pf =

n f

N
(26)

where nt, Nt, n f , and N represent the number of true pixels detected in the target image,
number of target pixels in the original image, number of false alarm pixels, and the total
number of pixels, respectively.

4.1.3. Baseline Methods

We choose eight existing advanced approaches as baseline methods to demonstrate
the effectiveness and robustness of the proposed method. Among them, Top-Hat [9] is
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based on filtering methods. The HVS-based methods include a multi-scale relative local
contrast measure (RLCM) [19], a multi-scale patch-based contrast measure (MPCM) [20], a
tri-layer local contrast measure (TLLCM) [24], a multi-scale local contrast measure based
on local energy factor (LEF) [22], and a weighted strengthened local contrast measure
(WSLCM) [23]. Infrared patch image (IPI) [27] and partial sum of tensor nuclear norm
(PSTNN) [30] are low-rank sparse decomposition-based methods. Parameter settings of the
baseline method were obtained from experimental analysis and discussions in the paper of
the original authors. Parameter settings of all methods are listed in Table 2.

Table 2. Parameter settings of the different methods.

Methods Parameter Settings

Top-Hat [9] Structure size: square, local window size: 3 × 3
RLCM [19] (k1, k2) = (2,4),(5,9) and (9,16)

MPCM [20] Local window size:N = 3,5,7,9. mean filter size:
3 × 3

IPI [27]
Patch size:50 × 50, sliding step: 10,

λ = 1/
√

min(m, n), ε = 10 −7

TLLCM [24] Window size: 3 × 3, s = 5,7,9
LEF [22] P = 1,3,5,7,9, α = 0.5, and h = 0.2

PSTNN [30]
Patch size: 40 × 40, sliding step: 40,

λ = 1/
√

min(m, n), ε = 10−7

WSLCM [23] K = 9, λ = 0.6∼0.9
Proposed Local window size:L = 3,5,7,9, K = 4,9,11

4.2. Comparison with State-of-the-Art Methods

The results of different methods were processed independently in six groups of real
ground–sky backgrounds to more clearly illustrate the detection capability of the proposed
method clearly. The findings of the visualization of different methods are illustrated in
Figures 5–7. Targets are marked with a red box, unmarked areas indicate that no target is
detected, and a close-up depiction of the target is shown in the bottom right corner of the
image. The corresponding three-dimensional (3D) display diagram is presented below the
detection result of each method to show the effectiveness and robustness of the proposed
method intuitively. As shown in Figures 5–7, the traditional Top-Hat method properly
suppresses regions with a uniform background but poorly suppresses regions with strong
interference background, thereby resulting in poor detection results. LCM-based methods
focus on increasing the target background contrast and suppressing background clutter.
However, accurately segmenting targets is difficult when targets are mixed in the strong
interference background clutter. The method based on low-rank sparse decomposition
focuses on how to separate the target from the background and can easily lead to false
alarms when suspicious target areas exist in the background. The proposed method
suppresses suspicious target regions through spatial dissimilarity weighting of the local
contrast and achieves accurate segmentation of the target.
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Figure 5. Detection results and 3D distribution of different methods in Scenes 1 and 2. The target is
marked with a red box, and a close-up of the target is shown in the lower right corner. Unmarked
areas indicate the absence of detection of the target.
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Figure 6. Detection results and 3D distribution of different methods in Scenes 3 and 4. The target is
marked with a red box, and a close-up of the target is shown in the lower right corner. Unmarked
areas indicate the absence of detection of the target.
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Figure 7. Detection results and 3D distribution of different methods in Scenes 5 and 6. The target is
marked with a red box, and a close-up of the target is shown in the lower right corner. Unmarked
areas indicate the absence of detection of the target.

Strong interference clutter in Scene 1 is widely distributed, and the detection results of
baseline methods all contain background noise residuals. Among them, the TLLCM method
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failed to detect the target. The background of Scenes 2–4 depicts messy grass and high-
brightness ground. The 3D distribution demonstrates that a small amount of background
noise is still retained in the WSLCM detection results. The increased background clutter in
the detection results lead to a high false alarm rate although other baseline methods can
detect the target. In particular, the target in Scene 4 is undetected by RLCM, TLLCM, and
PSTNN due to the close proximity of the target to the high-brightness background, while
the proposed method accurately detects the target. The background in Scene 5 is uniform
despite the presence of suspicious targets. The suspicious target also exists although the
real target is identified in the detection results of the baseline method. Specifically, the
TLLCM only retains the false target and misses the real target. The background in Scene 6
contains trees and strong-interference ground clutter. Moreover, the 3D distribution shows
that that IPI and PSTNN result in high false alarm rates when strong edges or sparse points
exist in the background. Although LCM-based methods can successfully detect targets,
many significant background residuals are observed in the detection results because the
local contrast measurement poorly describes the suspected non-target region and results
in a high false alarm rate in the presence of strong interference. These visualization
results indicate that background clutter is nearly nonexistent in the detection results of the
proposed method, and the target is accurately extracted compared with those of baseline
methods. Moreover, experiments based on six groups of ground–sky scenes verified the
robustness of the proposed method.

SNRG and BSF were used to evaluate the target enhancement and background sup-
pression abilities of the proposed and baseline methods. High values of SNRG and
BSF indicate the enhanced performance of the corresponding method. Tables 3 and 4
show the SNRG and BSF of different methods in six different ground–sky backgrounds,
where numbers in bold font indicate the maximum value of SNRG and BSF in each
scene and underlined numbers denote the second highest values. The proposed method
achieved the maximum SNRG and BSF in Scenes 2–5. Notably, high SNRG and BSF
values are mainly concentrated in TLLCM, LEF, WSLCM, and the proposed method.
These methods can improve the target enhancement and background suppression by com-
bining local contrast measurements with weighting functions. The LEF and IPI methods
present the maximum SNRG and BSF values in Scenes 1 and 6, respectively, but the back-
ground clutter that still exists in the detection results leads to inaccurate segmentation of
the target.

Table 3. Average SNRG values of different methods in six real scenes.

Methods Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Top-Hat [9] 30.321 23.568 20.404 10.105 6.059 15.975
RLCM [19] 26.046 30.587 28.373 21.395 8.476 18.487
MPCM [20] 30.796 38.533 37.942 24.485 18.996 22.243

IPI [27] 35.465 38.994 34.064 23.766 16.049 31.107
TLLCM [24] 33.302 41.840 39.910 30.099 17.976 29.228

LEF [22] 38.445 40.831 37.878 28.637 18.818 30.620
PSTNN [30] 35.573 38.407 29.373 26.285 17.017 24.576
WSLCM [23] 36.353 42.122 40.456 31.293 19.414 30.478

Proposed 38.023 42.847 42.550 33.966 20.636 30.793
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Table 4. Average BSF values of different methods in six real scenes.

Methods Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Top-Hat [9] 24.167 7.264 5.468 2.920 2.009 5.958
RLCM [19] 15.735 15.615 13.402 10.747 2.719 7.868
MPCM [20] 28.897 45.049 43.421 15.294 9.957 12.717

IPI [27] 43.060 41.818 25.871 13.589 6.414 33.793
TLLCM [24] 33.967 57.377 50.029 27.964 8.159 28.127

LEF [22] 60.306 51.201 39.703 23.685 8.875 32.058
PSTNN [30] 43.872 39.179 16.295 18.037 7.146 16.031
WSLCM [23] 50.165 59.105 53.180 32.643 9.443 32.262

Proposed 57.183 64.301 67.949 43.330 10.753 32.355

Figure 8 shows the ROC curves of different methods in six real groups of ground–sky
scenes. A method typically exhibits satisfactory detection performance when the ROC
curve is close to the upper left corner. The proposed method achieved the best detection
performance in each of the six real scenes compared with the baseline method. Meanwhile,
the detection performance of PSTNN is poor and its false alarm rate is high mainly due to
the complex background of the dataset used in the experiments and the susceptibility of
PSTNN to treat strong interference clutter and suspicious targets as sparse points. Notably,
the classical Top-Hat method achieved satisfactory detection performance in the test due to
the appropriate match achieved between the selected structural elements and the target.
In addition, although all LCM-based methods present high detection rates, they also show
high false alarm rates mainly due to the presence of some high-brightness spots in the
ground background that exhibit high contrast in the local background, thereby creating
a false perception of the target. The proposed method achieves high detection perfor-
mance in six scenes, especially when weighted mapping is used to suppress false alarm
targets further.

Figure 8. ROC curves of different methods in six real scenes.
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All experimental programs were compiled using MATLAB R2018a and conducted
on a computer with a 2.3 GHz Intel i5-GTX 950 M GPU and 8 G of memory. We tested
the time consumption of different methods in six scenes to verify the computational
efficiency of the proposed method. The time consumption of a single-frame for different
methods in Scenes 1–6 are listed in Table 5 , where the numbers in bold font indicate the
minimum time consumption (maximum calculation efficiency) and underlined numbers
indicate the calculation efficiency that ranks second. Methods based on morphology
and local contrast measures are more computationally efficient than those based on low-
rank sparse decomposition because morphology, and LCM-based methods only compute
the pixel gray matrix for local regions of the image without additional computational
complexity. However, methods based on low-rank sparse decomposition lead to low
computational efficiency because they require singular value decomposition in every
iteration. Table 5 demonstrates that MPCM and LEF achieve the highest and lowest
computational efficiencies, respectively. The MPCM calculates local contrast measurements
by simultaneously traversing the image through eight patches, thereby minimizing the
computation time. The LEF consumes a significant amount of time in calculating the
local energy factor, thereby increasing the time consumption costs. LCM-based RLCM,
TLLCM, and WSLCM methods are time-consuming due to their need to traverse the whole
image when calculating local contrast measures. IPI and PSTNN are methods based on
low-rank sparse decomposition, with PSTNN demonstrating the minimum consumption
of time. The proposed method ranks second in terms of computational efficiency because
WLRDC needs to traverse the image Z times when calculating SZ and perform multi-scale
calculations, thereby seriously affecting the computational efficiency.

Table 5. Average time consumption of a single frame for all methods in six real scenes. (Unit: s).

Methods Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Top-Hat [9] 0.594 0.564 0.544 0.544 0.542 0.547
RLCM [19] 4.297 4.423 4.478 4.387 4.536 4.371
MPCM [20] 0.162 0.138 0.133 0.126 0.131 0.122

IPI [27] 9.266 8.826 8.939 9.327 9.863 8.922
TLLCM [24] 1.535 1.277 1.432 1.476 1.285 1.233

LEF [22] 19.252 19.612 20.744 19.430 20.156 19.443
PSTNN [30] 0.299 0.257 0.302 0.315 0.267 0.324
WSLCM [23] 5.269 4.807 5.478 4.626 5.444 5.294

Proposed 0.216 0.217 0.217 0.219 0.221 0.220

5. Discussion
5.1. Discussion of Detection Performance

Because the imaging environment is complex and variable and the ground–sky back-
ground usually contains substantial interference clutter and noise, the detection of infrared
small targets in the ground–sky scene is extremely difficult. Traditional Top-Hat filter-
ing is extremely sensitive to edges and noise, resulting in inability to segment targets
accurately, especially in complex ground–sky scenes. Strong interference clutter is widely
distributed in the ground–sky scenes, and small targets are in a complex background
leading to low contrast. Therefore, MPCM and RLCM methods that only use local contrast
calculation are easy-to-miss targets. IPI and PSTNN are quite sensitive to point noise.
For example, it incorrectly includes background clutter and sparse point noise into the
target image in Figure 5, resulting in a high false alarm rate. The TLLCM, LEF. and WSLCM
methods recently proposed combine local contrast and weighted mapping, and the anti-
interference capability is significantly improved. However, the detection results of these
methods are frequently full of noise and background clutter interference, leading to a huge
challenge in separating the real target in postprocessing.

In this paper, we innovatively adopt SZ/mi to solve the problem of difficult target
enhancement in low contrast conditions. Meanwhile, Dmax − Dmin is used to eliminate
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complex background clutter and noise. Based on the local dissimilarity of the targets,
a weighting function is proposed, which further suppresses the residual noise and extracts
the targets accurately by fusing with LRDC. Since the proposed method requires pixel-
by-pixel computation of gray features, especially in terms of a large dataset, when the
image resolution increases, the computation increases as well. We perform a complexity
analysis of the proposed method in Section 3.6. The real-time performance is also related to
the hardware of the computer. In addition, the proposed method has low computational
complexity and can be accelerated by GPU or field-programmable gate array (FPGA).

5.2. Discussion of the Key Parameter Z

We briefly discuss the selection of the key parameter Z in the proposed method in
this section. Z in Equation (10) is the key parameter that directly determines the quality
of the generated target saliency map. Many simulation experiments were performed at
different scales to select the optimal Z values separately. First, we selected images with
different sizes of targets as the test dataset. Note that sizes of targets should be less than
or equal to 3 × 3, 5 × 5, 7 × 7, and 9 × 9. Second, simulation experiments were carried
out at different scales with the corresponding settings of different Z values. We used ROC
curves to measure the detection performance of the proposed method at different Z values.
Figure 9 shows the ROC curves of the target under different sliding windows.

As shown in Figure 9, for smaller targets (3 × 3), we recommend Z be set from 4 to
6; for medium targets (5 × 5), we recommend Z be set from 9 to 13, and for larger targets
(7 × 7 or 9 × 9), we recommend Z be set from 11 to 15. A large Z value indicates large
time consumption because the Z value directly affects the computational efficiency of the
proposed method. Therefore, the Z values are set to 4 (sliding window size is 3 × 3), 9
(sliding window size is 5 × 5), and 11 (sliding window size is 7 × 7 and 9 × 9).

(a) (b)

(c) (d)

Figure 9. The ROC curves for different Z values in four windows: sliding window of (a) 3 × 3;
(b) 5 × 5; (c) 7 × 7; and (d) 9 × 9.
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6. Conclusions

In this paper, a weighted local ratio-difference contrast method was developed to
detect infrared small targets in ground–sky background. First, facet kernel filtering and
square calculation were used to obtain the enhanced target candidate pixels. Second,
we used the local ratio-difference contrast and spatial dissimilarity of the target during the
calculation of the WLRDC saliency map to suppress the complex background and enhance
the real target. Finally, the effectiveness of the proposed method was verified in six real
ground–sky scenes. The experimental results demonstrated that the proposed method can
achieve efficient infrared small target detection in the ground–sky background and present
clear advantages in a series of evaluation indexes.

However, the drawback of the proposed single-frame method is that the detection
performance is poor when suspicious targets are presented in the background. In our
future work, we will consider using temporal features of multi–frame images combined
with local contrast to further suppress strong interference clutter in complex backgrounds.
In addition, we will also verify the detection performance of the proposed method in
multi–target scenarios.

Author Contributions: H.W. proposed the original idea, conducted the experiments, and wrote
the manuscript. P.M., D.P., W.L. and J.Q. were involved in writing and revising the manuscript.
X.G. helped with data collection. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China un-
der Grant U1833203, in part by the Aviation Science Foundation under Grant 2020Z019055001,and the
Graduate Education Innovation Program Fund of Zhengzhou University of Aeronautics (2022CX55).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank Dongdong Pang, a postdoctoral fellow at the
Beijing Institute of Technology, for his constructive advice on the revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, T.; Wu, H.; Liu, Y.; Peng, L.; Yang, C.; Peng, Z. Infrared Small Target Detection Based on Non-Convex Optimization with

Lp-Norm Constraint. Remote Sens. 2019, 11, 559. [CrossRef]
2. Chen, Y.; Xin, Y. An Efficient Infrared Small Target Detection Method Based on Visual Contrast Mechanism. IEEE Geosci. Remote

Sens. Lett. 2016, 13, 962–966. [CrossRef]
3. Han, J.; Yong, M.; Huang, J.; Mei, X.; Ma, J. An Infrared Small Target Detecting Algorithm Based on Human Visual System.

IEEE Geosci. Remote Sens. Lett. 2015, 13, 452–456. [CrossRef]
4. Pang, D.D.; Shan, T.; Li, W.; Ma, P.G.; Tao, R.; Ma, Y.R. Facet Derivative-Based Multidirectional Edge Awareness and Spa-

tial–Temporal Tensor Model for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]
5. Li, Z.Z.; Chen, J.; Hou, Q.; Fu, H.X.; Dai, Z.; Jin, G.; Li, R.Z.; Liu, C.J. Sparse representation for infrared dim target detection via a

discriminative over-complete dictionary learned online. Sensors 2014, 14, 9451–9470. [CrossRef] [PubMed]
6. Deng, H.; Wei, Y.; Tong, M. Small target detection based on weighted self-information map. Infrared Phys. Technol. 2013, 60,

197–206. [CrossRef]
7. Zhou, F.; Wu, Y.; Dai, Y.; Wang, P. Detection of Small Target Using Schatten 1/2 Quasi-Norm Regularization with Reweighted

Sparse Enhancement in Complex Infrared Scenes. Remote Sens. 2019, 11, 2058. [CrossRef]
8. Lu, Y.; Dong, L.; Zhang, T.; Xu, W. A Robust Detection Algorithm for Infrared Maritime Small and Dim Targets. Sensors 2020,

20, 1237. [CrossRef] [PubMed]
9. Zhou, J.; Lv, H.; Zhou, F. Infrared small target enhancement by using sequential top-hat filters. Proc. Int. Symp. Optoelectron.

Technol. Appl. 2014, 9301, 417–421.
10. Zeng, M.; Li, J.; Peng, Z. The design of top-hat morphological filter and application to infrared target detection. Infrared Phys.

Technol. 2006, 48, 67–76. [CrossRef]
11. Deshpande, S.D.; Meng, H.E.; Ronda, V.; Chan, P. Max-mean and Max-median filters for detection of small-targets. Proc. SPIE Int.

Soc. Opt. Eng. 1999, 3809, 74–83.

http://doi.org/10.3390/rs11050559
http://dx.doi.org/10.1109/LGRS.2016.2556218
http://dx.doi.org/10.1109/LGRS.2016.2519144
http://dx.doi.org/10.1109/TGRS.2021.3098969
http://dx.doi.org/10.3390/s140609451
http://www.ncbi.nlm.nih.gov/pubmed/24871988
http://dx.doi.org/10.1016/j.infrared.2013.05.003
http://dx.doi.org/10.3390/rs11172058
http://dx.doi.org/10.3390/s20041237
http://www.ncbi.nlm.nih.gov/pubmed/32102474
http://dx.doi.org/10.1016/j.infrared.2005.04.006


Remote Sens. 2022, 14, 5636 21 of 22

12. Fan, H.; Wen, C. Two-Dimensional Adaptive Filtering Based on Projection Algorithm. IEEE Trans. Signal Process. 2004, 52, 832–838.
[CrossRef]

13. Zhao, Y.; Pan, H.; Du, C.; Peng, Y.; Zheng, Y. Bilateral two dimensional least mean square filter for infrared small target detection.
Infrared Phys. Technol. 2014, 65, 17–23. [CrossRef]

14. Peng, L.B.; Zhang, T.F.; Liu, Y.H.; Li, M.H.; Peng, Z.M. Infrared dim target detection using shearlet’s kurtosis maximization under
non-uniform background. Symmetry 2019, 11, 723. [CrossRef]

15. Nie, J.Y.; Qu, S.C.; Wei, Y.T.; Zhang, L.M.; Deng, L.Z. An Infrared Small Target Detection Method Based on Multiscale Local
Homogeneity Measure. Infrared Phys. Technol. 2018, 90, 186–194. [CrossRef]

16. Chen, C.L.; Li, H.; Wei, Y.T.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci.
Remote Sens. 2013, 52, 574–581. [CrossRef]

17. Han, J.H.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A robust infrared small target detection algorithm based on human visual
system. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172.

18. Qin, Y.; Li, B. Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 2016,
13, 1890–1894. [CrossRef]

19. Han, J.H.; Liang, K.; Zhou, B.; Zhu, X.Y.; Zhao, J.; Zhao, L.L. Infrared small target detection utilizing the multi-scale relative local
contrast measure. IEEE Geosci. Remote Sens. Lett. 2018, 15, 612–616. [CrossRef]

20. Wei, Y.T.; You, X.G.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recogn. 2016, 58,
216–226. [CrossRef]

21. Cui, Z.; Yang, J.; Jiang, S.; Li, J. An infrared small target detection algorithm based on high-speed local contrast method.
Infrared Phys. Technol. 2016, 76, 474–481. [CrossRef]

22. Xia, C.Q.; Li, X.R.; Zhao, L.Y.; Shu, R. Infrared Small Target Detection Based on Multiscale Local Contrast Measure Using Local
Energy Factor. IEEE Geosci. Remote Sens. Lett. 2020, 17, 157–161. [CrossRef]

23. Han, J.H.; Moradi, S.; Faramarzi, I.; Zhang, H.H.; Zhao, Q.; Zhang, X.J.; Li, N. Infrared Small Target Detection Based on the
Weighted Strengthened Local Contrast Measure. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1670–1674. [CrossRef]

24. Han, J.; Moradi, S.; Faramarzi, I.; Liu, C.; Zhang, H.; Zhao, Q. A local contrast method for infrared small-target detection utilizing
a tri-layer window.IEEE Geosci. Remote Sens. Lett. 2019, 17, 1822–1826. [CrossRef]

25. Wu, L.; Ma, Y.; Fan, F.; Wu, M.H.; Huang, J. A Double-Neighborhood Gradient Method for Infrared Small Target Detection.
IEEE Geosci. Remote Sens. Lett. 2021, 18, 1476–1480. [CrossRef]

26. Lu, X.F.; Bai, X.F.; Li, S.X.; Hei, X.H. Infrared Small Target Detection Based on the Weighted Double Local Contrast Measure
Utilizing a Novel Window. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

27. Gao, C.Q.; Meng, D.Y.; Yang, Y.; Wang, Y.T.; Zhou, X.F.; Hauptmann, A.G. Infrared patch-image model forsmall target detection in
a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [CrossRef] [PubMed]

28. Wang, X.Y.; Peng, Z.M.; Kong, D.H.; He, Y.M. Infrared dim and small target detection based on stable multi-subspace learning in
heterogeneous scenes. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5481–5493. [CrossRef]

29. Dai, Y.M.; Wu, Y. Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target
Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 3752–3767. [CrossRef]

30. Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382.
[CrossRef]

31. Deng, L.Z.; Zhu, H.; Tao, C.; Wei, Y.T. Infrared moving point target detection based on spatial–temporal local contrast filter.
Infrared Phys. Technol. 2016, 76, 168–173. [CrossRef]

32. Zhao, B.; Xiao, S.; Lu, H.; Wu, D. Spatial-temporal local contrast for moving point target detection in space-based infrared imaging
system. Infrared Phys. Technol. 2018, 95, 53–60. [CrossRef]

33. Du, P.; Askar, H. Infrared Moving Small-Target Detection Using Spatial-Temporal Local Difference Measure. IEEE Geosci. Remote
Sens. Lett. 2019, 17, 1817–1821. [CrossRef]

34. Liu, H.K.; Zhang, L.; Huang, H. Small Target Detection in Infrared Videos Based on Spatio-Temporal Tensor Model. IEEE Trans.
Geosci. Remote Sens. 2020, 58. 8689–8700. [CrossRef]

35. Pang, D.D.; Shan, T.; Ma, P.G.; Li, W.; Liu, S.H.; Tao, R. A Novel Spatiotemporal Saliency Method for Low-Altitude Slow Small
Infrared Target Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

36. Wang, K.D.; Li, S.Y.; Niu, S.S.; Zhang, K. Detection of Infrared Small Targets Using Feature Fusion Convolutional Network.
IEEE Access. 2019, 7, 146081–146092. [CrossRef]

37. Wang, H.; Zhou, L.; Wang, L. Miss Detection vs. False Alarm: Adversarial Learning for Small Object Segmentation in In-
frared Images. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
27 October–2 November 2019; pp. 8508–8517.

38. Dai, Y.M.; Wu, Y.Q.; Zhou, F.; Barnard, K. Attentional Local Contrast Networks for Infrared Small Target Detection. IEEE Trans.
Geosci. Remote Sens. 2021, 59, 9813–9824. [CrossRef]

39. Kim, J.H.; Hwang, Y. GAN-Based Synthetic Data Augmentation for Infrared Small Target Detection. IEEE Trans. Geosci. Remote
Sens. 2022, 60, 1–12. [CrossRef]

40. Zuo, Z.; Tong, X.; Wei, J.; Su, S.; Wu, P.; Guo, R.; Sun, B. AFFPN: Attention Fusion Feature Pyramid Network for Small Infrared
Target Detection. Remote Sens. 2022, 14, 3412. [CrossRef]

http://dx.doi.org/10.1109/TSP.2003.822364
http://dx.doi.org/10.1016/j.infrared.2014.03.006
http://dx.doi.org/10.3390/sym11050723
http://dx.doi.org/10.1016/j.infrared.2018.03.006
http://dx.doi.org/10.1109/TGRS.2013.2242477
http://dx.doi.org/10.1109/LGRS.2016.2616416
http://dx.doi.org/10.1109/LGRS.2018.2790909
http://dx.doi.org/10.1016/j.patcog.2016.04.002
http://dx.doi.org/10.1016/j.infrared.2016.03.023
http://dx.doi.org/10.1109/LGRS.2019.2914432
http://dx.doi.org/10.1109/LGRS.2020.3004978
http://dx.doi.org/10.1109/LGRS.2019.2954578
http://dx.doi.org/10.1109/LGRS.2020.3003267
http://dx.doi.org/10.1109/LGRS.2022.3194602
http://dx.doi.org/10.1109/TIP.2013.2281420
http://www.ncbi.nlm.nih.gov/pubmed/24043387
http://dx.doi.org/10.1109/TGRS.2017.2709250
http://dx.doi.org/10.1109/JSTARS.2017.2700023
http://dx.doi.org/10.3390/rs11040382
http://dx.doi.org/10.1016/j.infrared.2016.02.010
http://dx.doi.org/10.1016/j.infrared.2018.10.011
http://dx.doi.org/10.1109/LGRS.2019.2954715
http://dx.doi.org/10.1109/TGRS.2020.2989825
http://dx.doi.org/10.1109/LGRS.2020.3048199
http://dx.doi.org/10.1109/ACCESS.2019.2944661
http://dx.doi.org/10.1109/TGRS.2020.3044958
http://dx.doi.org/10.1109/TGRS.2022.3179891
http://dx.doi.org/10.3390/rs14143412


Remote Sens. 2022, 14, 5636 22 of 22

41. Guan, X.W.; Peng, Z.M.; Huang, S.Q.; Chen, Y.P. Gaussian Scale-Space Enhanced Local Contrast Measure for Small Infrared
Target Detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 327–331. [CrossRef]

42. Han, J.H.; Liu, S.B.; Qin, G.; Zhao, Q.; Zhang, H.H.; Li, N.N. A Local Contrast Method Combined With Adaptive Background
Estimation for Infrared Small Target Detection.IEEE Geosci. Remote Sens. Lett. 2019,16, 1442–1446. [CrossRef]

43. Han, J.H.; Xu, Q.Y.; Saed, M.; Fang, H.Z.; Yuan, X.Y.; Qi, Z.M.; Wan, J.Y. A Ratio-Difference Local Feature Contrast Method for
Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

44. Du, P.; Askar, H. Infrared Small Target Detection Based on Facet-Kernel Filtering Local Contrast Measure; Springer: Singapore, 2019.
45. Qi, S.; Xu, G.; Mou, Z.; Huang, D.; Zheng, X. A fast-saliency method for real-time infrared small target detection. Infrared Phys.

Technol. 2016, 77, 440–450. [CrossRef]
46. Yang, P.; Dong, L.L.; Xu, W.H. Infrared Small Maritime Target Detection Based on Integrated Target Saliency Measure. IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2369–2386. [CrossRef]
47. Hui, B.W.; Song, Z.Y.; Fan, H.Q.; Zhong, P.; Hu, W.D.; Zhang, X.F.; Lin, J.G.; Su, H.Y.; Jin, W.; Zhang, Y.J.; et al. A dataset for

infrared image dim-small aircraft target detection and tracking under ground/air background. China Sci. Data 2020, 5, 291–302.

http://dx.doi.org/10.1109/LGRS.2019.2917825
http://dx.doi.org/10.1109/LGRS.2019.2898893
http://dx.doi.org/10.1109/LGRS.2022.3157674
http://dx.doi.org/10.1016/j.infrared.2016.06.026
http://dx.doi.org/10.1109/JSTARS.2021.3049847

	Introduction
	Related Work
	Materials and Methods
	Preprocessing: Target Enhancement
	Facet Kernel Filtering
	Square Calculation

	Calculation of LRDC
	Calculation of BDPW
	Multi-Scale Calculation of WLRDC
	Target Extraction
	Complexity Analysis

	Experimental Results and Analysis
	Experimental Setup
	Datasets
	Evaluation Criteria
	Baseline Methods

	Comparison with State-of-the-Art Methods

	Discussion
	Discussion of Detection Performance
	Discussion of the Key Parameter Z

	Conclusions
	References

