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Abstract: The process of fusing the rich spectral information of a low spatial resolution hyperspectral
image (LR-HSI) with the spatial information of a high spatial resolution multispectral image (HR-MSI)
to obtain an HSI with the spatial resolution of an MSI image is called hyperspectral image fusion
(HIF). To reconstruct hyperspectral images at video frame rate, we propose a lightweight multi-level
information network (MINet) for multispectral and hyperspectral image fusion. Specifically, we
develop a novel lightweight feature fusion model, namely residual constraint block based on global
variance fine-tuning (GVF-RCB), to complete the feature extraction and fusion of hyperspectral
images. Further, we define a residual activity factor to judge the learning ability of the residual
module, thereby verifying the effectiveness of GVF-RCB. In addition, we use cascade cross-level
fusion to embed the different spectral bands of the upsampled LR-HSI in a progressive manner to
compensate for lost spectral information at different levels and to maintain spatial high frequency
information at all times. Experiments on different datasets show that our MINet outperforms the
state-of-the-art methods in terms of objective metrics, in particular by requiring only 30% of the
running time and 20% of the number of parameters.

Keywords: multispectral image; image fusion; multi-level; hyperspectral image

1. Introduction

Hyperspectral image (HSI) can be obtained by acquiring the rich spectral information
of the scene target as well as the detailed spatial information [1,2], and the spectral and
spatial information in its three-dimensional data cube enables the differentiation of different
substances in the scene. Accordingly, HSI has outstanding performance for uses in many
fields, ranging from remote sensing, change detection [3,4], to land-use classification [5], and
other fields such as Digital Soil Mapping (DSM) and Geologic mapping [6,7]. However, it
is difficult to obtain 3D hyperspectral data from a single shot using a 2D planar detector [8].
In this condition, a flexible alternative is to acquire both a high spatial resolution low
spectral resolution multispectral image (HR-MSI) and a low spatial resolution high spectral
resolution hyperspectral image (LR-HSI) of the same static scene, and then combine the
advantages of both images to obtain a high resolution (HR) image in both the spatial and
spectral domains. The pansharpening technique in remote sensing is closely related to the
hyperspectral image fusion problem. This task aims at generating a high resolution multi-
spectral (MS) image from inputs of a high spatial resolution single band panchromatic (PAN)
image and a low spatial resolution multi-spectral image. The two different sets of inputs
crreate the two forms of pansharpening concepts—multispectral and panchromatic images,
and low-resolution hyperspectral and high-resolution multispectral images different. The
PAN image has only one spectral channel, which means it cannot express RGB colors and,
on the contrary, the MS image carries a high expression ability of color.

There are many hyperspectral image fusion techniques that have been mentioned in
the last two decades. These methods can be roughly divided into two categories depending
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on whether deep learning is used or not. The first category is the classical traditional
methods, which mainly include the component substitution (CS)-based methods [9–11],
multiresolution analysis (MRA)-based methods [12–17] and variational optimization (VO)-
based methods [18–20]. The second category is the deep learning methods [21–24] that
have become popular over the years.

1.1. Traditional Methods

CS-based pansharpening methods have achieved wide application in the field of
remote sensing images pansharpening due to their simplicity and efficiency. The general
steps of this method are: firstly, the LR-HSI is upsampled and then the result is mapped
to other new representation spaces, separating the spectral and structural information of
the hyperspectral image in the new transform domain and then replacing the structural
information component with a panchromatic image, improving the spatial resolution of the
fused image in this way. Representative works of CS-based methods mainly include the
principal component analysis (PCA) [25], the Brovey [26], the intensity-hue-saturation (IHS)
method [27], and the Gram–Schmidt (GS) method [28]. However, CS-based methods lose
part of the spectral information while replacing the spectral image structure information,
so the fusion results usually lead to severe spectral distortion and oversharpening.

MRA-based pansharpening methods deal with remote sensing image fusion problems
from a spatial perspective. Such methods use pyramid or wavelet transform to decompose
LR-HSI and HR-MSI into multiple scales, and then extract the spatial information of HR-
MSI of a certain scale and inject it into the corresponding scale of LR-HSI, and finally
use the inverse transform to generate the fused image. The decomposition methods
used usually include high pass filter (HPF) fusion [29], generalized Laplacian pyramid
(GLP) transform [17], wavelet-transform-based [30], and smoothing filter-based intensity
modulation (SFIM) [12]. MRA-based methods can solve the spectral distortion problem of
the CS-based method to a certain extent. However, in the process of injecting structural
information into the panchromatic image at the multi-resolution scale, the fusion result will
degrade the spatial information.

CS-based and MRA-based methods both focus on retaining a certain aspect of detailed
information, and the fusion results cannot balance structural information and spectral
information. VO-based methods regard pansharpening as an ill-posed problem and are
build on variational theory. The major process mainly includes two steps: constructing
the energy function and designing an optimisation algorithm for the model function. The
sparse-based methods [31,32] and the model-based methods [33,34] that evolved from these
two steps are two representative VO-related approaches. Since VO-methods obtain optimal
solutions with the help of different valid a priori information and effective optimisation
algorithms, they can improve the spatial structure information while maintaining spectral
fidelity, but it is easy to fall into local optimisation solutions during the optimisation process,
resulting in less than optimal final fused image quality results.

1.2. DNN-Based Methods

In recent decades, due to the increasing amount of hyperspectral data obtained, the
development of theoretical research in deep learning and the increase in computing power
have made it possible to process these data [35,36]. In spectral image pansharpening,
DL-based methods are gaining widespread attention and recognition for their excellent
fusion performance and speed advantages. To be specific, the inputs to the network are
specified as LR-HSI and HR-MSI, and the designed network module performs feature
extraction and fusion to obtain the desired spectral data cube for comparison with the
ground-truth. By making the reconstruction result infinitely close to the real image, a stable
network structure can be determined.

Since Huang et al. first applied DL-based methods [37] to remote sensing image fusion,
DL-based methods have been promoted and improved in various ways, resulting in many
fusion methods based on various types of network architectures. For instance, Masi et al.
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applied a super-resolution convolutional neural network (SRCNN) [35] to remote sensing
image fusion, and proposed a simple and effective pansharpening neural network (PNN)
with a three-layer structure [38]. An improved version of advanced PNN (A-PNN) [39]
then optimises network performance and achieves better results. Dong et al. proposed
a non-negative structured sparse representation framework based on clustering to mine
spatial and spectral correlations [21], and made good progress. To address the problem of
inadequate extraction of HR-MSI spatial information with existing deep learning methods,
Jiang et al. proposed a convolutional neural network using a differential information
mapping strategy to process residual information between HR-MSI and LR-HSI [40]. In
addition, Zhao et al. proposed a fusion network based on spatial attention and channel
attention mechanisms to improve the network’s ability to extract features from input
images [41]. On the other hand, Liu et al. used a generative adversarial network (GAN)
to synthesize high-quality panchromatic sharpened images for the first time, using a two-
stream fusion architecture to generate the desired HR-HSI [42]. To alleviate the dependence
on real datasets, unsupervised spectral fusion methods have also received attention [43,44].
Ma et al. proposed a new unsupervised fusion framework [45], where the generator builds
an adversarial game with spectral discriminator and spatial discriminator, respectively, to
preserve the rich spectrum of hyperspectral images information and spatial information
for panchromatic images. A network that learns high-level features by constraining the
receptive from increasing in the deep layers was proposed to handle the fusion problem
and achieved good results [46].

1.3. Motivation and Contribution

The ideal fusion image should have spatial information close to HR-MSI and retain
the spectral information of LR-HSI. The DL-based methods improve the traditional fusion
methods (CS-based, MRA-based and VO-based) and provide various experiences to deal
with the pansharpening problem. Although deep learning has been successful in pan-
sharpening, DL-based methods only focus on fused HR-HSI visual effects and objective
evaluation metrics, ignoring the running time issue. To the best of our knowledge, Deep
blind HSI fusion network (DBIN+) [47] used a recurrent neural network that cannot be
parallelized, with an average forward inference time of 2.17 s. Multispectral and hyperspec-
tral image fusion network (MHF) [48,49] took advantage of the large-scale parallelization
of neural networks and relieves the pressure of memory congestion to a certain extent,
but it still does not break through the constraints of its network structure, weakening
the forward reasoning process, and it still takes 1.67 s to reconstruct a HR-HSI image. A
hyperspectral image fusion method based on zero-center residual learning (SpeNet) [50]
proposed by Zhu et al. is currently the fastest pansharpening method, requiring only 0.49 s
for one forward inference. Although Cheng et al. proposed a multiscale information
fusion network for semantic segmentation [51], it uses deeply separable convolution to
increase the perceptual field to extract local and global features. This is very different from
extracting different levels of spectral image features in a hierarchical manner in the spectral
image fusion process. Over the past few decades, many computational spectral imaging
systems [52–54] have been proposed that can image in real time, computational spectral
imaging does not require scanning operations, it projects the spatially and spectrally en-
coded 3D data cube on a certain plane, the detector superimposes the aliased images of
spatial and spectral information, restores the original data through calculation, and obtains
the spatial dimension and spectral dimension at the same time. However, neither tradi-
tional fusion algorithms nor DL-based methods can meet the requirements of video frame
rate reconstruction, it is still a challenge to build a lightweight feature extraction and fusion
network for real-time hyperspectral image synthesis.

This motivates us to design a lightweight multi-level information network (MINet)
for multispectral and hyperspectral image fusion to meet the real-time reconstruction
requirements of hyperspectral imaging. In particular, our starting point is not to prune the
best current pansharpening network to reduce network parameters and running time. We
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have analysed the working mechanism of the residual module, which plays a key role in
existing multispectral and hyperspectral image fusion networks, and defined a residual
activity factor η to determine the capability of the residual module used (described in detail
in Section 2.1). A lightweight fusion network was then designed based on this principle,
in order to increase the correlation between spectral channels, we use multi-level spectral
information and feature maps share a hidden layer state in batches, mutually perceive
the mean information of each channel map, and complete feature extraction and fusion at
the same time. While performing feature extraction, LR-HSI and HR-MSI with different
depths are selected for joint-guided detail extraction, which is progressive layer by layer
to improve the correlation between spectral images and RGB images and reduce spectral
distortion. The main contributions of this paper are summarized as follows.

(1) We developed a lightweight multi-level information network (MINet) for multispectral
and hyperspectral image fusion to meet the real-time reconstruction requirements
of hyperspectral imaging. The residual information between the different levels of
LR-HSI and HR-MSI provides additional spectral detail features that contribute to the
fusion results;

(2) We defined the activity factor η of residual learning for quantifying the capability
of the residual learning module, and compared the proposed network module with
the hyperspectral image super-resolution reconstruction method that includes the
residual learning module for experiments;

(3) A lightweight residual constraint block based on global variance fine-tuning (GVF-
RCB) was designed to extract and fuse the spectral feature information of LR-HSI
and the spatial structure information of HR-MSI, which strengthen spatial details and
reduce parameters.

The remainder of the paper is organized as follows. Section 2 describes our proposed
framework in detail. Section 3 introduces comparative experiments on three datasets and
discusses the experimental results. Section 4 draws conclusions.

2. Proposed Method

In this section, we will first introduce the proposed residual activity factor, then explain
the overall network framework in detail, and finally analyse the working principle of the
fully connected beta network.

2.1. Residual Activity Factor

Residual learning has proven its effectiveness in image feature extraction and fu-
sion [47,49]. Although fusion networks that include residual blocks have achieved good
results, their workings and operational speed still deserve more attention. In fact, using
the cross-layer connection strategy used by Dense Block in SpeNet with good performance
leads to the increase of network data buffer, which not only increases the computation,
but also consumes a large amount of memory in the GPU. Therefore, we first consider the
ResNet [55] structure instead of Dense Block to improve the synthesis speed.

Residual learning is one of the most used network structures in deep learning networks,
relying on ‘shortcut connections’ to achieve a very good fit. Formally, denoting the desired
underlying mapping as H(x) (an underlying mapping to be fit by a few stacked layers),
with x denoting the inputs to the first of these layers. Multiple nonlinear layers can
asymptotically approximate a residual function F(x). So the desired underlying mapping
H(x) can be expressed as Equation (1).

H(x) = x + F(x) (1)

We suppose that the residual mapping F to be learned is independent of the number of
layers rather considering it as a function F(x, Wi) with Wi is the weight matrix layers for a
given block. In general, the residual connection directly outputs the input feature x to H(x),
and F(x) learns the tiny residual feature between x and H(x). Compared with the network
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structure of the VGG [56] tiled convolutional layer, residual learning can better transfer the
features extracted by the previous network layer to the subsequent network layers. Unlike
extracting features from a single natural image, the core process of hyperspectral image
fusion is the spatial-spectral fusion of a three-dimensional data cube stitched together from
upsampled multichannel hyperspectral images and multispectral images (RGB images).
Therefore, the problem we are dealing with can be transformed into: extracting the features
of the data block formed by the connection of the LR-HSI upsampled with the HR-MSI. The
traditional CS-based and MRA-based methods accomplish the task by extracting the spatial
information of the multispectral image (HR-MSI) and adding it to the blurred hyperspectral
image (LR-HSI). Inspired by this, we analogize the form of residual network, assuming
that the upsampled LR-HSI represents x and HR-MSI represents F(x). It is worth noting
that HR-MSI is no longer the meaning of residuals. This is a fusion problem of fusing data
from two different distributions. Further, we hope that the two kinds of data are in the
same order of magnitude as possible as shown Equation (2).

‖x‖1 ≈ ‖F(x)‖1, (2)

where ‖·‖1 is `1 norm of a vector, to quantitatively analyze the performance of the residual
learning block, we define η to denote the activity of residual learning as Equation (3).

η =
‖x‖1

‖F(x)‖1
. (3)

This can be understood as a restriction on LR-HSI and HR-MSI data in the process
of feature extraction. Indirectly, it is also possible to determine whether the input and
output of the residual block are of one magnitude. As shown in Figure 1, when ‖x‖1 ≈
‖F(x)‖1, the structure of the network is similar to the residual module, which extracts
hyperspectral information from x and spatial information of the same magnitude from
F(x), respectively. When ‖x‖1 � ‖F(x)‖1, the learning ability of the residual decreases
sharply. For the residual module, the network will degenerate into the VGG-Net structure,
which is equivalent to considering more spatial information in HR-MSI while ignoring the
hyperspectral information in LR-HSI. When ‖x‖1 � ‖F(x)‖1, the residual learning block
degenerates to a constant mapping with infinite learning activity, and the residual fraction
does not learn any knowledge and has a learning capacity of 0. At this point, the fusion
process did not learn any spatial information from HR-MSI.

Figure 1. Schematic diagram of residual learning degradation. Dashed lines indicate non-existent
paths. (a) represents ‖x‖1 ≈ ‖F(x)‖1; (b) represents ‖x‖1 � ‖F(x)‖1; (c) represents ‖x‖1 � ‖F(x)‖1.

According to our definition of the residual activity factor, the residual learning block
has an activity value of approximately 1.0 when the magnitudes of the extracted spatial
information and inter-spectral information are not particularly significant. In order to
verify the effectiveness of the residual activity factor, we use the HARVARD dataset to test
three networks with residual modules, DBIN+, MHF-Net and SpeNet, and record the η
and the corresponding PSNR at different stages in the training process. Figure 2 shows
the corresponding PSNR under different η by adjusting the distribution of LR-HSI and
HR-MSI. At the same time, we also compare the SAM and ERGAS of the three methods as
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shown in Table 1. An intuitive conclusion is that the closer the residual activity factor is to
1, the better the performance of the network. Therefore, when evaluating the performance
of the residual block in the fusion network, the proposed η can be used to evaluate whether
the currently used residual block can achieve the desired effect. It is worth noting that
η is not suitable for evaluating the residual activity in the extraction process of a single
natural image, because this is different from the principle that the spectral information and
spatial information need to be extracted in the fusion process as close as possible in order
of magnitude.

Table 1. Comparison of residual activity factors with PSNR, SAM and ERGAS in several super-
resolution networks based on residual modules, where η is the defined residual activity factor. The
best results are shown in bold.

Method DBIN+ MHF-Net SpeNet

η 0.7407 0.8215 0.9229
PSNR 46.20 46.59 46.69
SAM 3.8171 3.5482 3.4380

ERGAS 0.3398 0.3206 0.3171

Figure 2. The relationship between the normalized PSNR and the active residual activity factor η at
different stages of the residual learning module.

According to the definition of Equation (3), the value of η varies as the input to
the neural network changes, but the residual activity factor should be a characterising
quantity in a uniform sense. Therefore, for each data i with a sample set of N, we count the
ηi corresponding to each input and calculate the average residual factor η

′
for sample N

together reflecting the learning activity of the residuals throughout the network as shown in
Equation (4). For the sake of concise representation, η appearing in subsequent comparison
trials all denote the average result for the overall dataset.

η
′
=

1
N

N

∑
i=1

ηi, (4)
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where N represents the number of samples. We illustrate the proposed method experimen-
tally in comparison with current hyperspectral super-resolution reconstruction methods in
Section 3.4.

2.2. Lightweight Multi-Level Information Fusion Network

The proposed lightweight multi-level information network (MINet) for multispectral
and hyperspectral image fusion framework is displayed in Figure 3. The network is
composed of several residual constraint blocks (orange boxes) based on a global variance
fine-tuning (GVF-RCB) module, and a hyperspectral image reconstruction module (green
boxes). The input to the network is the LR-HSI L ∈ Rh×w×B and the HR-MSI P ∈ RH×W×b,
where (h, w, b) are the reduced height, width, and number of spectral bands, respectively,
and (H, W, B) are corresponding high-resolution version (h� H, w� W, b� B). First, L
is upsampled to L̃ ∈ RH×W×B of the same size as P by bilinear interpolation. In order to
reduce the amount of computation and improve the running speed, we choose a bilinear
interpolation algorithm that is more suitable for large-scale parallel computation and stable
for upsampling operations. Then, the GVF-RCB module estimates a residual image from
both the input P and L̃ progressively along the spectral dimension. Inspired by the success
of the progressive reconstruction strategy in image super-resolution, we progressively
embed the spectral bands of upsampled LR-HSI instead of feeding them all into the
network at the beginning. The resulting residual image is further superimposed on L̃ to
generated a blurred HR-HSI, which is finally fed into the reconstruction module. After
further fine-tuning and correction of the reconstruction module, the network outputs the
final reconstructed high-resolution hyperspectral image.

Figure 3. The overall flowchart of the proposed MINet for multispectral and hyperspectral image fusion.

The GVF-RCB module is the core module of our proposed multi-level information
network, and the flowchart of the network architecture is shown in Figure 4. Its main func-
tion is to fuse the spatial information extracted from HR-MSI and the spectral information
extracted from LR-HSI to reconstruct the corresponding HR-HSI. The GVF-RCB module
is composed of a global residual connection branch and multiple local residual fusion
unit cascade branches. The global residual connection branch can extract and transfer
low-frequency information of hyperspectral images quickly and efficiently. The goal of
residual branch learning is to fuse the information extracted from LR-HSI and MSI into a
map of the detail level of the desired HR-HSI to be reconstructed. Define the output of the
fusion network as Z ∈ RH×W×B, which can be expressed as Equation (5).

Z = L̃ + f (L̃ + P), (5)

where f (·, ·) represents the mapping of the detailed level of information extracted from
LR-HSI and MSI fused into the desired HR-HSI to be reconstructed. The network struc-
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ture of the proposed GVF-RCB module mainly uses convolution kernels with receptive
field sizes of 3× 3 and 1× 1 as the basic configuration. The 3× 3 convolution kernel is
used to extract the spatial feature information and build a fusion model for local spatial
information features of hyperspectral images, and the 1× 1 convolution kernel is used to
fuse the hyperspectral information for channel compression or dimension enhancement.
Inspired by the success of the zero-mean normalization strategy in SpeNet, we also add
this constraint to transform the data distribution of feature maps to zero when extracting
residual feature information.

The overall network consists of four key steps: (1) concatenate the output of the upper
layer with HR-MSI (UP-HSI sampling numbers are 8, 16, 31) and increase the number
of channels to be consistent with the up-sampled hyperspectral image (UP-HSI); (2) fuse
two kinds of data with different distributions. A fully connected beta network is used to
perform mutual induction global spectral information fusion on the output feature map
and UP-HSI, adaptively adjust the data distribution of the two inputs, and accelerate the
fusion of local spatial information and spectral information in the next stage; (3) use a
3× 3 convolutional layer to fuse the local spatial structure feature information of feature
map0 and feature map1, and use a 1× 1 convolutional layer to perform spectral fusion of
the channel dimension and reduce the number of channels; (4) use convolution for further
fusion, and add it to the feature map and output it.

The GVF-RCB module mainly completes two tasks. First, it extracts the spectral
feature information of the hyperspectral image and the spatial structure information of the
multispectral image, and fuses the two kinds of information into the detailed information
of the hyperspectral image to be output. It is responsible for MINet extraction and fusion
of complementary information from each input. In addition, as the basic unit of residual
branch information fusion, the spatial structure information and spectral information of
different levels are gradually fused through the cascade of multiple GVF-RCB modules.
The two fused parts have the same spatial resolution, but the number of channels and
spectral images are different for each input to the GVF-RCB module, and the gradually
increasing number of channels enhances the feature extraction of spectral information. The
two different feature vectors rely on the core unit beta network for fusion.

Figure 4. The architecture of the lightweight residual constraint block based on global variance
fine-tuning (GVF-RCB).

The input of the hyperspectral image reconstruction module is the coarse HR-HSI
output by the fusion network, and the reconstructed images in the first stage of the network
are fine-tuned and distilled. The network structure of the reconstruction module is relatively
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simple, the overall structure is a residual block, and the residual branch is mainly composed
of 3× 3 and 1× 1 convolutional layers alternately.

2.3. Fully Connected Beta Network

The fully connected beta network is the core unit of the GVF-RCB module, which can
be used to adjust the mean and variance of hyperspectral images. Although hyperspectral
images and feature maps generated by convolutional neural networks have the same spatial
dimension, their data distributions are quite different. We visualized the input and output
of the beta network in the fifth GVF-RCB module, and selected three images from the
CAVE [57] and HARVARD [58] datasets, respectively, as shown in Figure 5, where blue
represents the mean value of each channel of the hyperspectral image and orange represents
the mean value of each channel of the feature map. The average value of each channel is
calculated as in the average pooling operation. From the mean value of each channel of
the hyperspectral image and feature map, and the beta coefficient of each channel (output
of the network), it can be seen that the mean value of the hyperspectral image channel
is small and densely distributed, while the mean value of each channel of the feature
map is large and irregularly distributed. Due to the obvious data gap, directly cascading
hyperspectral images and feature maps will result in the ineffective fusion of the spatial
feature information of the feature maps and the spectral information of the hyperspectral
images. Therefore, it is usually necessary to pass the extracted feature information to
convolutional layers using Dense Connection.

Adjusting the internal data distribution of the neural network can often make the
network converge quick and stable, and improve the generalization ability of the network.
Batch normalization is one of the most commonly used methods to quickly adjust the
distribution of feature map data. During training, the local mean and variance of each
mini-batch data are used for normalization and to estimate the global value. Finally, in the
testing process adjust the data distribution with the global mean and variance instead of
the local mean and variance. However, super-resolution reconstruction methods [59] for
natural images point out that batch normalization will introduce huge randomness and
cause the network to underfit, so it is not suitable for image reconstruction problems.

To reduce the difficulty of training neural networks, we introduce a coefficient β
(0 ≤ β ≤ 1) on the residual learning branch, and the refined residual information is multi-
plied by β to achieve convergence. Assuming X ∈ RH×W×B is a feature map, let µ and σ2

be the mean and variance of X, respectively, calculated according to the following equation:

µ =
1

H ×W × B

H×W×B

∑
i=1

Xi (6)

σ2 =
1

H ×W × B

H×W×B

∑
i=1

(Xi − µ)2, (7)

when the output feature map X of the residual branch is multiplied by a small coeffi-

cient β, the mean µ
′

and variance σ
′2

of the feature map are calculated according to the
following equation:

µ
′
=

1
H ×W × B

H×W×B

∑
i=1

(β · Xi) = βµ ≤ µ (8)

σ
′2
=

1
H ×W × B

H×W×B

∑
i=1

(β · Xi − µ)2 = β2σ2 ≤ σ2. (9)

Therefore, multiplying the residual branch by a small coefficient β changes the mean
and variance of the feature map data, which essentially adjusts the data distribution of the
feature map in the direction where the mean tends to zero, reducing the absolute value
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of the feature map. Further, the magnitude of the learning parameters in the process of
training the network is reduced, so that the variable parameters can better fit the data
map. The reduction of variance makes the data distribution more compact, suppresses the
fluctuation range of data changes, and at the same time enhances the stability of the data,
making the neural network converge towards a more stable direction.

Figure 5. Mean and corresponding beta value of hyperspectral image and feature map. (a,c,e)
represent the data of the three groups of images in the CAVE dataset; (b,d,f) represent the data of the
three groups of images in the HARVARD dataset.

The proposed fully connected beta network is shown in Figure 6. We used the beta
network to make the hyperspectral image and the feature map perceive each other’s
feature information, and then adaptively changed the data distribution to an appropriate
degree. The selection of the beta value was obtained by adaptive learning of the beta
network, for each channel will learn a different beta value, and then the small coefficient
beta was multiplied by each feature map. The detailed calculation steps of the beta network
algorithm are shown in Algorithm 1.
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Algorithm 1: Data distribution adjustment in fusion network

Input: X and Y

Output: X′ and Y′

STEP1: compute mean vector

µX ← 1
H×W ∑H×W

i=1 Xij, j = 1, 2, · · · , C

µY ← 1
H×W ∑H×W

i=1 Yij, j = 1, 2, · · · , C

STEP2: concatenate µX and µY to obtain neural input µ

STEP3: feed µ into fully connected network and output the coefficient vector β

STEP4: split β to βX and βY

STEP5: compute outputs X′ and Y′

X′ ← β
(i)
X ∗ X(i), i = 1, 2, . . . C

Y′ ← β
(i)
Y ∗Y(i), i = 1, 2, . . . C

Figure 6. The schematic diagram of beta network structure.

3. Experiments and Analysis
3.1. Experimental Setup

This section is for experimental evaluation. All experiments were run on a server
with a Inter(R) Core(TM) i7-6850K CPU 3.60GHZ processor, 32GB of RAM, 2TB disk
space, Ubuntu 18.04 and NVIDIA TITAN XP GPUs. We completed the construction of
the network model using the PyTorch framework, using a batch size range of [10, 64]
during training. We adopted ADAM optimizer [60] to train the network. The initial
learning rate of the MINet network was set to 1 × 10−3 and the number of iterations
was fixed at 3000. For comparison, we selected nine state-of-the-art fusion based HSI
SR methods, including coupled sparse tensor factorization (CSTF) [61], non-negative
structured sparse representation based method (NSSR) [21], coupled non-negative matrix
factorization (CNMF) [62], the low tensor-train rank-based method (LTTR) [63], MHF [48],
DBIN+ [47], DMDNet [64], ResTFNet [65], and SpeNet [50].

Seven quantitative metrics that are widely used in multispectral and hyperspectral
image fusion tasks were selected to analyse and evaluate the quality of the fused images.
First, we used the mean square error (MSE), which is most commonly used in image quality
evaluation. It averages the difference between the true and predicted values after a squaring
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operation, reflecting the difference between the two sets of images. For each spectral band,
the specific formula is shown below.

MSE(X̃, X) =
1

H ×W × B ∑
H×W×B

(X̃i − Xi)
2, (10)

where H, W and B denote the numbers of rows, columns and channels of the image,
respectively. X̃i and Xi represent the predicted image of the i-th spectral band with ground-
truth, respectively. The smaller the value of MSE, the closer the predicted image is to the
real image.

Peak Signal-to-Noise Ratio (PSNR) is another index for assessing the fusion quality of
each band. The definition is based on the MSE and the difference in MSE can be seen by
comparing the PSNR. The average PSNR of each band is given by:

PSNR(X̃, X) = −10
B

B

∑
k=1

log(MSE(X̃k − Xk)), (11)

where X̃k and Xk represent the image of the k-th channel. Unlike MSE, a higher PSNR value
means that the spatial information of the two sets of images is more similar and better
between reconstructions.

The relative average spectral error (RASE) estimates the global spectral quality of the
pan-sharpened image. It is defined as:

RASE(X̃, X) =
100
M

√√√√ 1
N

N

∑
i=1

RMSE(Bi)2, (12)

where RMSE(Bi) is the root mean square error between the i-th band of the pan-sharpened
image and the i-th band of the reference image. M is the mean value of the N spectral
bands (B1, B2 . . . , BN).

Erreur Relative Global Adimensionnelle Synthese (ERGAS) [28] is an error indicator,
which represents the effect of pansharpened images from a global perspective. It mainly
reflects the spectral distortion of the enhanced image compared to the reference image. The
ERGAS index is a normalized dissimilarity index:

ERGAS(X̃, X) = 100
h
l

√√√√ 1
B

B

∑
k=1

(
MSE(k)

µ(k)

)2
, (13)

where h
l is the ratio of the spatial resolution size of HR-MSI and LR-HSI, and µ(k) repre-

sents the average value in spectral band B. The lower ERGAS indicates that the spectral
distribution of the enhanced images is similar to that of the ground-truth.

Spectral Angle Mapper (SAM) measures the spectral similarity between the reference
image and the fused image by treating the spectrum of each image element as a high-
dimensional vector, and by calculating the angle between the two vectors to reflect the
likelihood of belonging to the same feature. The SAM index is defined as:

SAM(X̃, X) =
1

H ×W

H×W

∑
j=1

arccos
(

x̃ᵀj xj

‖x̃j‖2‖xj‖2
,
)

(14)

where x̃j and xj are the spectral signatures of the j-th (1 ≤ j ≤ HW) pixels of X̃ and X,
respectively, and ‖·‖2 is `2 norm of a vector.
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Average Structural Similarity Index (ASSIM) represents the proximity of structural
information between the ground truth and pansharpened images. The ASSIM index is
defined as:

ASSIM(X̃, X) =
1
B

B

∑
k=1

SSIM(Xk, X̃k), (15)

where SSIM(·, ·) [66] computes the SSIM value of a typical spectral band. When SSIM = 1,
the fusion result is the best.

The Correlation Coefficient (CC) is another widely used indicator measuring the
spectral quality of the pan-sharpened images. It calculates the correlation coefficient
between a pan-sharpened image X̃ and the corresponding reference image X as:

CC(X̃, X) =
∑w

i=1 ∑h
j=1(X̃i,j − µX̃)(Xi,j − µX)√

∑w
i=1 ∑h

j=1(X̃i,j − µX̃)
2 ∑w

i=1 ∑h
j=1(Xi,j − µX)2

, (16)

where w and h are the width and height of the images, µ indicates mean value of an image.
CC ranges from −1 to +1, and the ideal value is +1.

We also use QNR [67], which is composed of spectral distortion index Dλ and spatial
distortion index Ds, as the reference-free measure.

3.2. Datasets

To fully evaluate the performance of our proposed MINet network for multispectral
and hyperspectral image fusion, we chose two simulated datasets and two real-world
hyperspectral datasets for our experiments, including the CAVE dataset, the HARVARD
dataset, the National Center for Airborne Laser Mapping (NCALM) and WorldView-2. The
following information is specific to the datasets.

(1) The HARVARD [58] dataset consists of 50 indoor and outdoor images captured under
daylight illumination. Each image contains 1024× 1392 pixels and 31 spectral bands
in a wavelength range of 420 nm to 720 nm. Following [47], in terms of data quantity
allocation, we randomly selected 30 images as the training set and the remaining
20 images as the test set.

(2) The CAVE [57] dataset contains 32 images of scenes taken indoors, each hyperspectral
image has a spatial resolution of 512× 512 and a spectral range from 400 nm to 700 nm
at 10 nm intervals, containing a total of 31 channels. Following [48], 20 images were
randomly selected for training and the remaining 12 images were used as the test
set in the data allocation process. In order to objectively evaluate the reconstruction
performance of each spectral image fusion method, we combine the spectral bands of
HSI with the widely used response function of the Nikon D700 camera to generate
HR-MSI images of the same scene. Following [47], to obtain LR-HSI, we first filter the
image with a 7× 7 Gaussian blur kernel with a mean of 0 and a standard deviation of
2, and then take pixels with step r in both the row and column directions of the spatial
dimension of the hyperspectral image.

(3) We selected the remote sensing image dataset released by the Hyperspectral Image
Analysis Laboratory of the University of Houston and the National Center for Airborne
Laser Mapping (NCALM), which was part of the dataset of the 2018 IEEE GRSS Data
Fusion Competition [68] as a pair of real remote sensing image datasets. It contains
an RGB image of spatial dimensions 24,040 × 83,440, which was captured by with
the iMAC ULTRALIGHT+ with the focal length of 70 mm, and a 48-band HSI of
spatial dimensions 1202× 4172, which was captured with the ITRES CASI 1500 with
an interval wavelength of 10nm in the range of 380–1050 nm. These sensors are
installed on a Piper PA-31-350 Navajo Chieftain aircraft. To obtain ground-truth data,
we first intercept HSI images with dimension 1202× 4172 and RGB images spatially
downsampled to the same dimension as real data. Then we divided the hyperspectral
images and RGB images into 2× 7 networks, extracted hyperspectral images and RGB
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images with dimensions of 576× 576 from each grid, and used the 7 image patches
extracted from the upper half of the hyperspectral images as the training set , and
the 7 image patches extracted from the lower half are used as the test set. In order
to obtain LR-HSI, we adopted the preprocessing method of the CAVE dataset, and
added random additive Gaussian noise with mean 0 and variance 0.0001 to LR-HSI to
simulate the low-noise environment of the real environment.

(4) The WV-2 dataset was captured on a commercial satellite and contains an LR-HSI
image of size 419× 658× 8 and an LR-MSI image (RGB images) of size 1676× 2632× 3,
while the LR-MSI image is not available. As the ground-truth data are not avaiable,
following [48,49], we generated the training data in the following way. To be specific,
we select the top half part of LR-HSI (836× 2632× 3) and HR-MSI (208× 656× 8)
image to train the MINet and utilize the remaining parts of the dataset as testing data.
We first extract 144× 144× 3 patches from HR-MSI as network input color images,
and 36× 36× 8 overlapping patches from LR-HSI as network input low-resolution
hyperspectral images, and finally generate training samples.

3.3. Experiments and Analysis

We selected two simulated datasets and two real-world hyperspectral datasets for our
experiments, using different metrics for comparison. The experimental results of our proposed
MINet compared with different methods on the Harvard dataset are shown in Table 2 and bold
fonts represent more favorable results. For the fairness principle, the ten methods adopted the
same spectral response curve and downsampling process. The significant superiority of our
method over state-of-the-art methods is validated. To be specific, the proposed method is only
second to DBIN+ on the ASSIM metric, while achieving the best results on PSNR, SAM, ERGAS,
Params, FLOPs and GPU memory. It only takes 197.4 ms for MINet to perform a forward
inference, which is 12.5% of the time required by MHF-Net, 10% of the time required by DBIN+,
and 33% of the time required by SpeNet. In terms of GPU memory consumption, MHF-Net
and SpeNet need up to 8 G graphics card memory for inference, DBIN+ needs 4.4 G memory,
and MINet only needs 2.5 G to complete the calculation.

The results of the experiments comparing our proposed MINet with different methods
on the CAVE dataset are shown in Table 3. All methods were performed using 32× up-
sampling and in the same test environment. MINet uses 5 GVF-RCB blocks to reduce the
number of parameters and run time without reducing the reconstruction effect. The various
evaluation metrics demonstrate the superiority of the proposed method, specifically, except
that the ASSIM metric is slightly lower than DBIN+, the proposed MINet achieves the best
results on PSNR, SAM and ERGAS. Not only have state-of-the-art results been achieved
in the various image evaluation indicators, our proposed lightweight network has fewer
parameters and faster running time, which can meet the needs of real-time reconstruction.

Table 2. Experiment with ten PS methods on the HARVARD dataset. The best performance is shown
in bold.

Method PSNR (dB) ASSIM SAM ERGAS Params
(M) FLOPs (T) Time

GPU
Memory

(MB)

NSSR 34.86 0.9312 7.1810 0.9435 - - 492.5 s -
CNMF 36.14 0.9327 5.9471 0.9492 - - 200.2 s -
LTTR 44.32 0.9809 4.4528 0.5223 - - 2316.7 s -
CSTF 43.64 0.9717 5.9656 0.5943 - - 97.3 s -

MHF-Net 46.59 0.9936 3.5482 0.3206 3.007 2.136 1647.2 ms 8087
DBIN+ 46.20 0.9938 3.8171 0.3398 3.083 4.125 2176.8 ms 4433

DMDNet 46.44 0.9932 3.7562 0.3315 2.251 2.487 1456.6 ms 6847
ResTFNet 45.86 0.9916 3.8254 0.3396 1.525 2.365 1263.5 ms 6954

SpeNet 46.69 0.9934 3.4380 0.3171 0.713 1.086 597.1 ms 7885
Ours 46.91 0.9936 3.3927 0.3111 0.128 0.255 197.4 ms 2511
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To more clearly represent the differences in the resulting images, we visualized the
residual images on the CAVE data as shown in Figure 7, which takes the ground-truth
image as a reference. The images reconstructed by NSSR have local artifacts and noise.
The lack of reconstruction of high-frequency details in images by CNMF results in bright
foreground contours. Obviously, the spectral fusion method based on deep learning is
better than the traditional method based on optimization. The image reconstructed by
MINet has less error and the residual map is closer to the ground-truth. In addition,
we selected three sets of reconstructed images from the CAVE and HARVARD datasets
respectively and compared their PSNR in different spectral bands quantitatively with the
comparison method, and the results are shown in Figure 8. It can be seen that the PSNR of
MINet is better than that of each comparison method.

Table 3. Experiment with ten PS methods on the CAVE dataset. The best performance is shown
in bold.

Method PSNR (dB) ASSIM SAM ERGAS Params
(M) FLOPs (G) Time

GPU
Memory

(MB)

NSSR 30.45 0.9159 10.3595 1.5184 - - 117.5 s -
CNMF 32.44 0.8871 14.6556 1.3654 - - 50.5 s -
LTTR 41.62 0.9706 10.8158 0.4541 - - 506.5 s -
CSTF 41.73 0.9589 12.2554 0.4753 - - 19.6 s -

MHF-Net 45.24 0.9932 6.9655 0.2954 3.007 534 974.6 ms 5783
DBIN+ 43.34 0.9936 7.0630 0.3650 3.083 2063 531.6 ms 1619

DMDNet 45.75 0.9929 7.1206 0.3245 2.251 1768 654.3 ms 3517
ResTFNet 45.12 0.9915 7.0459 0.3369 1.525 2635 362.2 ms 3268

SpeNet 46.49 0.9931 6.7735 0.2558 0.713 271 146.0 ms 6857
Ours 46.61 0.9933 6.6853 0.2482 0.128 64 G 48.1 ms 1169

Table 4 shows the results of different methods on the NCALM dataset. The three
compared methods decreases significantly and fail to reconstruct high-frequency spatial
details, resulting in blurring boundaries. We randomly select a reconstructed image from
the dataset, and select the images of the 15th, 33rd, and 44th channels of the reconstructed
images of each hyperspectral fusion method for visual comparison. The results are shown
in Figure 9. Although DBIN+ achieves high PSNR on the test set, the detail features of the
reconstructed image are blurred and have obvious noise. This method cannot effectively
suppress the noise contained in the image. The contours of MHF-Net reconstructed images
are smoother, but there are still problems of dark spots and blurred details.

Figure 10 shows the comparison results of the proposed method and four methods
on the WV-2 dataset. We selected three small areas from the lower right block area of
the dataset for detailed magnification and comparison. Our reconstructed high-frequency
detail features and smooth parts are better than DBIN+ and MHF, and the Spe method has
blurred boundaries. The visualization results show that the proposed method has good
visual effect.

Table 4. Quantitative performance comparison with the investigated methods on the NCALM dataset.
The best results are shown in bold.

Method PSNR (dB) ASSIM SAM ERGAS CC RASE QNR

MHF-Net 39.78 0.9789 3.8317 1.2291 0.8561 5.4848 0.9549
DBIN+ 39.53 0.9756 3.8511 1.2582 0.8462 5.9848 0.9436

DMDNet 39.26 0.9735 3.8621 1.2645 0.8219 5.6847 0.9477
ResTFNet 39.76 0.9741 3.8456 1.2456 0.8498 5.1678 0.9587

SpeNet 39.96 0.9793 3.8288 1.2222 0.8854 4.8644 0.9650
MINet 40.22 0.9815 3.8076 1.2187 0.8901 4.8501 0.9654

On the whole, the MINet method outperforms existing methods, and the results on
the four datasets show that the objective evaluation of the MINet method is well consistent
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with the subjective evaluations. In particular, our proposed method operates with the
fewest parameters and the fastest speed, highlighting the advantages of light weight.

Figure 7. Comparisons of the error maps between the spectral bands of reconstructed HR-HSIs.
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Figure 8. Compare PSNR values for each spectral band of the reconstructed HR-HSI. (a,c,e) represent
the data of the three groups of images in the CAVE dataset; (b,d,f) represent the data of the three
groups of images in the HARVARD dataset.



Remote Sens. 2022, 14, 5600 18 of 23

Figure 9. The visual comparisons of fusion results obtained by different methods on NCALM dataset.
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Figure 10. The visual comparisons of fusion results obtained by different methods on World View-
2(WV-2) dataset.

3.4. Ablation Study

In this section, we evaluated the performance of the residual activity factor proposed
in Section 2.1 as shown in Table 5. The residual activity value of our proposed MINet on
HARVARD data is 0.9873, which is closer to 1 than the state-of-the-art hyperspectral fusion
network. Not only is it demonstrated that residual factors can be used to evaluate network
activity, but also the superiority of the proposed network is demonstrated. At the same
time, we also compared the MINet without the beta network structure to illustrate the
performance of the beta network.

Table 5. Residual activity comparison with hyperspectral image fusion network on the HARVARD
dataset. The best results are shown in bold.

Method DBIN+ MHF-Net SpeNet MINet-no-beta MINet

η 0.7404 0.8215 0.9229 0.8957 0.9873

Then, to verify the performance of the proposed beta network, we compare the
performance of MINet and the network after removing the beta network as shown in
Table 6. The results of the four evaluation metrics show that the beta network has a positive
gain effect on the hyperspectral reconstruction performance. Although the added beta
network increases the number of parameters by about 7k, the PSNR is improved by 0.94 dB,
and ASSIM, SAM and ERGAS were all significantly improved.
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Table 6. Contrast effect of beta network in MINet. The best results are shown in bold.

Network PSNR (dB) ASSIM SAM ERGAS Params (K) FLOPs (G)

MINet-no-beta 45.67 0.9858 8.6544 0.3278 121.704 128
MINet 46.61 0.9933 6.6853 0.2482 128.345 128

4. Conclusions

In this paper, we proposed a lightweight multi-level information network (MINet)
for multispectral and hyperspectral image fusion to meet the real-time reconstruction
requirements of hyperspectral imaging. MINet not only has efficient calculation speed, but
also maintains satisfactory accuracy, which is suitable for resource-constrained equipment.

In contrast to the traditional pruning of generalised sharpening networks to obtain
lightweight networks, we first analysed the working mechanism of the residual module,
which plays a key role in existing hyperspectral fusion networks, and then defined a
residual activity factor to quantify the residual learning capability of the module and assess
the effectiveness of the proposed module. This inspired us to design a constraint block based
on global variance fine-tuning (GVF-RCB) to improve the feature extraction and fusion
module. To further improve the efficiency of the fusion network, the proposed network
uses multi-level spectral information and feature maps to share a hidden layer state in
batches, mutually perceive the mean information of each channel map, and complete feature
extraction and fusion simultaneously, simplifying the network complexity while improving
the efficiency of feature extraction and information fusion. The ablation experiments
also further validate the effectiveness of this module. In addition, we cascade multiple
GVF-RCBs in MINet to progressively inherit different levels of feature content into the
fused image.

To fully evaluate the performance of our proposed MINet network for pansharpen-
ng, we chose two simulated datasets and two real-world hyperspectral datasets for our
experiments. The experimental results demonstrate that the proposed method achieves
an average improvement of 0.3 dB in PSNR and achieves state-of-the-art results in most
evaluation metrics. More importantly, the network forward inference is three times faster
than the best current methods, while reducing the number of parameters by a factor of five.
This lightweight design idea and the results validate the effectiveness of the network.

In future work, we will focus on the hardware deployment of the network model,
applying it to existing spectral imaging systems and testing it, modifying and debugging
the network for specific problems in the engineered system. In addition, we will also test
the performance of the residual activity factor on the dataset used in ILSVRC and COCO
2015 competitions.
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