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Abstract: Triple collocation (TC) shows potential in estimating the errors of various geographical
data in the absence of the truth. In this study, the TC techniques are first applied to evaluate the
performances of multiple column-averaged dry air CO2 mole fraction (XCO2) estimates derived from
the Greenhouse Gases Observing Satellite (GOSAT), the Orbiting Carbon Observatory 2 (OCO-2)
and the CarbonTracker model (CT2019B) at a global scale. A direct evaluation with the Total Carbon
Column Observing Network (TCCON) measurements is also employed for comparison. Generally,
the TC-based evaluation results are consistent with the direct evaluation results on the overall
performances of three XCO2 products, in which the CT2019B performs best, followed by OCO-2 and
GOSAT. Correlation coefficient estimates of the TC show higher consistency and stronger robustness
than root mean square error estimates. TC-based error estimates show that most of the terrestrial
areas have larger error than the marine areas overall, especially for the GOSAT and CT2019B datasets.
The OCO-2 performs well in areas where CT2019B or GOSAT have large errors, such as most of China
except the northwest, and Russia. This study provides a reference for characterizing the performances
of multiple CO2 products from another perspective.

Keywords: XCO2; triple collocation; evaluation; GOSAT; OCO-2; CarbonTracker

1. Introduction

Carbon dioxide (CO2) is one of the most important greenhouse gases (GHGs) in the
atmosphere and plays an important role in global warming and climate change [1]. In the past
decade, it is estimated that CO2 in the atmosphere has contributed about 82% of radiation
forcing. A large amount of anthropogenic emissions from fossil fuel and biomass burning
have caused a rapid rise in atmospheric CO2 concentration. The Greenhouse Gas Bulletin of
the World Meteorological Organization (WMO) of the United Nations reported that the global
average mole fraction of atmospheric CO2 in 2020 was 413.2 ± 0.2 ppm, which is 149% of
the pre-industrial value. To mitigate the continuous rise in atmospheric CO2 concentration,
ambitious emission reduction and control measures for anthropogenic carbon emissions, e.g.,
the Paris Agreement on climate change of 2016, have been initiated, and there is no doubt
that accurate monitoring and quantifying of the variations in greenhouse gas emissions are of
critical importance.

With the rapid development of remote sensing atmospheric sounding technology,
satellite measurement has been one of the major ways to obtain global and regional CO2
data [2–4]. Further, using the atmospheric spectral information obtained by spaceborne
sensors, the atmospheric column-averaged carbon dioxide dry air mole fraction (XCO2) is
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quantitatively estimated based on radiative transfer theory. Some countries have succes-
sively launched relevant carbon satellite observation programs, including the SCanning
Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIMACHY) on board
the Envisat satellite of the European Space Agency (ESA) [5], Japan’s Greenhouse Gases
Observing Satellite (GOSAT) [6], Orbiting Carbon Observatory-2 (OCO-2) of National
Aeronautics [7] and Space Administration and Chinese Carbon Dioxide Observation Satel-
lite Mission (TanSat) [8]. These satellites provide a variety of XCO2 inversion products,
covering a much larger and more continuous space than ground-based observations. They
are attractive alternatives for detecting CO2 spatial patterns, sources and sinks over global
scales, especially for areas where ground observations are scarce [9–13]. However, it
has been realized that the satellite-derived XCO2 estimates have some errors and uncer-
tainties affected by the inversion model, measurement instrument and spatial resolution,
atmospheric and surface parameters [3,14–16]. O’Dell et al. [16] indicated that imperfect
characterization of atmospheric aerosols and clouds was the main source of systematic
errors of XCO2 retrievals. Liang et al. [17] showed that the advantages of OCO-2 on spatial
resolution and imaging capability were the main reasons for the higher overall retrieval
accuracy than GOSAT, which increased the number of valid data points free from the
influence of clouds and aerosols. Wu et al. [18] showed that a lower spectral resolution
enhanced the scatter error of the retrieved XCO2. Satellite XCO2 retrieval errors exhibit
dependence on atmospheric and geographical factors (e.g., topography, land use, urban-
ization), affecting atmospheric radiative transfer [19,20]. Bie et al. [20] presented that the
western deserts with a high-brightness surface had large biases. O’Dell et al. [16,21] pointed
out that additional real-world issues, such as forest canopy effects, dramatic topographic
change, cloud shadows and plant fluorescence, would further increase the retrieval errors.
A slight pointing shift in OCO-2 would cause errors in the XCO2 inversion results due
to the change in surface altitude. A series of validation activities for the satellite-based
XCO2 data products need to be conducted to clarify their uncertainties so as to further
improve the inversion algorithms and the meaningful application of data products in the
scientific community.

Usually, high-precision data obtained independently by ground-based instruments
and aircrafts are used to validate the satellite-derived XCO2 products [3,7,22,23]. The
ground-based XCO2 data retrieved from the measurements collected by the Total Carbon
Column Observing Network (TCCON) Fourier Transform Spectrometer (FTS) instruments
have high precision and stability, which have been the main ground data source for verify-
ing and systematically correcting satellite-based XCO2 estimates. Moreover, many studies
analyzed the uncertainties of satellite-derived XCO2 products and their application poten-
tial in different regions around the world using ground-based TCCON data [7,17,24–31].
For instance, Kong et al. [32] studied the spatio-temporal consistency of XCO2 retrievals
based on TCCON and model data in carbon cycle research. Yang et al. [33] showed that the
RMSE of the TanSat-derived XCO2 product was 1.41 ppm compared with the TCCON data,
much better than what was originally designed, i.e., 4 ppm. Further, some studies also
examined the consistency and differences between various satellite-based XCO2 products
and model-based datasets to explore the availability and uncertainty of satellite data in
greenhouse gas assimilation models [22,28,34]. However, large uncertainties might be
introduced into the data products by using the model assimilation data as a benchmark
because of the uncertainties in models. Generally, direct comparison based on ground
measurements is considered the most reliable method for evaluating the performance of
satellite products. However, the evaluation of satellite-derived XCO2 data based on in situ
measurements is still insufficient and also has great uncertainties due to a sparse GHG
monitoring network, site representative error and the spatial scale mismatch between the
in situ measured data and the satellite retrieved data. For example, there are only about
27 operational TCCON sites around the world at present.

The triple collocation technique (TC), developed by Stoffelen [35], is effective in esti-
mating the error variances in three or more datasets for the same target variable without
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requiring the truth. It was originally designed for error calibration of satellite wind speed
products and has been applied in error estimation of satellite-based or model-based prod-
ucts for various geographical variables, such as soil moisture [36–38], precipitation [39,40],
temperature [41], ocean wind speed [35–42], leaf area index (LAI) [43,44], land water stor-
age [45] and surface albedo [46]. Recently, new variants of TC have also been published.
For example, Alemohammad et al. (2015) provided a new multiplicative triple collocation
method (MTC) based on the original mathematical assumptions in which a logarithmic
error model was introduced and showed better performance in representing the relation-
ship between precipitation measurements and true values; Mccoll et al. [47] proposed
an extended TC method to estimate the correlation coefficient metric (CC) and the root
mean square error (RMSE) for each of the triplets. The TC-based techniques may be less
impacted by representative error and could offer an effective strategy for charactering the
errors of satellite-based and model-based products, especially in areas with sparse ground
measurements [46,48]. To our best knowledge, neither TC nor its variants have ever been
used in error estimation of satellite-based or model-based XCO2 data.

The main objective of this study is to explore the potential of the TC algorithm and
its variants in evaluating various XCO2 datasets. The TC technique is first used to assess
the accuracies of multi-source XCO2 products at a global scale without ground-based
observations, in which both an original additive error model and a multiplicative error
model are introduced. Direct-evaluation-based TCCON XCO2 measurements are also
employed in the comparison. In addition, the uncertainty of TC error estimation for XCO2
products is presented to provide a reference for improvement and better application of the
TC method in the future.

This paper is organized as follows. Section 2 describes the data, including GOSAT,
OCO-2 and CarbonTracker products and TCCON in situ measurements, and reviews the
direct comparison and TC method. Section 3 presents the validation results based on direct
comparison and TC estimation. In Section 4, the uncertainties of the results are discussed,
and, in Section 5, the conclusion is provided.

2. Materials and Methods
2.1. Materials
2.1.1. Satellite and Model Datasets

Three daily XCO2 products derived from the Greenhouse Gases Observing Satellite
“IBUKI” (GOSAT), Orbiting Carbon Observatory 2 (OCO-2) satellites and CarbonTracker
model are used in this study for the global evaluation. A brief description of each XCO2
product is provided in Table 1. Due to the influence of clouds and aerosols, the available
data of GOSAT and OCO-2 products cannot fully cover the whole space, and there are
many gaps in the main observation range. To ensure spatio-temporal consistency of all
datasets in TC analysis, 6 September 2014 to 29 March 2019 are selected as the study period,
and GOSAT and OCO-2 satellite products are reprocessed to 3◦ × 2◦ spatial resolution
to be consistent with the CarbonTracker data. The details of the three XCO2 datasets are
described below.

Table 1. Summary of the three XCO2 products derived from GOSAT, OCO-2 satellites and Carbon-
Tracker model.

Satellite Datasets Revisit
Cycle (d) Transit Time (LST) Footprint (km) Time Coverage

GOSAT ACOS-L2_Lite_FP.9r 3 13:00 10.5 km × 10.5 km April 2009–December 2019
OCO-2 ACOS-L2_Lite_FP.10r 16 13.36 2.25 km × 1.25 km September 2014–present

Model dataset Temporal resolution Simulated time (LST) Spatial resolution (lon. × lat.) Time Coverage

CT2019B.XCO2_1330 (LST) daily 13:30 3◦ × 2◦ June 2000–March 2019

GOSAT is the first dedicated spacecraft to monitor GHG concentration distribution
from space [49]. It was launched successfully on 23 January 2009 with a joint effort of
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the Ministry of the Environment (MOE), the National Institute for Environmental Studies
(NIES) and the Japan Aerospace Exploration Agency (JAXA). A Carbon Observation Fourier
Transform Spectrometer (TANSO-FTS) and a Cloud and Aerosol Imager (CAI) are onboard
the satellite to measure the reflected solar radiation in three SWIR bands (0.758–0.775,
1.56–1.72 and 1.92–2.08 µm) and a TIR region (5.5–14.3 µm) [6]. The spatial resolution
of sub-satellite point of GOSAT is 10.5 km, and the observation repeats in a 3-day cycle
and crosses the equator at approximately 13:00 local time. Many retrieval algorithms, e.g.,
NIES [50], ACOS [16] and UOL-FP [51], have been developed to calculate the column
abundances of CO2 and CH4 from GOSAT measurements. The latest version of XCO2 daily
product (GOSAT ACOS-L2_Lite_FP.9r) retrieved by ACOS from September 2014 to March
2019 is used in this study, and there are 1571 days of data available during this period. The
ACOS/GOSAT XCO2 products are released by NASA’s Atmospheric CO2 Observations
from Space team.

OCO-2 is NASA’s first dedicated carbon satellite to measure atmospheric CO2 from
space to monitor near-surface carbon sources and sinks at regional scales. OCO-2, launched
successfully on 2 July 2014, has a 1.29 × 2.25 km sub-satellite point resolution and a 16 d
repeat cycle. A three-channel imaging grating spectrometer is mounted on the satellite to
make coincident measurements of reflected sunlight at 0.76, 1.61 and 2.06 µm, respectively.
The recorded spectral information is used to retrieve XCO2 with the Atmospheric CO2
Observations from Space (ACOS) algorithm [21,52,53]. The OCO-2 Level 2 XCO2 Version
10 Lite product from the full-physics retrieval algorithm is used in this study. A total of
1519 days of OCO-2 XCO2 data are available from 6 September 2014 to 29 March 2019.

CarbonTracker (CT) is a CO2 measurement and modeling system developed by the
National Oceanic and Atmospheric Administration (NOAA) to keep track of CO2 sources
and sinks around the world. It includes ocean, fire-point, fossil fuel and terrestrial ecosys-
tem modules, in which the atmospheric transport model and Kalman filter method are
combined to optimally estimate the temporal variation in CO2 absorption and release on
Earth’s surface. The current release of NOAA’s CarbonTracker, CT2019B [54], provides
global estimates of surface-atmosphere fluxes of CO2 from January 2000 through March
2019. The mole fractions of CO2, as a “byproduct” of the data assimilation system, are also
calculated and available at 3◦ × 2◦ globally and North America 1◦ × 1◦, which have been
widely used to validate the satellite-based measurements [14,55]. In this paper, the daily
CT2019B.XCO2_1330 (LST) dataset from September 2014 to March 2019 is used for com-
parison, and it is generated by assimilating ground and aerial observations. The column
concentration data at 3◦ × 2◦ resolution are calculated from CO2 distribution data at 13:00
using the pressure weight average method proposed by Conner et al. [56].

2.1.2. TCCON Measurements

TCCON is a ground-based Fourier Transform Spectrometers (FTS) network used to
record direct solar spectra in the near infrared spectral region and provides long time series
precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O and HDO [57]. At
present, a total of 31 ground stations are used for data acquisition, including ~27 stations
in operation, and mainly located in the United States and Europe. TCCON observation
stations are generally set in areas slightly affected by human activities and carry out long-
term continuous atmospheric composition monitoring in a unified standard. The TCCON
ground-based XCO2 estimates provide a transfer standard between the space-based XCO2
estimates and the WMO GAW standards and a verification means for satellite-based XCO2
data retrieved from SCIMACHY, GOSAT and OCO2 programs. There are several versions of
TCCON products. In this study, the GGG2014 dataset [58] is used to evaluate the processed
GOSAT and OCO-2 data and CT2019B data. A total of 29 TCCON sites (Table 2) were selected,
covering the period from September 2014 to March 2019. Two datasets, LL and LR, operated
using two different instruments, are obtained at the Lauder site. The TCCON data are filtered
according to the cloudiness during measurement, represented by the “fvsi” (fractional change
in solar intensity) parameter. Data with fvsi greater than 5% are filtered out.
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Table 2. TCCON sites used in the comparison.

Site ID Longitude Latitude Location Start Date End Date

AE −14.33 −7.92 Ascension Island, Saint Helena, Ascension and Tristan da Cunha 22 May 2012 31 October 2018
AN 126.33 36.54 Anmyeondo, South Korea 2 February 2015 18 April 2018
BI 23.02 53.23 Bialystok, Poland 1 March 2009 1 October 2018
BR 8.85 53.10 Bremen, Germany 22 January 2010 30 July 2020
BU 120.65 18.53 Burgos, Ilocos Norte, Philippines 3 March 2017 31 March 2020
CI −118.13 34.14 California Institute of Technology, Pasadena, California, USA 20 September 2012 29 December 2020
DB 130.89 −12.43 Darwin, Australia 28 August 2005 30 April 2020
DF −117.88 34.96 Armstrong Flight Research Center, Edwards, CA, USA 20 July 2013 31 December 2020
ET −104.99 54.36 East Trout Lake, Canada 7 October 2016 6 September 2020
EU −86.42 80.05 Eureka, Canada 24 July 2010 6 July 2020
GM 11.06 47.48 Garmisch, Germany 16 July 2007 30 July 2020
HF 117.17 31.90 Hefei, China 18 September 2015 31 December 2016
IZ −16.48 28.30 Izana, Tenerife, Spain 18 May 2007 26 February 2021
JF −118.18 34.20 Jet Propulsion Laboratory, Pasadena, California, USA 19 May 2011 14 May 2018
JS 130.29 33.24 Saga, Japan 28 July 2011 29 December 2020

KA 8.44 49.10 Karlsruhe, Germany 19 April 2010 30 November 2020
LL 169.68 −45.04 Lauder, New Zealand, 125HR 2 February 2010 31 October 2018
LR 169.68 −45.04 Lauder, New Zealand, 125HR 3 October 2018 31 December 2020
MA −60.60 −3.21 Manaus, Brazil 1 October 2014 24 June 2015
OC −97.49 36.60 Lamont, Oklahoma, USA 6 July 2008 28 December 2020
OR 2.11 47.97 Orleans, France 29 August 2009 30 July 2020
PA −90.27 45.94 Park Falls, Wisconsin, USA 2 June 2004 29 December 2020
PR 2.36 48.85 Paris, France 23 September 2014 22 June 2020
RA 55.49 −20.90 Reunion Island (Ile de La Reunion), France 16 September 2011 18 July 2020
RJ 143.77 43.46 Rikubetsu, Hokkaido, Japan 16 November 2013 30 September 2019
SO 26.63 67.37 Sodankyla, Finland 16 May 2009 20 October 2020
SP 11.92 78.92 Ny Alesund, Spitzbergen, Norway 6 April 2014 15 September 2019
TK 140.12 36.05 Tsukuba, Ibaraki, Japan, 125HR 4 August 2011 30 September 2019
WG 150.88 −34.41 Wollongong, Australia 26 June 2008 30 June 2020
ZS 10.98 47.42 Zugspitze, Germany 24 April 2015 20 July 2020

2.2. Methods

Conventional direct comparison as well as TC analysis are employed to assess the
errors of the satellite-based and model-based XCO2 products, respectively.

2.2.1. Direct Evaluation with TCCON Data

In the direct comparison, the ground TCCON XCO2 data are assumed accurate and
used as the reference data. For each TCCON site, near-simultaneous XCO2 data from a
satellite or model within ±30 min and within three different spatial ranges, i.e., ±1◦, ±2◦

and ±3◦, are selected to match TCCON data for comparison. The repeated matches are
averaged every 1 h. The latest research showed that the influence of column averaging ker-
nels on GOSAT and OCO-2 XCO2 values can be negligible compared to the corresponding
measurement accuracy, and it was also applicable to validate the satellite-derived XCO2
data without smoothing [17,59]. Therefore, similar to several previous works, we do not
consider the influence of different averaging kernels and a priori profiles between different
satellites [17,32,51,59].

A set of statistical indicators, including the mean error (ME), mean absolute error
(MAE), root mean square error (RMSE) and correlation coefficient (CC), are used to evaluate
the performance of GOSAT, OCO-2 and CT2019B XCO2 datasets. They can be mathemati-
cally expressed as follows:

ME =
1
n

n

∑
i=1

(Xi −Yi) (1)

MAE =
1
n

n

∑
i=1
|Xi −Yi| (2)

RMSE =
1
n

n

∑
i=1

(Xi −Yi)
2 (3)

CC =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
∑n

i=1
(
Yi −Y

)2
(4)
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where n represents the total matching number; X is the satellite-derived or model-based
XCO2 data and Y is the TCCON-based XCO2 data; and X and Y are the mathematical
expectations of X and Y, respectively.

2.2.2. Triple Collocation Error Model

Triple collocation technique (TC) is an objective method commonly used to estimate
systematic biases and random errors for ground observations, satellite-based products or
model outputs. It can effectively assess the performance of satellite-derived data with-
out ground-based observations and has been applied in error estimations for various
geographical variables [60]. In precipitation research, it is generally believed that the mul-
tiplication model can better describe the fitting relationship between precipitation truth
and its measurements [40]. Therefore, Alemohammad et al. [39] proposed a multiplicative
triple collocation method (MTC) to estimate errors of precipitation products and found
that MTC outperformed TC. However, it is still unclear whether TC or MTC is appropriate
to evaluate XCO2 products, and, if so, which one is better? For this purpose, both the
general additive error model and the multiplicative error model are introduced in this
study for global evaluation of XCO2 products. In addition, the extended triple collocation
model (ETC) proposed by the authors of [47] is employed to solve the correlation between
a dataset and the unknown truth.

In the TC model, three independent datasets of the target variable from three measure-
ment systems are required and are assumed to be linearly related to the truth set T of the
target variable:

Xi = αi + βiT + εi (5)

where Xi (i ∈ {1, 2, 3}) is any independent dataset for the truth set T. Here, the three
independent XCO2 products are GOSAT, OCO-2 and CarbonTracker model, respectively. εi
represents the zero-mean residuals (E(εi) = 0) of Xi, and αi and βi are the corresponding
ordinary least squares (OLS) coefficients.

The covariance between two different measurement systems Xi and Xj can be ex-
pressed as:

Cov
(
Xi, Xj

)
= βiβ jσ

2
T + βiCov

(
T, ε j

)
+ β jCov(T, εi) + Cov

(
εi, ε j

)
(6)

where σ2
t is the variance of t. Assuming that the three collocated measurements and their

zero-mean errors are independent of each other (Cov
(
εi, ε j

)
, i 6= j) and are uncorrelated

with the truth (Cov
(
T, ε j

)
= 0), the above equation can be simplified to:

Cij = Cov
(
Xi, Xj

)
=

{
βiβ jσ

2
t , i 6= j

β2
i σ2

T + σ2
εi, i = j

(7)

where σ2
εi denotes the variance of the i-th measurement. Then, the estimation equations of

RMSE for the three measurement systems are as follows:

σεi =



√
C11 − C12C13

C23
, i = 1√

C22 − C12C23
C13

, i = 2√
C33 − C13C23

C12
, i = 3

(8)
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In MTC, the multiplicative error model relating the measurement to the truth is
expressed as:

Xi = AiTβi eεi (9)

Defining xi = ln(Xi), αi = ln(Ai) and t = ln(T), Equation (9) can be linearized as follows:

xi = αi + βit + εi (10)

Based on the same assumption as TC, the RMSE in MTC can be estimated according to
Equation (8) using log-transformed data. It is obvious that the RMSE estimates by MTC are in
logarithmic scale. We apply the solution proposed in [39] to generate the real RMSE to simplify
the interpretation and comparison with direct evaluation results and TC-based results.

σXi = µXi σxi (11)

where σXi and σxi are the real RMSE estimated using Equation (11) and the RMSE in
logarithmic scale, respectively; µXi is the mean of the original sequence data. It is noted
that TC-based or MTC-based σ2

εi may be negative if one data grid has small variance and
large gap with the other two measurements. In this case, a null value is assigned.

According to the ETC [47], the correlation coefficient (CC) between the truth t and
each measurement system can be calculated by the following equations:

ρt,i =



√
C12C13

C11C23
, i = 1√

C12C23

C22C13
, i = 2√

C13C23

C33C12
, i = 3

(12)

The flowchart of global-scale assessment of XCO2 datasets via direct comparison and
triple collocation method is shown in Figure 1. The process consists of five main parts:
(1) evaluation of original satellite products with TCCON data. The original GOSAT and
OCO-2 Level 2 products are spatio-temporally matched with TCCON in situ measurements
and then are validated using traditional statistical metrics. (2) Spatio-temporal integration
of data: the original GOSAT and OCO-2 satellite products are first reprocessed to the same
spatial resolution with CT2019B data to ensure spatio-temporal consistency of all datasets
in TC analysis. Then, four matching sequences are obtained by spatio-temporally matching
TCCON data with the reprocessed GOSAT and OCO-2 data as well as CT2019B data.
(3) Consistency analysis: error estimates for each site are obtained by direct evaluation and
TC/MTC analysis based on the four matching sequences, and the consistency between
different validation results is analyzed. (4) Global assessment of XCO2 datasets: the TC
error model with better performance in previous consistency analysis is used to assess the
accuracies of the GOSAT, OCO-2 and CT2019B datasets at global scale. (5) Uncertainty
analysis: different triple combinations are designed to examine the impact of choice of
triplets on TC-based estimates.
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Figure 1. The flow chart of the assessment of XCO2 datasets via direct comparison and triple
collocation method.

3. Results
3.1. Direct Evaluation with TCCON Data

Figure 2 compares the original GOSAT (Figure 2a–c) and OCO-2 data (Figure 2d–f)
with TCCON data using different spatio-temporal matching criteria. In the scatter plots, N
is the matching number between satellite-derived data and TCCON data after averaging the
duplicated and high-frequency collocations every 1 h. Compared with GOSAT, although
OCO-2 has a higher spatial resolution, its revisit cycle is longer, so its final match number
(N) after average is lower than that of GOSAT during the study time period. Overall, OCO-2
outperforms GOSAT under different spatial matching criteria, with higher CC values and
lower ME, MAE and RMSE values. GOSAT has a slight deterioration in terms of ME, MAE
and RMSE values while a little improvement in terms of CC values using the ±2◦ and
±3◦ spatial matching conditions compared to using ±1◦ spatial matching conditions. For
OCO-2, all the statistical indicators under ±2◦ and ±3◦ matching conditions outperform
that of ±1◦, especially for CC. This may be related to the fact that the average of matching
data has a certain smoothing effect, which could reduce the influence of the outliers; the
larger the spatial range of the matching, the greater the smoothing effect. Both the ME
values of GOSAT and OCO-2 are negative. Due to the influence of cloud cover, aerosol
concentration and surface albedo on atmospheric CO2 observation, many XCO2 values for
GOSAT and OCO-2 are significantly smaller than those of TCCON between 20◦S and 50◦S
and 50◦N and 80◦N. In the released GOSAT and OCO-2 Level 2 products, the data grids
with poor and good quality are marked 1 and 0 with the quality flag attribute, respectively.
In the following, we filter the GOSAT and OCO-2 XCO2 data using a quality flag of 0 for
further analysis and validation.
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Figure 2. Comparisons of GOSAT (a–c) and OCO-2 (d–f) with TCCON data using different spatio-
temporal matching criteria, respectively. All scatter plots use the ±30 min time matching criteria, and
the (a,d) left, (b,e) middle and (c,f) right scatter plots use the ±1◦, ±2◦ and ±3◦ spatial matching
criteria, respectively. The black dotted line is the 1:1 line, and the red solid one is the linear fitting line.

In order to obtain effective data of good quality, the GOSAT and OCO-2 observation
data are filtered according to the quality screening scheme for land and ocean observation
data in the data Product Manual. In addition, the filtered daily GOSAT and OCO-2 data are
interpolated to the same spatial resolution of CT2019B, i.e., 3◦ × 2◦. For a grid containing valid
data, the average value of GOSAT or OCO-2 XCO2 records are used; for grids without any
valid observation, the XCO2 values are obtained by using the Kriging spatial interpolation.

Figure 3 compares the filtered GOSAT (Figure 3a–c) and OCO-2 (Figure 3d–f) with
TCCON data under different spatio-temporal matching criteria, respectively. Compared
with Figure 2, the matching numbers of GOSAT and OCO-2 data decrease about 37.55 to
38.75% and 13.51 to 18.29%, respectively. The filtered GOSAT and OCO-2 data fit well with
the TCCON data, with CC values of 0.933 and above. Overall, the OCO-2 data outperform
the GOSAT data under different spatial matching conditions, with higher CC values (0.961,
0.953 and 0.958) and the lowest MAE (0.944, 0.995 and 0.966 ppm) and RMSE (1.273, 1.356
and 1.308 ppm). Compared with TCCON, OCO-2 has positive bias values of 0.156 to
0.231 ppm, while GOSAT shows negative bias with ME values of −0.287 to −0.323 ppm.
These results are similar to previous studies [17,28,32]. Liang et al. [17] found that GOSAT
monitoring capacity decreases in recent years and lags behind OCO-2. Between 40◦N and
60◦N, the two satellite-derived XCO2 datasets are overestimated in the high value range
of about 407 ppm and above, especially for OCO-2, while, at between 390 and 395 ppm,
GOSAT shows lower XCO2 values than TCCON observations. O’Dell et al. [16] suggested
that the systemic errors of ACOS XCO2 retrievals mainly come from insufficient processing
of clouds and aerosols.

It can be observed intuitively from the scatter plots that the results under±1◦ matching
are more concentrated than those under other matching ranges. In terms of statistical
indicator values, there is little difference in the statistics using different spatio-temporal
matching conditions. Generally, the accuracy of OCO-2 decreases with an increase in the
matching spatial range, while the accuracy of GOSAT improves slightly, except for ME.
Except for ME, all the other statistics, i.e., MAE, RMSE, CC and R2, of OCO-2 under ±2◦
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and ±3◦ matching conditions are worse than those of ±1◦. This is not unexpected because
TCCON data involve point observations, while OCO-2 data include an area-support grid
(e.g., 2◦ × 2◦, 4◦ × 4◦ or 6◦ × 6◦) centered at the TCCON site. The larger the matching
spatial range, the more obvious the scale effect. However, we did not find a similar
phenomenon in GOSAT, which may be influenced by the sample size matched in different
spatial ranges and the smoothing effect on unstable data.
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Figure 4 compares the interpolated GOSAT (a), OCO-2 (b) and CT2019 (c) with TCCON
data using the same matching criteria as in Figures 2 and 3. OCO-2 matches the least amount
of data because of more days of missing data. The statistical values (ME = −0.39 ppm,
MAE = 1.207 ppm, RMSE = 1.611 ppm, CC = 0.935 and R2 = 0.874) of GOSAT XCO2 data
obtained by interpolation are close to those of filtered GOSAT data when compared with
TCCON observations. The interpolated OCO-2 is not as good as the filtered OCO-2 but still
outperforms the interpolated GOSAT. Previous studies have shown that, in order to reveal
the temporal and spatial variation characteristics of atmospheric CO2 concentration, the
deviation in CO2 observations was required to be less than 2 ppm [61]. From the validation
results based on TCCON data, the interpolated GOSAT and OCO-2 XCO2 datasets meet
this criterion. The CT2019B data show the highest consistency with the TCCON XCO2
observations overall, with the highest CC (0.967) and R2 (0.935) and the lowest MAE
(0.837 ppm) and RMSE (1.131 ppm). In the TC analysis, CT2019B can be taken as the
reference dataset from the three collocated data products. Compared with TCCON, the
interpolated OCO-2 and CT2019B data both show an overall positive bias close to zero,
i.e., 0.017 and 0.033 ppm, respectively, while the interpolated GOSAT data have a negative
bias of −0.39 ppm. About two-thirds of TCCON sites show negative biases for GOSAT
data, while the opposite is true for OCO-2 and CT2019B. All three datasets show obvious
negative biases at the HF, JS, CI and JF sites between 30◦N and 35◦N. Similar to the results
in Figure 3, at 40◦N to 60◦N, the matched XCO2 values with TCCON in the high value
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range of about 407 ppm and above are generally distributed above the one-to-one line for
interpolated OCO-2 data and CT2019B data.

It is noted that direct validation can only reflect the performances of satellite- and
model-based XCO2 datasets at very limited sites and there are still many uncertainties. For
instance, the validation results are affected by the representativeness of TCCON sites and
the scale differences between different measurements. TCCON sites are very few around
the world at present. Only 29 sites are used for validation, and the time periods of XCO2
data from different sites are inconsistent. The performances of satellite- and model-based
XCO2 datasets are usually spatio-temporally heterogeneous [14]. The amount of data
matched with TCCON varies with different sites and time periods and will inevitably
impact the overall evaluation results.
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3.2. Evaluation and Spatio-Temporal Analysis Based on TC Analysis
3.2.1. Consistency of TC Analysis with Direct Validation

We first analyzed the consistency of the results between TC validation and traditional
direct validation to examine the availability of the TC technique on error estimation. To
obtain more samples in TC analysis at each site, TCCON data from 12:00–15:00 local
time every day were averaged to match the spatially interpolated GOSAT and OCO-
2 data as well as CT2019B data to obtain four time-consistent matching sequences. In
cases where there is more than one site within a 3◦ × 2◦ grid, the site with a longer
observation time and more records is used for evaluation. Based on the four matching
sequences, the RMSE and CC estimates by direct evaluation and TC/MTC analysis for
each site are obtained using traditional indicator Formulas (3) and (4) and TC/MTC-
based calculation Formulas (8) and (12), respectively. In TC/MTC analysis, a bootstrap
simulation with 1000 replicates is applied to compensate the influence of temporal self-
correlation of time series data on TC results and to obtain more stable TC-based validation
results. Then, the means of 1000 RMSE and CC estimates at each site are calculated for
comparison, respectively.

Table 3 compares the validation results between TC, MTC and the traditional direct
evaluation methods. Although TC- and MTC-based error estimates for the three datasets
are lower than the direct evaluation method, they are in good agreement with the traditional
direct validation results. GOSAT has a higher average RMSE and a lower average CC
than the other two datasets, while CT2019B is the opposite. The correlation coefficients
between TC and the direct validation results are 0.49–0.81 and 0.81–0.95 for RMSE and CC,
respectively. CC shows higher stability than RMSE in TC analysis. Comparing the results
of TC and MTC, the TC estimates show slightly higher consistency than the MTC estimates.
MTC might be more suitable for variables, e.g., daily precipitation, with wide variation
ranges [39]. Compared with precipitation, the variation range of XCO2 is relatively small.
In the following evaluation, we used only the TC model to evaluate GOSAT, OCO-2 and
CT2019B data globally.
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Table 3. Comparisons of the validation results between TC, MTC and the traditional direct evaluation.
AVGD, AVGTC, AVGMTC are the average values of the validation results of all sites using the
traditional direct evaluation, TC and MTC methods, respectively. CCD_vs_TC and CCD_vs_MTC are the
correlation coefficients between the results of traditional direct validation method and the validation
results of TC and MTC, respectively.

Statistics
RMSE CC

GOSAT OCO-2 CT2019B GOSAT OCO-2 CT2019B

AVGD 1.6003 1.3426 1.0290 0.9170 0.9433 0.9682
AVGTC 1.1431 0.8299 0.6839 0.9404 0.9681 0.9810
AVGMTC 1.1437 0.8307 0.6879 0.9405 0.9680 0.9809

CCD_vs_TC 0.8137 0.7001 0.4902 0.9538 0.8718 0.8115
CCD_vs_MTC 0.8079 0.6980 0.4904 0.9537 0.8693 0.8061

The error estimate of GOSAT shows stronger correlations between TC and the tra-
ditional direct validation method, with correlation coefficients of 0.8137 and 0.9538 for
RMSE and CC, respectively. In contrast, CT2019B performs the worst. Our analysis shows
that it is affected by few outliers (e.g., JF, SP and EU), where the variances of CT2019B are
too small. According to Formula (8), this could result in excessively low or even negative
estimates of σ2

εi. TC-based techniques cannot resolve the sign of the output σ2
εi. In this study,

the negative σ2
εi estimates by TC or MTC are set to NULL. Additionally, cross-correlated

error between datasets might also cause negative estimates in the TC-based evaluation
results [62,63]. In general, TC analysis can be an alternative method for evaluating the
relative performance of various spatial data, especially when the ground observation sites
are sparse or there is a lack of observational data.

3.2.2. Validation Results of TC Analysis

Figure 5 shows the spatial distributions of the average XCO2 mole fractions calculated
using CT2019B data and the interpolated GOSAT and OCO-2 data. All the average XCO2
datasets are higher in the Northern Hemisphere, especially between 10◦N and 50◦N.
Intensive human activities in the Northern Hemisphere, such as fossil fuel combustion and
cement production, result in a higher concentration of carbon dioxide in the atmosphere [28].
From 30◦S to 90◦N, the average GOSAT XCO2 mole fractions are generally lower than the
other two datasets, while the average mole fractions of CT2019B are higher, and the highest
regions are located in the eastern and coastal areas of China. In the Southern Hemisphere,
the average XCO2 mole fractions of CT2019B data gradually decrease from north to south
and are lower than the GOSAT and OCO-2 datasets south of 30◦S. This may be partly
explained by the differences in the representative heights of the satellite-measured and
modeled XCO2. In the ocean region, the glint mode of a satellite will increase the weight
of the lower atmosphere with high CO2, which could cause higher XCO2. Higher spatial
resolution enables OCO-2 to capture localized hot-spot emissions well, which may be an
important reason for the larger average XCO2 mole fractions of OCO-2 than GOSAT in the
Northern Hemisphere [18].

The interpolated GOSAT and OCO-2 data and CT2019B data are grouped to a triplet in
the TC model. Figure 6 shows the mean validation results of TC analysis with 1000 bootstrap
simulations. The spatial distributions of the data with the lowest RMSE or the highest
CC values are displayed in Figure 7. As shown in Figure 6, the RMSE values of all three
datasets are generally below 1.4 ppm, and the CC values are generally 0.96 and above.
Overall, most of the terrestrial areas have larger errors than the marine areas, especially
for the GOSAT and CT2019B datasets. Kong et al. [32] also found that the uncertainties of
the seasonal mean mole fractions of CT2017B are relatively larger over land rather than
ocean. All three datasets have relatively lower CC in South America and southern Africa.
Liang et al. [17] also showed that the correlation between GOSAT and TCCON has a slight
decreasing trend from north to south from September 2014 to December 2016. This result
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might be limited by the sparse and uneven distribution of TCCON sites, which are mainly
distributed over land areas in the Northern Hemisphere. Our TC estimation results show
that GOSAT generally has a smaller correlation with the truth in the land areas of Southern
Hemisphere and western China.
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Figure 5. Global distributions of the average XCO2 mole fractions of (a) GOSAT, (b) OCO-2 and (c) CT2019B.
The average XCO2 mole fractions of GOSAT and OCO-2 are calculated from the interpolated data.

As expected, CT2019B performs best in most marine areas, most of North America
and Africa and regions where ground Global Atmosphere Watch (GAW) sites are used in
assimilation of the CarbonTracker model, such as eastern and southern South America,
southern Australia and northern Africa. However, it shows obvious larger errors in
most of Russia and most of China, except the northwest, with RSME values concentrated
between 1.30 and 1.72 ppm. The CarbonTracker assimilation system is susceptible to
input observations, with large uncertainty in regions having few or no observations [64].
Jiang et al. [65] showed that CT2019B is significantly different from CMS-Flux NBE 2020
and Global Carbon Assimilation System version 2 (GCASv2) in temperate Asia. For GOSAT,
larger RMSE and lower CC values are observed north of 30◦N, the east of Asia, South
America and southern Africa, and the largest errors are distributed in the Qinghai–Tibet
Plateau. There are few areas where GOSAT performs better than CT2019 and OCO-2, e.g.,
the Southern Hemisphere, including northern South America, the marine areas of western
Africa and western and central Antarctica. Overall, OCO-2 performs well in the regions
with the largest errors in CT2019B and GOSAT, e.g., most regions of 30◦W–180◦E and
50◦N–90◦N, eastern Asia and its coastal areas and the eastern United States and its coastal
areas. Surprisingly, OCO-2 performs slightly better than CT2019 in Europe, which might
be related to the relatively dense TCCON sites available across Europe, so OCO-2-derived
XCO2 could be more accurately calibrated.
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Figure 7. Comparison of the TC-estimated RMSE and CC values between GOSAT, OCO-2 and
CT2019B. For each pixel, the best-performing data with the lowest RMSE or the highest CC values
are shown.

Compared with GOSAT, OCO-2 is generally superior in most terrestrial areas and most
areas of the Northern Hemisphere. OCO-2 has a higher spatial resolution and can obtain
more measurements. Zhang et al. [28] compared HASM XCO2 estimates with GOSAT
and OCO-2 products and also found that OCO-2 could provide more reliable global XCO2
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patterns than GOSAT. The largest error in OCO-2 is distributed in the north of North
America, where the RMSE is between 1.0 and 1.32 ppm. For GOSAT, the regions with
better performance are mainly distributed in the Southern Hemisphere, e.g., northern South
America, the Pacific Ocean in western South America and south of 50◦S. It is noted that
GOSAT and OCO-2 data used in the TC analysis are interpolated XCO2 datasets, so the
uncertainty caused by the interpolation may be transferred to TC analysis, especially for
regions with few observations at high latitudes.

Our results highlight the necessity of jointly using multi-source CO2 datasets to
estimate CO2 sources and sinks, and OCO-2 derived XCO2 data can be considered as
alternatives to the model-based XCO2 data over areas with no ground sites or few sites,
such as Russia and China.

The standard deviations of the RMSE and CC estimates of the XCO2 mole fractions for
the GOSAT, OCO-2 and CT2019B datasets using 1000 bootstrap simulations are displayed in
Figure 8. They provide a confidence range regarding the TC-based RMSE and CC estimates. It
shows that the standard deviations of the RMSE and CC estimates are generally about one and
two orders of magnitude smaller than their estimations themselves, respectively, indicating
that the estimated mean RMSE and CC by bootstrap simulations are reasonable. The regions
with larger RMSE and lower CC values generally have larger standard deviations, especially
for CC estimates. However, some regions with small RMSE values also exhibit larger standard
deviations, such as OCO-2 in the Tibetan Plateau region and CT2019B in east Antarctica. This
may be related to the seasonal variation in accuracy of the specific data. Generally, OCO-2 has
greater spatial variability than GOSAT and CT2019B.
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4. Discussion

Both TC and MTC underestimate the errors of GOSAT, OCO-2 and CT2019B XCO2
data compared with the direct evaluation results (Table 3). Similar error underestimation
has also been reported in other evaluation studies via TC analysis [39,44,46,66]. The gap
can be attributed to the uncertainty of the TC estimation, e.g., the violation of the zero-error
cross-covariance assumption, and the uncertainty of the direct evaluation. It is often assumed
that the input datasets in the TC model are free from error cross-correlation, while this may
not be true in practical applications. Although the data triplets consisting of two different
satellite-derived XCO2 products (GOSAT and OCO-2) and a model product (CT2019B) are
applied here, there are still potential impacts on the TC-based estimation since both the GOSAT
and OCO-2 level 2 products are derived using the same ACOS inversion algorithms and
bias-corrected by using TCCON observation data. The CT2019B.XCO2_1330 (LST) dataset
also assimilates ground observations, and the errors of these datasets have correlations in
some areas, which might violate the TC hypothesis and result in slightly lower error estimates.
Fang et al. [44] pointed out that this kind of underestimation is understandable because
TC estimates approximate random errors based on its theoretical assumptions rather than
systematic errors, and the assumption of zero-error cross-covariance between products may
cause additional uncertainty. Alemohammad et al. [39] suggested that violation of the zero
cross-covariance error within triplets would cause an underestimation of RMSE by TC.

On the other hand, the direct validation results with TCCON data may be overesti-
mated compared with the unknown true error. The traditional direct validation results are
inevitably affected by the representativeness errors of in situ measurements derived from
spatial heterogeneities as well as the spatial scale mismatch between point-support and
areal data. Chen et al. [60] and Wu et al. [46] pointed out that the representativeness errors
of in situ measurements artificially magnified the quantified errors of various satellite prod-
ucts in the direct comparison based on ground observations, while TC-based estimation
could weaken such affects to a certain extent. It can be inferred that TC error estimation
results would be lower than the true physical errors, but the gap would be smaller than the
gap with the direct validation results based on TCCON data.

Furthermore, some measurements are affected by local pollution or complex terrain,
which will also affect the observation accuracy and the evaluation results [67]. For instance,
CI, DF and JF sites, in or adjacent to a megacity with complex adjacent terrain in California,
are affected by local urban sources [14]. However, these local enhancements are significantly
reduced in the 3◦ × 2◦ satellite or model results.

In TC analysis, three independent datasets for the same variable are required. Different
triple combinations in a TC model may have an impact on the stability of TC-based
validation for multi-source XCO2 products. Therefore, we composed four different triple
groups to explore this issue by using the matched sequences of interpolated GOSAT and
OCO-2, CT2019B and TCCON as follows: Group 1 includes the interpolated GOSAT and
OCO-2 and CT2019B data (termed as GOC-TC), Group 2 includes TCCON and interpolated
GOSAT and OCO-2 data (termed as TGO-TC), Group 3 includes TCCON and interpolated
GOSAT and CT2019B data (termed as TGC-TC), and Group 4 includes TCCON, OCO-2
and CT2019B (termed as TOC-TC). The RMSE and CC estimates are calculated by using TC
for each site with the four different combinations.

Figures 9 and 10 summarize the comparison results of TC-based RMSE and CC es-
timates using the four triplets. Different from previous studies [39,60], the robustness of
TC analysis is affected by the choice of datasets in the triplets, and the TC-based evalua-
tion results show different stabilities for the GOSAT, OCO-2 and CT2019B XCO2 datasets.
Overall, the stability of TC-based estimates is the best for GOSAT, followed by OCO-2 and
CT2019B. The coefficients of determination between the TC-based RMSE and CC estimates
for GOSAT are above 0.90 and 0.95, respectively. The validation results of GOC-TC and
TGO-TC show the best consistency, with higher determination coefficient values for both
the GOSAT and OCO-2 statistics. The TC-based CT2019B statistics, especially for the RMSE
estimates, present worse robustness than the other two datasets. The maximum determi-
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nation coefficients of RMSE and CC of CT2019B are 0.6384 and 0.9342, corresponding to
TOC-TC and TGC-TC, respectively.
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By contrast, the TC validation results of the other combinations, e.g., TOC-TC vs. GOC-
TC, TOC-TC vs. TGO-TC and TGC-TC vs. GOC-TC, generally have a degree of systematic
overestimation or underestimation. For example, when replacing the GOSAT sequence in the
GOSAT–OCO2–CT2019B triplet group with the TCCON sequence to form a new triplet group,
TCCON–OCO2–CT2019B, the covariance between the CT2019B sequence and the TCCON
sequence (CTC) is obviously smaller than that with GOSAT sequence (CGC), and the ratio of
covariance of the OCO-2 and CT2019B sequences to the GOSAT sequence is larger than the

covariance ratio between them and the TCCON sequence (i.e.,
CGO
CGC

>
CTO
CTC

). According to

Formulas (8) and (12), these could result in larger OCO-2 errors (larger RMSE and lower CC)
and lower CT2019B errors (lower RMSE and larger CC) in the TOC-TC results than those
estimated in the GOC-TC results (Figure 9e,h and Figure 10e,h). The stability of TC analysis is
impacted by the accuracy gap between different datasets within the comparison groups, such
as the accuracy gap of OCO-2 and TCCON in triple groups GOC-TC and TGC-TC. When the
accuracy difference is small, TC analysis will show higher stability.
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Although TC error estimates of different combinations have some differences, the ranks
of overall performances of different XCO2 products estimated via TC analysis are generally
consistent (i.e., CT2019B is the best, followed by OCO-2 and GOSAT; see Figures 9 and 10). The
TC-based error estimates, especially CC, are in good agreement with the direct comparison
results (Table 3). This means that TC is an alternative and effective method to characterize
the performances of multiple satellite- and model-based XCO2 datasets. The CC is superior
to RMSE in characterizing the performances of various datasets and has stronger robustness.
Previous works also indicated that CC in ETC proposed by the authors of [47] is more
advantageous because it does not require a reference dataset and could provide a more
comparable estimate [48]. Chen et al. [62] suggested that the RMSE estimation results by
TC analysis are subject to the chosen reference dataset in the triplets and the multiplicative
and additive biases of references. Therefore, we suggested the choice of the CC metric
of ETC in TC-based evaluation and fusion of multi-source XCO2 datasets. It should be
noted that TC estimation can only obtain the theoretical error estimates based on a set of
assumptions rather than the true physical errors. The TC-based evaluation results still suffer
from some uncertainties.
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5. Conclusions

This paper presents, for the first time, a global assessment and comparison of GOSAT
(ACOS-L2_Lite_FP.9r), OCO-2 (ACOS-L2_Lite_FP.10r) and CT2019B XCO2 products from
6th September 2014 to 29th March 2019 by using direct comparison and triple collocation
(TC) analysis. Three different spatio-temporal matching criteria were employed in a direct
evaluation with ground-based TCCON data. In TC analysis, both an original additive
error model and a multiplicative error model were introduced to estimate the global error
(RMSE) distribution for each product with respect to unknown truth, and the extended
triple collocation was also applied to estimate the correlation coefficients. To account
for sampling uncertainties, a bootstrap re-sampling approach was employed for the TC
estimates at each pixel. In addition, we also analyzed the uncertainty of the TC estimation.

The direct validation results show that the GOSAT, OCO-2 and CT2019B XCO2 prod-
ucts were generally in good agreement with the ground-based TCCON data during the
study period, with CC values of 0.933 and above. CT2019B fits best with ME, MAE, RMSE
and CC values of 0.033 ppm, 0.837 ppm, 1.131 ppm and 0.967, respectively. GOSAT shows
larger errors with ME, MAE, RMSE and CC values of −0.287 ppm, 1.257 ppm, 1.637 ppm
and 0.933, respectively, under the ±30 min and ±1◦ spatio-temporal matching condition.
OCO-2 data are superior to GOSAT data under different spatial matching conditions, hav-
ing a higher CC (0.961, 0.953 and 0.958) and the lowest MAE (0.944, 0.995 and 0.966 ppm)
and RMSE (1.273, 1.356 and 1.308 ppm). The ranks of the overall performances of different
XCO2 products estimated via the TC technique are consistent with the validation based on
TCCON data. However, the TC method tends to underestimate the RMSE and overestimate
the correlation coefficient in different XCO2 products compared with the direct validation
results due to the representativeness error of in situ measurements in direct comparison
and the violation of the zero-error cross-covariance.

The mean validation results of TC via 1000 bootstrap simulations reveal that most of
the terrestrial areas have larger errors than the marine areas, especially for the GOSAT and
CT2019B datasets. The spatial patterns of the errors of the three datasets have obvious re-
gional differences. As expected, CT2019B is superior overall to GOSAT and OCO-2 in most
areas, especially in the marine areas, while it shows large errors in most of China except the
northwest, and Russia, where few in situ observations are used in the assimilation model.
For GOSAT, larger RMSE values and lower CC values are observed in the Qinghai–Tibet
Plateau region, which may be related to few valid data points in this region. Interestingly,
OCO-2 performs well in these areas compared with CT2019B and GOSAT, with an RMSE
value below 1 ppm and a CC value above 0.98. Improvements in the retrieval algorithm
and the high resolution of OCO-2 increase the number of valid data points and reduce
uncertainties. Compared with GOSAT, OCO-2 is generally superior in most terrestrial
areas and most areas of the Northern Hemisphere except northern Canada and Greenland.
For GOSAT, the regions with better performance are mainly distributed in the Southern
Hemisphere, e.g., northern South America, the Pacific Ocean of western South America
and areas south of 50◦S.

The uncertainty analysis indicates that the choice of triplets has an obvious impact
on the TC validation results (Figures 9 and 10). The robustness of the TC estimation is
related to the accuracy gap between different datasets within the comparison groups. When
the accuracy difference is small, the TC analysis will show higher stability. For instance,
the estimated GOSAT and OCO-2 errors based on group GOC-TC are in good agreement
with those based on group TGO-TC, while there is less consistency between GOC-TC and
TGC-TC due to the relatively larger accuracy gap between the OCO-2 and TCCON data.
Further, the CC estimates based on ETC have higher consistency with the direct validation
results and higher robustness compared with the TC-based RMSE estimates.

This study demonstrates the application of a TC approach in validating multiple
satellite- and model-based XCO2 products. It shows that TC could be an alternative and
effective way to quantify spatial errors of gridded XCO2 data, particularly for regions
with sparse or no in situ measurements, which is beneficial for multi-source XCO2 data
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fusion and the CO2 assimilation model. It is noted that the TC-based error estimates can
characterize the performances of various XCO2 data but only limited to the theoretical
errors subjected to a set of assumptions rather than the physical errors. This study only
explores the application of the TC method in the validation of daily gridded XCO2 data. In
future works, we will conduct TC validation on more XCO2 products (e.g., GOSAT 3 and
OCO-3 data) at different spatio-temporal resolutions with the increase in different available
satellite and model simulation data.
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https://tccondata.org/ (accessed on 2 December 2021).
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