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Abstract: Rapid extraction of liquefaction induced by strong earthquakes is helpful for earthquake
intensity assessment and earthquake emergency response. Supervised classificationmethods are po‑
tentially more accurate and do not need pre‑earthquake images. However, the current supervised
classification methods depend on the precisely delineated polygons of liquefaction by manual and
landcover maps. To overcome these shortcomings, this study proposed two binary classification
methods (i.e., random forest and gradient boosting decision tree) based on typical samples. The pro‑
posedmethods trained the twomachine learningmethodswith different numbers of typical samples,
then used the trained binary classification methods to extract the spatial distribution of liquefaction.
Finally, a morphological transformation method was used for the postprocessing of the extracted
liquefaction. The recognition accuracies of liquefaction were estimated by four evaluation indices,
which all showed a score of about 90%. The spatial distribution of liquefaction pits is also consis‑
tent with the formation principle of liquefaction. This study demonstrates that the proposed binary
classification methods based on machine learning could efficiently and quickly provide the spatial
distribution of liquefaction based on post‑earthquake emergency satellite images.

Keywords: coseismic liquefaction; supervised classification; machine learning; high‑resolution;
2021 maduoMw7.3 earthquake; Tibetan Plateau

1. Introduction
Coseismic liquefaction refers to the change of sand from a solid state to a liquid state

caused by rising pore water pressure and decreasing effective stress when an earthquake
occurs [1–3]. As relevant to coseismic surface rupture, rapid acquisition of the spatial distri‑
bution of liquefaction is helpful for earthquake intensity assessment and earthquake emer‑
gency response [4,5]. In addition, post‑earthquake investigation of liquefaction is a funda‑
mental way of developing knowledge on seismic engineering and provides the basis for
seismic‑resistant design theories [6,7]. A complete liquefaction investigation could also
help enrich the globe case base of liquefaction induced by the earthquake.

Currently, the identification of liquefaction usually depends on the field investigation,
which can be time‑consuming and labor‑intensive. More importantly, due to lack of acces‑
sibility, thismethod could not obtain the complete spatial distribution of liquefaction, espe‑
cially in highland areas. Thus, developing automatic extractionmethods based on satellite
or aerial images could be helpful in overcoming the shortcomings of field investigation.

The existing automatic identification of liquefaction can be summarized into
two groups. The first group is the unsupervised classification strategy, which does not
need liquefaction samples. This strategy detects liquefaction by comparing pre‑ and post‑
earthquake images [2,8–10]. For example, Ishitsuka et al. [11] identified the extent of lique‑
faction induced by the 2011 Tohoku earthquake by analyzing the surface changes with pre‑
and post‑synthetic aperture radar (SAR) images. Baik et al. [12] detected liquefaction by
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identifying the areas where suddenwater content increases occurredwith SAR and optical
satellite images. Those methods obtained liquefaction automatically without liquefaction
samples. However, the performance of these methods often depends on the quality of the
images. The quality of the images was usually influenced by the imaging time, weather,
resolution and so on. Furthermore, those methods usually fail when the pre‑earthquake
images close to the time of the earthquake do not exist.

The second group is the supervised classification strategy based on post‑earthquake
images. The supervised classification strategy needs to collect a certain number of samples
of liquefaction pits in advance [13,14]. This strategy could be further divided into pixel‑
based and object‑basedmethods. The pixel‑basedmethods focus on the spectral character‑
istic of liquefaction pits in each pixel rather than considering the morphological features of
liquefaction. For example, Rashidian et al. [15] used the maximum likelihood classifier to
map the spatial distribution of liquefaction pits triggered by the 2011 Christchurch earth‑
quake based on satellite and aerial images. Object‑based methods integrate similar pix‑
els into a liquefaction object and distinguish the liquefaction objects from other landcover
objects by morphological features. Morgenroth et al. [16] used object‑based methods to
extract the liquefaction pits induced by the 2011 Christchurch earthquake with aerial pho‑
tography, light detection and ranging images. These methods avoid using pre‑earthquake
images, and usually have more accurate and robust identification results than unsuper‑
vised methods.

Due to the morphological features (e.g., size, shape) of liquefaction pits, object‑based
methods usually require very high‑resolution images, such as unmanned aerial vehicle
(UAV) images. Compared to UAV images, the satellite‑based images have a lower resolu‑
tion, whichmakes it difficult to recognize themorphology of liquefaction pits [17,18]. How‑
ever, satellite‑based images are the easier‑to‑access images and cover a large area. These
images are the most‑used in an earthquake emergency. Thus, it is necessary to develop
pixel‑based methods for satellite‑based images.

Currently, pixel‑based methods always need the user to collect landcover maps to as‑
sist in selecting non‑liquefaction/liquefaction samples [15]. Nevertheless, high‑resolution
landcover maps are hard to obtain, and the available classes of landcover maps are not
used for recognizing liquefaction pits. Meanwhile, the current supervised methods need
users to draw polygons of liquefaction very carefully. The boundary of liquefaction is usu‑
ally so vague that they are difficult to draw. The wrong points may lead to a decrease in
identification accuracy [19].

To solve the above problems, this paper proposed a binary supervised classification
framework. The binary classification framework does not require the assistance of a land‑
cover map, and users can focus on selecting typical pixel samples for non‑liquefaction/
liquefaction as training samples. This framework can help recognize liquefaction pits
based on satellite‑based images in a short time. The binary classification framework was
implementedwith random forest (RF) and gradient boosting decision tree (GBDT). RF and
GBDT handled high‑dimensional data and select covariates. These advantages helped the
expansion of the sample base and the addition of new covariates.

2. Materials and Methods
2.1. Study Area

The proposed method was examined in the coseismic liquefaction induced by the
22 May 2021,Mw 7.3 Maduo on the Tibetan Plateau, Western China. The seismogenic fault
of the Maduo earthquake is an active NW‑striking and left–lateral strike‑slip fault with
lower slip rate. The length of coseismic surface rupture is approximately 160 km with
massive liquefaction pits in river valleys and swampy areas around the source area of the
Yellow River [20].

The investigated area is approximately 45 km2 and located near the Yematan site,
30 km west of the epicenter, ranging from 97.9◦E to 98.02◦E longitude and 34.64◦N to
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34.74◦N latitude (Figure 1). The elevation of this study ranges between 4190 m and
4512 m and has a gentle gradient with a mean slope gradient under 10◦.
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Figure 1. The location and remote sensing images of the study area. (a) The tectonic environ‑
ment around the study area, (b) the GF‑7 satellite image of the study area the surface rupture data
came from [20]. EKLF, Eastern Kunlun Fault; GZ‑YSF, Ganzi–Yushu Fault; XSHF, Xianshuihe Fault;
LMSF, Longmenshan Fault; WQLF, Western Qinling Fault; JLF, Jiali Fault; JCF, Jiangcuo fault; HYF,
Haiyuan Fault; ATF, Altyn Falut; KF, Kunlun Fault; HFT, Himalayan Thrust Fault; SF, Sagaing Fault;
MD, Maduo; CD, Chengdu; YC, Yinchuan; LZ, Lanzhou; LS, Lhasa; XN, Xining.
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2.2. Data Sources
2.2.1. Satellite Images and Derived Covariates

In this study, Gaofen‑7 (GF‑7) images were collected for identifying the coseismic
liquefaction. GF‑7 is a stereo mapping satellite launched by China in 2019. It can effec‑
tively acquire panchromatic stereo images and multi‑spectral images. The backward and
forward panchromatic images have a width of 20 km and the resolution is greater than
0.8 m. Multi‑spectral imaging features four spectral bands (blue, green, red and near in‑
frared) with a resolution of 3.2 m (Table 1). In this study, a stereo pair of GF‑7 images with
a few clouds was captured on 10 June 2021, 19 days after the earthquake (Figure 1b).

Table 1. The images used in this study and the band parameters.

Sensor Date
Parameters

Band Wavelength(µm) Resolution(m)

GF‑7 10 June 2021

Panchromatic 0.45–0.90 0.8
Blue 0.45–0.52 3.2
Green 0.52–0.59 3.2
Red 0.63–0.69 3.2

Near‑infrared 0.77–0.89 3.2

GF‑1D 29 April 2021

Panchromatic 0.45–0.90 2
Blue 0.45–0.52 8
Green 0.52–0.59 8
Red 0.63–0.69 8

Near‑infrared 0.77–0.89 8

UAV 25 July 2021 RGB 0.1

Besides the GF‑7 image, another two kinds of image were used for validation in this
study. Firstly, a Gaofen‑1D image (GF‑1D) that was captured on 29 April 2021, was used
as the pre‑earthquake image (Table 1). Meanwhile, the collected GF‑1D image covered the
whole study area.

The second were the UAV images captured on 25 July 2021, with a resolution of
0.1 m. The aim of the UAV images was to capture the surface rupture zone of the Maduo
earthquake, and the images were mainly located in the north of the study area.

Before using the satellite images, twomainmethods of processing theGF‑7 andGF‑1D
were applied. The first was pan‑sharpening, in which the backward panchromatic image
and multi‑spectral image were fused into a new image with a 0.8 m resolution. Therefore,
multi‑spectral images could benefit from the high spatial resolution of panchromatic stereo
images. The second process was to generate a 0.8 m resolution of the digital surface model
(DSM) by using the forward‑and‑backward panchromatic images.

Based on the processed GF‑7 data, three types of covariates were derived for identify‑
ing liquefaction:
1. Terrain parameters: We used elevation, slope, all derived at 0.8 m resolution. Since

liquefaction often occurs in flat and swampy areas, terrain parameters are mainly
used to characterize topographic features.

2. Spectral bands: Blue (B), Green (G), Red (R), Near infrared (NIR) of GF‑7 were
all included.

3. Spectral indices: Five spectral indices include, Normalized difference water index
(NDWI), Normalized difference vegetation index (NDVI), Modified soil vegetation
adjusted index (MSAVI2), Salinity index (Salinity), Grain size index (GSI).
NDWI is an important spectral index for measuring water in vegetation and detecting

open water [21]. It has also been used for identifying liquefaction by Sengar et al. [22] and
baik et al. [12].

NDWI = (G−NIR)
(G+NIR)

(1)
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Although NDVI is one of the important parameters for reflecting crop growth and
nutritional information, it can also reflect the background influence of plant canopy, such
as soil, wet ground, snow, dead leaves and roughness [23]. Thus, in addition to vegetation
classification, NDVI is also widely used in the classification of other land features, such
liquefaction [10,22].

NDVI = (NIR− R)
(NIR+ R)

(2)

MSAVI2 is also a kind of vegetation index, which was developed to minimize soil
influence using a self‑adjustment factor [24].

MSAVI2 =
1
2
× (NIR+ 1)−

√
(2 ×NIR+ 1)× 2 − 8 × (NIR− R) (3)

Salinity combines the R andNIR bands to detect the surface reflectance of salt‑affected
land [25].

Salinity =
R

NIR
× 100 (4)

GSI uses three types of visible spectral band to reflect the content of silt–clay and fine‑
sand of topsoil [26].

GSI = (R− B)
(R+ B+G)

(5)

2.2.2. Liquefaction Samples
A total of 900 samples were collected in this study area, including 300 liquefaction

samples and 600 non‑liquefaction samples (Figure 2). All the liquefaction samples were
located inside the obvious liquefaction pits, not close to the edge as far as possible. Thus,
the samples derived could be more representative. The 600 non‑liquefaction samples were
located in different landscapes including grassland, river/laker, floodplain, road, exposed
rock, and so on.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. The spatial distribution of samples and some location details of the non-
liquefaction/liquefaction samples. 

2.3. Methods 
In this study, two ensemble machine learning methods (i.e., RF, GBDT) were used. 

The principle of ensemble methods is to combine the results of a certain number of esti-
mators to improve robustness. According to the synthesis strategies for the results of dif-
ferent estimators, the ensemble methods could be further distinguished into two classes: 
averaging methods and boosting methods. 

As a typical averaging method, random forest uses multiple decision trees for pre-
dicting the classes independently, then uses a majority vote to predict the final result 
[27]. For a binary classification of liquefaction in this study, each decision tree in the for-
est would individually determine whether a pixel was liquefaction or not, then RF chose 
the class with the most votes as the final class. The most important parameters that in-
fluence the performance of RF is the number of decision trees (Ntree) and the number of 
covariates selected for best split (Mtry). 

By contrast, the basic idea of a boosting method is to sort the decision trees sequen-
tially; each decision tree will give higher weight to the samples misclassified by previous 
decision trees during the training process. The final result is obtained by weighting the 
results of each decision tree. GBDT is a famous boosting method, which was developed 
by Friedman in 2001 [28]. The most import parameters influencing the performance of 
GBDT also include Ntree and Mtry. In this study, both parameters were set at default. 

The main differences between RF and GBDT can be summarized into two aspects. 
The first is the sampling strategy; each tree in RF is built by a subset of samples drawn 
randomly with replacement from the complete sample set. It means the training set of 
each tree in RF is independent. However, trees in GBDT select subsets of samples from 
the complete set of samples randomly without replacement. The second different aspect 
is the classification result. RFs determine the class of each pixel by the majority-vote of 
all the trees in the RF, while GBDTs integrate the result of each tree using a weighted av-
erage method.  

Morphological transformations are binary image operations based on the image 
shape [29]. The transformations usually include two inputs, the original image and the 
kernel that decides the nature of operation. In this study, the closing operation was se-
lected to fill the gap of the extracted liquefaction.  

The complete workflow of extracting liquefaction pits is shown in Figure 3. 

Figure 2. The spatial distribution of samples and some location details of the non‑
liquefaction/liquefaction samples.

2.3. Methods
In this study, two ensemble machine learning methods (i.e., RF, GBDT) were used.

The principle of ensemble methods is to combine the results of a certain number of estima‑
tors to improve robustness. According to the synthesis strategies for the results of different
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estimators, the ensemble methods could be further distinguished into two classes: averag‑
ing methods and boosting methods.

As a typical averagingmethod, random forest uses multiple decision trees for predict‑
ing the classes independently, then uses a majority vote to predict the final result [27]. For
a binary classification of liquefaction in this study, each decision tree in the forest would
individually determine whether a pixel was liquefaction or not, then RF chose the class
with the most votes as the final class. The most important parameters that influence the
performance of RF is the number of decision trees (Ntree) and the number of covariates
selected for best split (Mtry).

By contrast, the basic idea of a boosting method is to sort the decision trees sequen‑
tially; each decision tree will give higher weight to the samples misclassified by previous
decision trees during the training process. The final result is obtained by weighting the
results of each decision tree. GBDT is a famous boosting method, which was developed by
Friedman in 2001 [28]. The most import parameters influencing the performance of GBDT
also include Ntree and Mtry. In this study, both parameters were set at default.

The main differences between RF and GBDT can be summarized into two aspects.
The first is the sampling strategy; each tree in RF is built by a subset of samples drawn
randomly with replacement from the complete sample set. It means the training set of
each tree in RF is independent. However, trees in GBDT select subsets of samples from
the complete set of samples randomly without replacement. The second different aspect
is the classification result. RFs determine the class of each pixel by the majority‑vote of
all the trees in the RF, while GBDTs integrate the result of each tree using a weighted
average method.

Morphological transformations are binary image operations based on the image
shape [29]. The transformations usually include two inputs, the original image and the
kernel that decides the nature of operation. In this study, the closing operation was se‑
lected to fill the gap of the extracted liquefaction.

The complete workflow of extracting liquefaction pits is shown in Figure 3.
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2.4. Cross‑Validation and the Evaluation Indices
To evaluate the performance of the proposed methods and the influences of the num‑

ber of samples, the samples were randomly divided into 20 groups, then choosing 1, 2, 3,
. . . , 19 group/groups as training samples in turn, the rest were used as validation samples.
The above processes were repeated 20 times.

For each validation, four quantitative evaluation indices (i.e., Recall, Precision, F1,
Kappa) were used to evaluate the performance of the proposed method.

Recall =
TP

TP+ FN
(6)

Precision =
TP

TP+ FP
(7)

F1 =
2 × (Recall + Precision)
(Recall + Precision)

(8)

Kappa =
p0 − pc
1 − pc

(9)

p0 =
TP+ TN

N
(10)

pc =
(TP+ FN)× (TP+ FP) + (FP+ TN)× (FN+ TN)

N2 (11)

True positives (TP) represent the count of validation samples that were correctly clas‑
sified into liquefaction by the proposed method. The false positives (FP) are the number
of liquefaction samples that were misclassified into non‑liquefaction. False negatives (FN)
represent the count of non‑liquefaction samples that were misclassified into liquefaction.
True negatives (TN) are the number of non‑liquefaction samples that were correctly classi‑
fied into non‑liquefaction. N represents the number of validation samples.

3. Results
3.1. The Performance of the Two Proposed Methods

The relationship between the evaluation indices of the two classificationmethods and
the number of samples is illustrated in Figure 4. The value of the Kappa index for the
RF and GBDT ranged from 0.9 to 0.98 and from 0.87 to 0.97, respectively. The overall
accuracies for RF and GBDT ranged from 0.954 to 0.99 and from 0.94 to 0.99, respectively.
As for the Recall score, RF ranged from 0.956 to 0.98, a slight rise of 2.5%. However, GBDT
had a score lower than 0.9 with the least number of training samples. Like the Kappa
indices and overall accuracies, RF and GBDT had similar scores and the same trend in
Precision scores. To sum up, RF and GBDT had similar scores in all four indices with the
same training samples.

In addition, the number of samples could have had an influence on the final perfor‑
mance of the classification methods (Figure 4). The four evaluation indices of both classifi‑
cation methods increased when more samples were used as training samples. Compared
with RF, GBDT could bemore sensitive to the number of training sampleswhen therewere
a limited number of training samples. Taking the Kappa index as an example, when the
number of training samples increased from 45 to 90, the scores increased from 0.87 to 0.92,
a rise of 4.6%. However, when the samples reached a certain number, the relationship be‑
tween the performance of the two proposed methods and the number of training samples
was not obvious.
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3.2. The Final Prediction of Liquefaction by the Two Proposed Methods
Figures 5 and 6 represent the final distribution of liquefaction that were predicted by

the RF and GBDT when there were 270 training samples. Clearly, most of the liquefaction
induced by the earthquake located in the southern river valley, Heihe River. Almost no
liquefaction was distributed in the northern mountains. The spatial distribution was con‑
sistent with the formation principle of liquefaction. The soil in the valleys tends to have a
lot ofmoisture, while themountain region is often dry and short of groundwater. When an
earthquake occurred, the increase of pore water pressure and decrease of effective stress
had a greater possibility of occurring in the valley. Therefore, liquefaction pits were usu‑
ally distributed in the river valley region.
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270; the surface rupture data came from [20].

Figures 7–10 show the details of liquefaction (region I, II, III, IV in Figures 5 and 6)
identified by the RF and GBDT. For region I, three types of images (i.e., GF‑1D, GF‑7 and
UAV) are available. Compared to the pre‑earthquake images (GF‑1D), the post‑earthquake
images (GF‑7) show clear surface change, and RF and GBDT identified those places as
liquefaction‑induced by the earthquake. In the UAV, the morphological characteristics of
liquefaction were very obvious, while the size of the liquefaction in the UAV image was
smaller than the liquefaction identified with GF‑7 images by RF and GBDT. One possi‑
ble reason is that GF‑7 images have lower resolution than UAV images, and the discrete
liquefaction could be grouped together in satellite images with low resolution.

Similar to the images in region I, the images pre‑ and post‑earthquake in region II and
region III also showed differences and were extracted by RF and GBDT as liquefaction‑
induced (Figures 8 and 9). However, the shape and size of liquefaction predicted by RF
and GBDT were more similar in region III. This is because the boundaries of liquefaction
were clearly distinguished from the surrounding ground features in region III. In that sa‑
tiation, RF and GBDT could effectively identify the liquefaction based on a small number
of liquefaction samples. However, when the boundary was relatively fuzzy, neither of the
two proposed methods could completely identify the liquefaction morphology of the liq‑
uefaction (Figures 7 and 8). The incomplete identification of liquefaction could lead to the
difference in area and quantity of liquefaction. Taking the liquefaction located in Figure 8
as an example, complete liquefaction could be divided into a number of small parts and
affect the number and area of identified liquefaction.
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Figure 9. The extracted liquefaction (region III) by the two proposed methods. (a) GF‑1D image
pre‑earthquake with liquefaction predicted by RF. (b) GF‑7 image post‑earthquake with liquefaction
predicted by RF. (c) GF‑1D image pre‑earthquake with liquefaction predicted by GBDT. (d) GF‑7
image post‑earthquake with liquefaction predicted by GBDT.
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Figure 10. The extracted liquefaction (region IV) by the two proposed methods. (a) GF‑1D image
pre‑earthquake with liquefaction predicted by RF. (b) GF‑7 image post‑earthquake with liquefaction
predicted by RF. (c) GF‑1D image pre‑earthquake with liquefaction predicted by GBDT. (d) GF‑7
image post‑earthquake with liquefaction predicted by GBDT.

In region IV, compared to the pre‑earthquake image, the post‑earthquake image did
not show obvious change. However, RF andGBDT both identified some beacheswith bare
sand as liquefaction‑induced. In general, the provenance of the beach around the rivers is
close to that of the liquefaction, which is composed of sand. It turned out to be difficult to
distinguish the liquefaction from the beach with bare sand.

4. Discussion
4.1. The Area Statistics of the Identified Liquefaction Pits by the Two Proposed Methods

As data‑driven methods, RF and GBDT usually predict different spatial distributions
of liquefaction with different training samples. Figures 11 and 12 represent the area statis‑
tics of the extracted liquefaction with different training samples by RF and GBDT. Clearly,
even if the same number of training samples was used, the final area of liquefaction was
different, especially when there were a smaller set of training samples. This is because
data‑driven methods depend heavily on the number and representativeness of training
samples [14,19]. Due to the randomly selected training samples in this study, the number
and representativeness could be different for each set, especially the training samples of
other landcovers that were close to the spectrum of liquefaction. Rashidian et al. [15] de‑
signed training liquefaction samples by considering the local classes of landcovers, and
keeping the number of training samples representing different landcovers inconsistent.
Compared to the multi‑class classification method proposed by Rashidian, binary classi‑
fication methods demand fewer training samples [30]. Thus, in binary classification, the
selected training samples should focus on the liquefaction and landcovers that have similar
spectral characteristics with liquefaction.
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4.2. The Importance of Covariates Ranked by RF and GBDT
Successfully selecting and ranking covariates in prediction is one of the greatest abil‑

ities of ensemble classifiers such as RF and GBDT, which were used in this study [27,31].
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The importance of covariates scored by RF andGBDTwere illustrated in Figures 13 and 14,
respectively. When different training samples were selected, but the number of samples
was the same, the importance of covariates was different (Figures 13b–d and 14b–d). Com‑
pared to GBDT, the RF had a relatively small change in the rank of importance of covari‑
ates. When the number of training samples used in RF and GBDT increased, the rank of
importance of covariates did not show an obvious difference. Meanwhile, the six most im‑
portant covariates ranked by RF and GBDT were B1, B2, B3, B4, DEM and GSI (Figure 15).
The other covariates did not play a significant role in liquefaction classification. The result
indicates the consistency of covariate rankings between RF and GBDT. In addition, this
also reflects that the selected samples in this study are representative.
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Figure 13. The relative importance of covariates ranked by RF to extract liquefaction. (a) The impor‑
tance of covariates in all 380 repeated experiments with different sets of training samples. (b) The
statistics of the importance of covariates in 20 repeated experiments when the number of training
samples is 90. (c) The statistics of the importance of covariates in 20 repeated experiments when the
number of training samples is 270. (d) The statistics of the importance of covariates in 20 repeated
experiments when the number of training samples is 630.
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Figure 14. The relative importance of covariates ranked by GBDT to extract liquefaction. (a) The
statistics of the importance of covariates in all 380 repeated experimentswith different sets of training
samples. (b) The statistics of the importance of covariates in 20 repeated experiments when the
number of training samples is 90. (c) The statistics of the importance of covariates in 20 repeated
experiments when the number of training samples is 270. (d) The statistics of the importance of
covariates in 20 repeated experiments when the number of training samples is 630.

4.3. The Spatial Distribution of the Liquefaction Pits
According to the previous report, the liquefaction pits were observed during several

earthquakes, such as the 1964 M 9.2 Alaska [32], 1999 7.5 Chi‑Chi earthquakes [33], 2008
M 8 Wenchuan earthquake [6,7], 2011 M6.2 Christchurch earthquake [15]. Due to the lack
of high‑resolution images, field investigation in key areas is often an important way of
obtaining liquefaction pits. The number of liquefaction pits collected ranges from 75 in
the Chi‑Chi earthquake [34] to 216 in the Wenchuan earthquake [6]. The liquefaction pits
usually located around the surface rupture with a distance 20–40 km. The satellite im‑
ages could cover more areas, and the automatic extraction method took all the potential
liquefaction pits as the real liquefaction pits; it could be a possible reason why more lique‑
faction pits were extracted with a smaller Maduo earthquake. Liquefaction pits extracted
by the proposed method were within 10 km of the surface rupture. Meanwhile, most of
the liquefaction pits located near the river, which is consistent with previous studies [6].
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Figure 15. The mean value of covariates importance ranked by RF and GBDT. (a) Represents the
mean statistic of the importance of covariates in all 380 repeated experiments with different sets of
training samples. (b) Represents the mean statistic of the importance of covariates in 20 repeated
experiments when the number of training samples is 90. (c) Represents the mean statistic of the
importance of covariates in 20 repeated experiments when the number of training samples is 270.
(d) Represents the mean statistic of the importance of covariates in 20 repeated experiments when
the number of training samples is 630.

4.4. The Potential Application for Evaluating Seismic Hazard
Identifying liquefaction pits based on high‑resolution satellite images could be an un‑

expensive way, especially where the liquefaction was induced on plateaus or uninhabited
areas that are difficult to reach. Therefore, exploring the methods of identifying liquefac‑
tion based on high‑resolution satellite emergency images has vital value for earthquake
emergency response, intensity assessment and virtual seismic research. The proposed
method, which takes advantage of RF and GBDT, can quickly identify the spatial distri‑
bution and relatively accurate morphological structure of liquefaction from satellite‑based
images with a small number of samples. As more and more high‑resolution satellites are
launched, the high‑quality images could be easier to access in time. The concentrated liq‑
uefaction area within one month to several months after a strong earthquake often forms a
contiguous liquefaction area, whichmakes it easier to identify the distribution range; while
the liquefaction in the years after the earthquake often only retains the liquefaction bunker
and becomes difficult to identify. Thus, emergency remote sensing images can help schol‑
ars and officers to reassess regional coseismic liquefaction in a short time by the method
proposed in this study without pre‑earthquake images. Therefore, the time to obtain the
mapping of liquefaction depends on when images from less cloudy days are available.

4.5. The Limitations of the Proposed Methods for Identifying Liquefaction
Although optical images usually have a relatively high resolution that could play an

important role in identifying liquefaction, there are still several limitations to identifying
the liquefaction. First, the availability and quality of optical images are often affected by
the weather. Due to this reason, the timeliness of optical images could be a limitation on
the performance of the proposed method [34]. In this study, the selected GF‑7 image was
nearly 20 days after the earthquake, some changes had occurred, such as the liquefied soil
having become dry, and some adjacent liquefaction pits had joined together.

Second, the different land covers could have the same spectrum. Most satellite‑based
optical images have a resolution that is lower than 0.5 m. Thus, it is hard to identify lique‑
faction based on morphology (Figure 16). In this study, the two proposed methods extract
liquefaction mainly based on the four spectral bands and the derivate five spectral indices.
The liquefaction usually has a similar spectrum with the exposed sand around the river.
Soil type is an important indicator for whether a place will be susceptible to liquefaction
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during an earthquake; it could be one possible solution. Moreover, how to take advantage
of this information will be the subject of further study.
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Third, the proposedmethods hadgoodperformance regarding theMaduo earthquake.
However, this area had natural landcovers or bare land; it is necessary to validate the per‑
formance of the proposed method in other places, such as the city.

5. Conclusions
Based on optical images from the GF‑7 satellite, two machine learning methods

(i.e., RF and GBDT) were proposed to detect the liquefaction that was induced by the 2021
MaduoMw7.3 earthquake on the Tibetan Plateau. The final prediction accuracies of lique‑
faction were evaluated using the Kappa index, overall accuracy, recall score and precision
score. Even with only forty‑five training samples, the scores of the four evaluation indices
reached about 0.9. By increasing the number of training samples, the performancewas also
improved. Furthermore, the spatial distribution predicted by RF and GBDTwith 270 train‑
ing samples was analyzed. Finally, the extracted liquefaction regions were overlapped on
a pre‑earthquake (GF‑1D) and post‑earthquake image (UAV) for comparison and valida‑
tion. The spatial distribution of the extracted liquefaction pits was consistent with the
information in previous studies. However, the number of liquefaction pits was larger than
in the reported studies of other earthquakes. The high‑resolution images, designed meth‑
ods and geologic structures could be possible reasons. In summary, the proposed meth‑
ods efficiently and quickly provided the spatial distribution of liquefaction based on post‑
earthquake satellite images, which could be helpful for earthquake intensity assessment
and earthquake emergency response.

To the best of our knowledge, this study is the first to identify liquefaction based
on random forest and gradient boosting decision tree methods with GF satellites. The
proposed methods could be effective in taking advantage of optical satellite images and
limited samples to identify liquefaction pits quickly after an earthquake. However, the
weather could affect the timeliness of optical images, thus missing the optimal time to
recognize the liquefaction pits. Furthermore, future studies will develop new extraction
methods for liquefaction based on multi‑source satellite data (e.g., different resolution op‑
tical satellite images, synthetic aperture radar images), optical satellite images with a time
series long before the earthquake, and soil type information. Those further strategies could
possibly overcome the shortcomings of the proposed methods for identifying liquefaction
in this study. In addition, we will search for more data on other earthquakes to validate
the replicability of the proposed methods.

Author Contributions: Conceptualization, Y.X. and P.L.; methodology, P.L.; software, P.L.; valida‑
tion, Y.X. and P.L.; formal analysis, Q.T.; investigation, Y.X., W.L. and Y.Z.; resources, P.L.; data
curation, Y.X.; writing—original draft preparation, P.L.; writing—review and editing, Y.X.; visual‑
ization, P.L.; supervision, Y.X.; project administration, P.L.; funding acquisition, Q.T. All authors
have read and agreed to the published version of the manuscript.



Remote Sens. 2022, 14, 5595 18 of 19

Funding: This research was funded by National Key Research and Development Program of China
(Grant No. 2021YFC3000601‑3 and 2019YFE0108900), National Natural Science Foundation of China
(Grant No. 42072248 and 42041006), Basic Research Program from the Institute of Earthquake Fore‑
casting, China Earthquake Administration (Grant No. 2021IEF0505, CEAIEF20220102, and CEAIEF‑
2022050502) and High‑resolution Seismic Monitoring and Emergency Application Demonstration
(Phase II) (Grant No. 31‑Y30F09‑9001‑20/22), Research project of China Datang Corporation
Ltd.—The active characteristics of the Naozhong fault in Tibet Yuqu River Zala Hydropower Sta‑
tion (DTXZ‑02‑2021).

Data Availability Statement: The data presented in this study are available from the corresponding
author, Y.X. upon reasonable request.

Acknowledgments: The authors thank Tao Li from the Institute of Geology, China Earthquake Ad‑
ministration, Zhimin Li from the Qinghai Earthquake Agency, Zhaode Yuan from the Institute of
Geology, China Earthquake Administration for their help during the fieldwork.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kramer, S.L. Geotechnical Earthquake Engineering; Prentice Hall: Hoboken, NJ, USA, 1996.
2. Gihm, Y.S.; Kim, S.W.; Ko, K.; Choi, J.‑H.; Bae, H.; Hong, P.S.; Lee, Y.; Lee, H.; Jin, K.; Choi, S.; et al. Paleoseismological

Implications of Liquefaction‑Induced Structures Caused by the 2017 Pohang Earthquake. Geosci. J. 2018, 22, 871–880. [CrossRef]
3. Chini, M.; Albano, M.; Saroli, M.; Pulvirenti, L.; Moro, M.; Bignami, C.; Falcucci, E.; Gori, S.; Modoni, G.; Pierdicca, N.; et al.

Coseismic Liquefaction Phenomenon Analysis by COSMO‑SkyMed: 2012 Emilia (Italy) Earthquake. Int. J. Appl. Earth Obs.
Geoinf. 2015, 39, 65–78. [CrossRef]

4. Bhattacharya, S.; Hyodo, M.; Goda, K.; Tazoh, T.; Taylor, C.A. Liquefaction of Soil in the Tokyo Bay Area from the 2011 Tohoku
(Japan) Earthquake. Soil Dyn. Earthq. Eng. 2011, 31, 1618–1628. [CrossRef]

5. Huang, Y.; Yu, M. Review of Soil Liquefaction Characteristics during Major Earthquakes of the Twenty‑First Century. Nat.
Hazards 2013, 65, 2375–2384. [CrossRef]

6. Liu‑Zeng, J.; Wang, P.; Zhang, Z.H.; Li, Z.G.; Zhang, J.Y.; Yuan, X.M.; Wang, W.; Xing, X.C. Liquefaction in western Sichuan
Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 2017, 694, 214–238. [CrossRef]

7. Cao, Z.Z.; Hou, L.Q.; Xu, H.M.; Yuan, X.M. Distribution and characteristics of gravelly soil liquefaction in the Wenchuan Ms 8.0
earthquake. Earthq. Eng. Eng. Vib. 2010, 9, 167–175. [CrossRef]

8. Saraf, A.K.; Sinvhal, A.; Sinvhal, H.; Ghosh, P.; Sarma, B. Satellite Data Reveals 26 January 2001 Kutch Earthquake‑Induced
Ground Changes and Appearance of Water Bodies. Int. J. Remote Sens. 2002, 23, 1749–1756. [CrossRef]

9. Ramakrishnan, D.; Mohanty, K.K.; Nayak, S.R.; Chandran, R.V.Mapping the Liquefaction Induced Soil Moisture Changes Using
Remote Sensing Technique: AnAttempt toMap the Earthquake Induced Liquefaction around Bhuj, Gujarat, India. Geotech. Geol.
Eng. 2006, 24, 1581–1602. [CrossRef]

10. Oommen, T.; Baise, L.G.; Gens, R.; Prakash, A.; Gupta, R.P. Documenting Earthquake‑Induced Liquefaction Using Satellite
Remote Sensing Image Transformations. Environ. Eng. Geosci. 2013, 19, 303–318. [CrossRef]

11. Ishitsuka, K.; Tsuji, T.; Matsuoka, T. Detection and Mapping of Soil Liquefaction in the 2011 Tohoku Earthquake Using SAR
Interferometry. Earth Planets Space 2012, 64, 1267–1276. [CrossRef]

12. Baik, H.; Son, Y.‑S.; Kim, K.‑E. Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote
Sensing Data. Remote Sens. 2019, 11, 2184. [CrossRef]

13. Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

14. Zhu, A.; Lu, G.; Liu, J.; Qin, C.; Zhou, C. Spatial Prediction Based on Third Law of Geography. Ann. GIS 2018, 24, 225–240.
[CrossRef]

15. Rashidian, V.; Baise, L.G.; Koch, M. Using High Resolution Optical Imagery to Detect Earthquake‑Induced Liquefaction: The
2011 Christchurch Earthquake. Remote Sens. 2020, 12, 377. [CrossRef]

16. Morgenroth, J.; Hughes, M.W.; Cubrinovski, M. Object‑Based Image Analysis for Mapping Earthquake‑Induced Liquefaction
Ejecta in Christchurch, New Zealand. Nat. Hazards 2016, 82, 763–775. [CrossRef]

17. Adriano, B.; Yokoya, N.; Miura, H.; Matsuoka, M.; Koshimura, S. A Semiautomatic Pixel‑ObjectMethod for Detecting Landslides
Using Multitemporal ALOS‑2 Intensity Images. Remote Sens. 2020, 12, 561. [CrossRef]

18. Shafique, M. Spatial and Temporal Evolution of Co‑Seismic Landslides after the 2005 Kashmir Earthquake. Geomorphology 2020,
362, 107228. [CrossRef]

19. Zhu, A.X.; Liu, J.; Du, F.; Zhang, S.J.; Qin, C.Z.; Burt, J.; Behrens, T.; Scholten, T. Predictive Soil Mapping with Limited Sample
Data. Eur. J. Soil Sci. 2015, 66, 535–547. [CrossRef]

http://doi.org/10.1007/s12303-018-0051-y
http://doi.org/10.1016/j.jag.2015.02.008
http://doi.org/10.1016/j.soildyn.2011.06.006
http://doi.org/10.1007/s11069-012-0433-9
http://doi.org/10.1016/j.tecto.2016.11.001
http://doi.org/10.1007/s11803-010-0003-7
http://doi.org/10.1080/01431160110107824
http://doi.org/10.1007/s10706-005-3811-1
http://doi.org/10.2113/gseegeosci.19.4.303
http://doi.org/10.5047/eps.2012.11.002
http://doi.org/10.3390/rs11182184
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1080/19475683.2018.1534890
http://doi.org/10.3390/rs12030377
http://doi.org/10.1007/s11069-016-2217-0
http://doi.org/10.3390/rs12030561
http://doi.org/10.1016/j.geomorph.2020.107228
http://doi.org/10.1111/ejss.12244


Remote Sens. 2022, 14, 5595 19 of 19

20. Yuan, Z.; Li, T.; Su, P.; Sun, H.; Ha, G.; Guo, P.; Chen, G.; Thompson Jobe, J. Large Surface‑Rupture Gaps and Low Surface Fault
Slip of the 2021 Mw 7.4 Maduo Earthquake Along a Low‑Activity Strike‑Slip Fault, Tibetan Plateau. Geophys. Res. Lett. 2022, 49,
e2021GL096874. [CrossRef]

21. McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

22. Sengar, S.S.; Kumar, A.; Ghosh, S.K.; Wason, H.R.; Roy, P.S. Liquefaction Identification Using Class‑Based Sensor Independent
Approach Based on Single Pixel Classification after 2001 Bhuj, India Earthquake. J. Appl. Remote Sens. 2012, 6, 063531. [CrossRef]

23. Acker, J.; Williams, R.; Chiu, L.; Ardanuy, P.; Miller, S.; Schueler, C.; Vachon, P.W.; Manore, M. Remote Sensing from
Satellites ☆. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014;
ISBN 978‑0‑12‑409548‑9.

24. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ.
1994, 48, 119–126. [CrossRef]

25. Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing Soil Salinity Using Soil Salinity and Vegetation Indices Derived from IKONOS
High‑Spatial Resolution Imageries: Applications in a Date Palm Dominated Region. Geoderma 2014, 230–231, 1–8. [CrossRef]

26. Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of Topsoil Grain Size Index for Monitoring Desertification in Arid Land
Using Remote Sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [CrossRef]

27. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
28. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
29. Benediktsson, J.A.; Pesaresi, M.; Amason, K. Classification and Feature Extraction for Remote Sensing Images fromUrban Areas

Based on Morphological Transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1940–1949. [CrossRef]
30. Zhao, C.; Qin, C.‑Z. Identifying Large‑AreaMangrove Distribution Based on Remote Sensing: A Binary Classification Approach

Considering Subclasses of Non‑Mangroves. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102750. [CrossRef]
31. Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B.Machine LearningMethods

for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth‑Sci. Rev. 2020, 207, 103225.
[CrossRef]

32. Zhu, Z. Change Detection Using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications.
ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [CrossRef]

33. Seed, B. Landslides during earthquakes due to soil liquefaction. J. Soil Mech. Found. Div. 1968, 94, 1053–1122. [CrossRef]
34. Wang, C.Y.; Dreger, D.S.; Wang, C.H.; Mayeri, D.; Berryman, J.G. Field relations among coseismic ground motion, water level

change and liquefaction for the 1999 Chi‑Chi (Mw = 7.5) earthquake, Taiwan. Geophys. Res. Lett. 2003, 30, 1–4. [CrossRef]

http://doi.org/10.1029/2021GL096874
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1117/1.JRS.6.063531
http://doi.org/10.1016/0034-4257(94)90134-1
http://doi.org/10.1016/j.geoderma.2014.03.025
http://doi.org/10.1080/01431160600554363
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1109/TGRS.2003.814625
http://doi.org/10.1016/j.jag.2022.102750
http://doi.org/10.1016/j.earscirev.2020.103225
http://doi.org/10.1016/j.isprsjprs.2017.06.013
http://doi.org/10.1061/JSFEAQ.0001182
http://doi.org/10.1029/2003GL017601

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	Satellite Images and Derived Covariates 
	Liquefaction Samples 

	Methods 
	Cross-Validation and the Evaluation Indices 

	Results 
	The Performance of the Two Proposed Methods 
	The Final Prediction of Liquefaction by the Two Proposed Methods 

	Discussion 
	The Area Statistics of the Identified Liquefaction Pits by the Two Proposed Methods 
	The Importance of Covariates Ranked by RF and GBDT 
	The Spatial Distribution of the Liquefaction Pits 
	The Potential Application for Evaluating Seismic Hazard 
	The Limitations of the Proposed Methods for Identifying Liquefaction 

	Conclusions 
	References

