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Abstract: The Advanced Geostationary Radiation Imager (AGRI) is one of the main imaging sensors
on the Fengyun-4A (FY-4A) satellite. Due to the combination of high spatial and temporal resolution,
the AGRI is suitable for continuously monitoring atmospheric aerosol. Existing studies only perform
AOD retrieval on the dark target area of FY-4A/AGRI, and the full disk AOD retrieval is still under
exploration. The Neural Network AEROsol Retrieval for Geostationary Satellite (NNAeroG) based
on the Fully Connected Neural Network (FCNN) was used to retrieve FY-4A/AGRI full disk aerosol
optical depth (AOD). The data from 111 ground-based Aerosol Robotic Network (AERONET) and
Sun–Sky Radiometer Observation Network (SONET) sites were used to train the neural network,
and the data from 28 other sites were used for independent validation. FY-4A/AGRI AOD data
from 2017 to 2020 were validated over the full disk and three different surface types (vegetated
areas, arid areas, and marine and coastal areas). For general validation, the AOD predicted by the
application of NNAeroG to FY-4A/AGRI observations is consistent with the ground-based reference
AOD data. The validation of the FY-4A/AGRI AOD versus the reference data set shows that the
root-mean-square error (RMSE), mean absolute error (MAE), R squared (R2), and percentage of
data with errors within the expected error ± (0.05 + 15%) (EE15) are 0.237, 0.145, 0.733, and 58.7%,
respectively. The AOD retrieval accuracy over vegetated areas is high but there is potential for
improvement of the results over arid areas and marine and coastal areas. AOD retrieval results of
FY-4A/AGRI were compared under fine and coarse modes. The retrieved AOD has low accuracy in
coarse mode but is better in coarse–fine mixed mode and fine mode. The current AOD products over
the ocean of NNAeroG-FY4A/AGRI are not recommended. Further development of algorithms for
marine areas is expected to improve the full disk AOD retrieval accuracy.

Keywords: aerosol optical depth (AOD); FY-4A/AGRI; geostationary satellite; neural network

1. Introduction

Atmospheric aerosols are heterogeneous systems composed of solid and liquid par-
ticles suspended in the atmosphere [1]. Aerosols play an important role in the Earth’s
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radiation balance, hydrological cycle, and biogeochemical cycles [2]. They are also im-
portant for human health, especially for people with respiratory problems and lung
diseases [3]. Therefore, it is important to obtain accurate information on the occurrence
of aerosols and their properties. There are four main ways to monitor aerosols: ground-
based measurements [4–7], airborne measurements [8,9], observations using polar-orbiting
satellites [10–12], and observations using geostationary satellites [13,14]. The primary pa-
rameter obtained from satellite observations is the aerosol optical depth (AOD), i.e., the
vertical integral of the aerosol extinction from the surface to the top of the atmosphere
(TOA) [15–17]. AOD is an important optical parameter for characterizing atmospheric
aerosol properties and spatial distribution. Geostationary satellites provide aerosol ob-
servations with high temporal resolution over a large area determined by the satellite’s
location, which allows for the frequent monitoring of the same location on the ground.
The observation frequency of geostationary satellites can reach the level of hours or even
minutes, which has obvious advantages for monitoring aerosols.

AOD is retrieved from satellite observations using a variety of methods, depending on
the sensor characteristics and the retrieval approach chosen [18]. Here, we briefly summa-
rize aerosol retrieval methods developed for geostationary satellites. The current Advanced
Himawari Imager (AHI) official aerosol product is retrieved using a deep-blue (DB)-type
method [19]. Ge et al. (2019) [20] proposed a new normalized difference vegetation index
(NDVI) for the AHI sensor for an improved surface reflectance estimation for the applica-
tion of the dark target (DT) retrieval method. The AOD results between AHI retrieval and
ground-based data show good agreements with an R2 of 0.81. Li et al. (2020) [21] used an
improved time series algorithm (ITS) to retrieve the AHI AOD over eastern China and the
results had good agreement with the reference AOD data at eleven sun photometer sites.
Wang et al. (2020) [22] used linear regression to build relationships between the surface re-
flectances in the visible and shortwave infrared (SWIR) bands, which were used to retrieve
the AHI AOD using a radiative transfer model. She et al. (2020) [23] developed deep neural
network (DNN) models to retrieve AOD from the Himawari-8 full disk TOA reflectance
and achieved an accuracy that is better than that of the official Japan Aerospace Exploration
Agency (JAXA) product. Chen et al. (2022) [24] proposed a neural network aerosol retrieval
for geostationary satellite (NNAeroG) for AOD retrieval using AHI data and the results
were significantly better than the official JAXA aerosol products, with 63.7% of the AOD
data being within the expected error of ± (0.05 + 15%) (EE15). Jiang et al. (2021) [25]
developed a new algorithm for retrieval of AOD over land using Fengyun-4A/Advanced
Geostationary Radiation Imager (FY-4A)/(AGRI) data. MCD43C2 data sets were used to
obtain the band surface reflectance and establish a surface reflectance ratio database. Then,
the Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) model was
used to build lookup tables (LUT) used in the retrieval of hourly AOD. Xie et al. (2022) [26]
proposed an FY-4A/AGRI AOD retrieval algorithm called the multichannel (MC) algo-
rithm, which was applied to aerosol retrieval in South Asia. The percentage of AOD data
obtained by the application of this algorithm to FY-4A/AGRI data within EE15 was 63.71%.
There are few studies on FY-4A/AGRI AOD. The full disk FY-4A/AGRI AOD has thus
far not been retrieved and thus no official FY-4A/AGRI AOD product is available. This
paper aims to investigate whether enough information is available from FY-4A/AGRI
observations to retrieve AOD using the NNAeroG method.

In contrast to sun-synchronous satellites, a geostationary satellite such as FY-4A
provides multiple observations each day over the same location, which can be used in time
series algorithms [27]. We used the reflections measured in spectral bands at wavelengths
in the visible, near-infrared (VNIR) and SWIR parts of the solar spectrum. Additionally,
NDVI was also used as input information because the full disk area includes a variety of
surface types over land, coastal water and open ocean. Additionally, the aerosol types
vary substantially within the disk area, as well as meteorological and climatic conditions.
In order to constrain the retrieval, information from both spatial measurements over a
large area and time sequences of such measurements were used. For the neural network
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training and validation, each data sample includes an input (satellite TOA reflectance in
different spectral bands) and output (AOD based on ground data acquisition), which are
available from sun photometer measurements provided by the Aerosol Robotic Network
(AERONET) [28] and by the Sun–Sky Radiometer Observation Network (SONET) [29].
The aerosol products retrieved by NNAeroG can be used for air quality monitoring and
climate research in the FY-4A/AGRI full disk. This article is structured as follows. Section 2
describes the data used in this study and the NNAeroG retrieval algorithm developed for
FY-4A/AGRI is introduced in Section 3. Section 4 provides the retrieval results, validation
results, and corresponding analyses. The FY-4A/AGRI High Temporary Resolution AOD
product obtained from NNAeroG and the comparison with the AOD results of Himawari-
8/AHI are discussed in Section 5. Conclusions are presented in Section 6 where we also
discuss the limitations of this work and the next steps.

2. Materials
2.1. FY-4A/AGRI Data

FY-4A is the first of China’s second-generation geostationary meteorological satellites
operated by the National Satellite Meteorological Center (NSMC) of the China Meteorologi-
cal Administration (CMA), Beijing, China [30]. FY-4A was launched on 11 December 2016,
in a geostationary orbit at 104.7◦E and has been operational as a weather satellite since
25 September 2017. Three-axis stable attitude control was adopted by FY-4A, which sig-
nificantly improved the efficiency of earth observation and can effectively observe the
disastrous weather process in real-time [31]. It is equipped with AGRI, a Geostationary
Interferometric Infrared Sounder (GIIRS), a Lightning Mapping Imager (LMI) and a Space
Environment Package (SEP) [32]. FY-4A/AGRI data and its data format description can be
downloaded from the NSMC website (http://satellite.nsmc.org.cn, last access 7 June 2022).
The observation time interval of the full disk observation mode is about 15 min. This means
that AGRI can image full disk 40 times a day [33].

In this study, the full disk FY-4A/AGRI Level 1 radiance data and the GEO positioning
data (single file) with a spatial resolution of 4 km from 2017 to 2020 were used, which was
processed in a series of steps such as radiometric calibration of FY-4A/AGRI Level 0 source
package data. Since only the clear sky observation data of FY-4A/AGRI can be used to
retrieve AOD, the 4 km resolution full disk cloud mask (CLM) product is used to select
cloud-free pixels. The cloud data are provided in NetCDF format and discriminate between
cloud, probable cloud, probable clear, clear and other types.

The FY-4A/AGRI provides observations in 14 wavebands that are sampled at a nomi-
nal 0.5/1 km spatial resolution at nadir in the VIS and NIR, 2 km in the SWIR, and 4 km in
the TIR spectral bands [30]. The spectral bands cover wavelengths from 0.45 to 13.8 µm as
shown in Table 1. The onboard radiometric calibration accuracy is 0.5 K and the sensitivity
is 0.2 K [34].

2.2. Ground-Based Data
2.2.1. AERONET Data

AERONET is a global network of sun–sky photometers providing near-continuous
daytime measurements of spectral solar irradiance, spectral AOD, water vapor, and inver-
sion aerosol products [28]. AERONET sites provide long-term spectral AOD at discrete
wavelengths ranging from the visible to the NIR (340–1020 nm). The estimated uncer-
tainty of the AERONET AOD is about 0.01–0.02 and one sigma uncertainty of 0.02 is
commonly used as a reference for satellite AOD product validation [35,36]. The AERONET
data are categorized into three different quality levels: L1.0 (unscreened), L1.5 (cloud-
screened), and L2.0 (cloud-screened and quality-assured). In this study, AOD data at
440 nm, 500 nm and 675 nm with quality Level 1.5 from the latest Version 3.0 were used
(https://aeronet.gsfc.nasa.gov, last access 7 June 2022). All AERONET Version 3.0 data
from the 123 AERONET sites between 24◦E–174◦E and 70◦N–40◦S during 2017–2020 were
used for training (98 sites) and validation (25 sites which were not used for training). The

http://satellite.nsmc.org.cn
https://aeronet.gsfc.nasa.gov
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area covers most of Asia and Australia, as well as parts of Europe and Africa (Figure 1).
It covers vegetated areas, arid areas, and marine and coastal areas. The information and
characteristics of AERONET validation sites are shown in Table 2.

Table 1. FY-4A AGRI band characteristics.

Band Notation Band Central Wavelength (nm) Spatial Resolution (km)

VIS
1 0.45~0.49 1
2 0.55~0.75 0.5~1

NIR 3 0.75~0.90 1

Cirrus 4 1.36~1.39 2

SWIR

5 1.58~1.64 2
6 2.1~2.35 2~4
7 3.5~4.0 2
8 3.5~4.0 4

Water 9 5.8~6.7 4
Vapor 10 6.9~7.3 4

TIR

11 8.0~9.0 4
12 10.3~11.3 4
13 11.5~12.5 4
14 13.2~13.8 4
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indicate the validation sites, 28 in total. The station locations include most surface type areas. Surface 

Figure 1. Map showing the area covered by the FY-4A/AGRI full disk (red box: 24◦E–174◦E and
80◦N–80◦S), with surface type indicated in color as shown in the legend. Additionally shown are the
locations of the AERONET sites (crosses), 123 in total, and the SONET sites (triangles), 16 in total.
Blue symbols indicate the sites used for training the neural network, 111 in total, and red symbols
indicate the validation sites, 28 in total. The station locations include most surface type areas. Surface
type data are obtained from the Food and Agriculture Organization of the United Nations (FAO)
(https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home, last access 7 June 2022).

https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home
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Table 2. AERONET sites used to verify the NNAeroG only for validation which were not used
for training.

Site Name Position Purpose Characteristics

UEM_Maputo 25.950◦S, 32.599◦E Validation marine and coastal
Qena_SVU 26.2◦N, 32.747◦E Validation arid

Tel-Aviv_University 32.113◦N, 34.806◦E Validation marine and coastal
Maido_OPAR 21.08◦S, 55.383◦E Validation marine and coastal

Tomsk_22 56.417◦N, 84.074◦E Validation vegetated
Masdar_Institute_2 24.442◦N, 54.617◦E Validation marine and coastal

IAOCA-KRSU 42.464◦N, 78.529◦E Validation arid
Lumbini 27.49◦N, 83.28◦E Validation arid

Doi_Inthanon 18.59◦N, 98.486◦E Validation vegetated
Pioneer_JC 1.384◦N, 103.755◦E Validation marine and coastal

BMKG_Jakarta 6.155◦S, 106.841◦E Validation marine and coastal
Fowlers_Gap 31.086◦S, 141.701◦E Validation arid

Jabiru 12.661◦S, 132.893◦E Validation marine and coastal
Pontianak 0.075◦N, 109.191◦E Validation marine and coastal

DRAGON_Minowa 35.915◦N, 137.981◦E Validation vegetated
KORUS_UNIST_Ulsan 35.582◦N, 129.19◦E Validation vegetated

Seoul_SNU 37.458◦N, 126.951◦E Validation vegetated
Chiayi 23.496◦N, 120.496◦E Validation marine and coastal

QOMS_CAS 28.365◦N, 86.948◦E Validation arid
Beijing-CAMS 39.933◦N, 116.317◦E Validation vegetated

Hong_Kong_PolyU 22.303◦N, 114.18◦E Validation marine and coastal
Taihu 31.421◦N, 120.215◦E Validation marine and coastal

Son_La 21.332◦N, 103.905◦E Validation vegetated
Amity_Univ_Gurgaon 28.317◦N, 76.916◦E Validation vegetated

Dhaka_University 23.728◦N, 90.398◦E Validation marine and coastal

2.2.2. SONET Data

SONET is a ground-based sun–sky photometer network, established and maintained
by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences [37].
SONET utilizes the standard CIMEL CE318 sun–sky radiometer to acquire dozens of
aerosol properties. The average AOD difference (0.002 ± 0.001) between SONET and
AERONET is much smaller than the AERONET AOD uncertainty. While the calibration
difference is minimized in SONET by employing master instruments directly calibrated by
AERONET/PHOTONS. This suggests that not only are the two networks comparable, but
the accuracies of both networks are also quite high [29]. The multiwavelength polarization
measurement capability of these networks can provide long-term columnar atmospheric
aerosol properties over China [38]. In view of the sparsity of AERONET sites in China,
SONET provides a supplementary source for sun photometer data. In this study, we jointly
use AERONET and SONET to select training and validation across China. The definitions
of SONET follow the AERONET data level protocols (version 2). All L1.5 (cloud-screened)
data from the 16 SONET sites between 75◦E–130◦E and 18◦N–46◦N during 2017–2019 were
used for training and validation (www.sonet.ac.cn, last access 7 June 2022). Information on
the SONET sites is presented in Table 3.

2.3. Study Area

The study area is the area observed by the FY-4A/AGRI full disk between 24◦E–174◦E
and 80◦N–80◦S, as shown in Figure 1. Figure 1 also shows the locations of the AERONET
and SONET sites used for training and validation. The area covers most of Eurasia,
Australia, also part of Africa, the Arctic and Antarctica.

www.sonet.ac.cn
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Table 3. SONET sites used to train and verify the NNAeroG.

Site Name Position Purpose Characteristics

Sanya 18.29◦N, 109.379◦E Training marine and coastal
Guangzhou 23.069◦N, 113.381◦E Training marine and coastal

Yanqihu 40.408◦N, 116.674◦E Training marine and coastal
Shanghai 31.284◦N, 121.481◦E Training marine and coastal
Zhoushan 29.994◦N, 122.19◦E Training marine and coastal

Harbin 45.705◦N, 126.614◦E Training vegetation
Chengdu 30.584◦N, 104.989◦E Training vegetation

Xian 34.223◦N, 109.001◦E Training arid
Nanjing 32.115◦N, 118.957◦E Training vegetation

Hefei 31.905◦N, 117.162◦E Training vegetation
Zhangye 38.854◦N, 100.364◦E Training arid

Kashi 39.504◦N, 75.93◦E Training arid
Lhasa 29.648◦N, 91.088◦E Training arid

Minqin 38.633◦N, 103.089◦E Validation arid
Songshan 34.535◦N, 113.096◦E Validation vegetation
Nanning 22.839◦N, 108.285◦E Validation vegetation

3. Method
3.1. Strategy and Data Set Preprocessing

The procedure of FY-4A/AGRI AOD retrieval is based on the NNAeroG algorithm as
that for Himawari-8/AHI [24]. However, the feature selection obtained for the AGRI bands
is through Random Forest (RF) whereas AHI used the XGBoost machine learning method.
Furthermore, in this study, NDVI was used for training the network. This is a parameter
that NNAeroG has not used before. The flow chart of the modified NNAeroG used in this
study is shown in Figure 2.
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In the first step, AGRI band data, the CLM product, AERONET data and SONET
data were collocated in space and time. AERONET AOD at 550 nm wavelength (AOD550)
was obtained from interpolation of the AODs in the 440 nm, 500 nm and 675 nm bands,
using the quadratic polynomial method. The mean values of AOD over ±30 min from the
satellite imaging time were extracted to match the satellite data at the same location. The
Earth’s surface albedo measured at TOA in bands 1–6 and the brightness temperatures
measured at TOA in bands 7–14 were obtained by radiometric calibration of FY-4A/AGRI
data. We calculated the reflectances from the albedo in bands 1–6 using:

ρλ =
πLD2

ESUNλ cos(θ)′
(1)

where ρλ is the TOA reflectance at wavelength λ; L is the TOA radiance after radiometric
calibration; D is the astronomical distance from the Sun to the Earth; θ is the zenith angle of
the Sun; and ESUNλ is the solar spectral irradiance at the upper boundary of the atmosphere
with the central wavelength of λ.

After temporal and spatial matching, satellite ground-matching samples were nor-
malized and quality controlled. The Solar azimuth angle (SOA), satellite azimuth angle
(SAA) and Relative Azimuth Angle (REA) were also used to quality control and calculate
the value of reflectance. REA was defined by:

REA = |SOZ− SAZ|′ (2)

where SOZ is the Solar zenith angle and SAZ is the satellite zenith angle.
There were fewer samples with AOD > 1.3, which would lead to a lack of learning

for high AOD values. Therefore, these samples were copied and augmented by adding 2%
Gaussian noise [24]. The samples were divided into two parts, training and validation, to
ensure that the validation samples were independent of the training samples.

In the second step, multi-spectral and multi-pixel (sub-image centered on the site)
geostationary data were combined in one sample, which is an important feature for aerosol
retrieval. The decision-based RF machine learning method can provide the importance
value of each input feature.

In the third step, to establish a machine learning model, the neural network is recom-
mended for its excellent non-linear fitting ability [39]. The state-of-the-art practices of Fully
Connected Neural Network (FCNN) training were used. The mini-batch gradient descent
search method was used with a batch size of 200 epochs to ensure a stable and robust
solution. Through selection of activation function selection, batch normalization, drop pro-
cessing and full connection network parameters setting, the final model for FY-4A/AGRI
AOD estimation was established with multiple iterations.

Finally, the FCNN was trained, tested and fixed. Temporal and spatial information
were selected according to the test results of the FCNN model. AOD over the FY-4A/AGRI
full disk was predicted, and the fixed FCNN model was ready to be used to retrieve aerosol
with a large amount of remote sensing data.

3.2. Fully Connected Neural Network (FCNN)

Different machine learning methods were tested and the FCNN was selected for
NNAeroG because it demonstrated the best performance. For the TOA, measurements
are organized as a vector, not as an image. For every pixel, the FCNN could meet the
input format. The FCNN (one input, one hidden, and one output layer) architecture for
NNAeroG was designed as shown in Figure 3.
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Figure 3. Architecture of the FCNN model for FY-4A/AGRI aerosol retrieval (input nodes: feature
selection of AGRI bands (b1, b2, b3, b5, b6, b7, b8, b9, b10, b11, b13), SAZ, SOA, SAA, SOZ, and the
NDVI; output node: AOD at 550 nm). Rectified linear unit (ReLU) is the activation layer. BN is a batch
normalization layer and was adopted to perform the standardizing and normalizing operations on
the input of a layer coming from a previous layer, by bringing the numerical data to a common scale.
DP is the dropout layer, which was used to reduce overfitting by randomly and temporarily deleting
neurons in the hidden layer during the training with a given probability. FC is the fully connected
layer. The circles represent the input and output parameter of one layer, the arrows represent the
transfer direction of FCNN.

In this study, the ReLU nonlinear function was used:

f (z) = max(z, 0)′ (3)

where z is a linear combination of all previous layer neuron values with multiple weights
and one bias and f(z) is the output neuron. The ReLU nonlinear function makes a deeper
neural network more feasible to train than other non-linear functions such as the sigmoidal
function used in the three-layer FCNN [40].

In the fully connected layer, the basic unit is the neuron, which is a weighted summa-
tion of its inputs. The output of a neuron is expressed as:

v = ∑m
i=1 ωi ∗ xi ′ (4)

where ωi is the weighting coefficient for the input xi. The training process is performed to
obtain the best ωi for achieving the best prediction accuracy.

3.3. Training Configurations and Model Validation

Before training, the loss function, activation function and optimizer should be con-
figured. In each training with a sample, the loss function was used to evaluate the fitting
performance by comparing the output in the training data set and the FCNN was used to
predict output. Four parameters were used as metrics to evaluate the performance of the
method: (i) root mean square error (RMSE) (Equation (5)); (ii) mean absolute error (MAE)
(Equation (6)); (iii) R squared (R2) (Equation (7)); (iv) the percentage of NNAeroG retrievals
falling within EE15, which were applied to MODIS and Himawari-8/AHI data over land
and was adopted by others [41,42].

RMSE =

√
1
n ∑n

i=1

(
yti − ypi

)2, (5)

MAE =
1
n ∑n

i=1

∣∣yti − ypi
∣∣
′ (6)
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R2 = 1−
1
n ∑n

i=1
(
ypi − yti

)2

1
n ∑n

i=1(yi − yti)
2 , (7)

where yti is the training data set; ypi is the predicted data set; yi is the mean of yti; and n is
the total number of samples.

4. Results
4.1. General Validation

The NNAeroG was trained and its performance was validated by comparison with the
data from the AERONET and SONET data set aside for validation. The full disk validation
results are presented in Figure 4. Figure 4 shows that 58.7% of the AOD retrieved using
the training data are within EE15, the RMSE, MAE and R2 are 0.237, 0.145 and 0.733,
respectively. The above and below EE are similar. However, the slope is <1 and the figure
shows that the larger AOD is underestimated by NNAeroG.
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A comparison of the full disk AOD retrieval results with Himawari-8/AHI AOD
validation results published by She et al. (2020) [23], Chen et al. (2022) [24] and the official
product from JAXA is presented in Table 4. Compared with the official (JAXA) AHI AOD
product, the R2 for NNAeroG is 0.4 larger and RMSE is smaller by 0.141, which shows
that the NNAeroG results are a significant improvement over those from the official AHI
algorithm. Compared with the AHI AOD retrieval results presented by She et al. (2020) [23],
the FY-4A/AGRI full disk AOD retrieval using NNAeroG, RMSE is smaller by 0.056, R2

is larger by 0.003, and the overall accuracy is also smaller. The AHI AOD retrieved using
the NNAeroG algorithm is better than AGRI in all aspects because Himawari-8/AHI has
more infrared bands with a higher spatial resolution than FY-4A/AGRI, especially a visible
band at 0.51 for true color image synthesis [43]. In the infrared bands, the spatial resolution
of AHI is 2 km while that of FY-4A/AGRI is 4 km, indicating that FY-4A/AGRI still has
a certain disadvantage in detecting fine-scale surface and cloud detail compared with
AHI [44].

4.2. AOD Results of Different Surface Types

Aerosol retrieval over land surface requires a separation of the TOA reflectance due
to aerosol particles and that due to surface reflectance. This is best achieved over a dark
surface, which contributes little to the TOA reflectance which is mainly due to atmospheric
contributions from which the aerosol contribution can be determined with high accuracy.
Over brighter surfaces, aerosol retrieval is less accurate. In order to investigate the effect of
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the underlying surface on the aerosol retrieval results, the NDVI was used to discriminate
between dark vegetated areas (AOD accuracy is high in theory) and brighter arid areas
(with little or no vegetation, which would lead to relatively weak atmospheric signals and
low AOD accuracy in theory). The third surface type considered is coastal water near the
sea–land boundary which, in contrast to the open ocean (type 1 water which is dark), is
brighter due to suspended matter over which significant retrieval errors are encountered.
The AERONET and SONET reference data were divided into three categories according to
the surface type at each site: vegetated areas (including seasonal vegetation areas), arid
areas, and marine–coastal areas.

Table 4. Overview of published validation studies of AOD in full disk for different methods applied
to multi-spectral sensors and NNAeroG for different multi-spectral sensors.

Method Literature Sensor RMSE MAE R2 % In EE Study Area

DNN She et al. [23] AHI 0.172 — 0.730 — Full disk
JAXA She et al. [23] AHI 0.378 — 0.333 — Full disk

NNAeroG Chen et al. [24] AHI 0.124 0.092 0.859 58.7% China
NNAeroG This paper AGRI 0.237 0.145 0.733 63.7% Full disk

4.2.1. Vegetated Areas

Vegetated areas have dark surfaces and the TOA signal is governed by the atmospheric
contribution. The comparison of the retrieved AOD with reference data over the vegetated
areas is shown in Figure 5.
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Figure 5 shows that the retrieval accuracy is high for AOD < 0.3 but for higher AOD,
the FY-4A/AGRI results are underestimated, as also observed for the full disk results
in Figure 4. The comparison of the results for FY-4A/AGRI AOD using NNAeroG over
vegetated areas with other published results using other methods is presented in Table 5.

Table 5. Overview of published AOD validation studies over vegetated areas for different methods
applied to FY-4A/AGRI data.

Method Literature RMSE MAE R2 % In EE Study Area

MC Xie et al. [26] 0.16 0.12 — 63.71% South Asia
6SV-LUT Xue et al. [25] 0.31 — 0.64 35.56% China

NNAeroG This paper 0.163 0.103 0.84 66.7% Full disk
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Table 5 shows that 66.7% of the AOD retrieved using NNAeroG/AGRI over vegetated
surfaces are within EE15, the RMSE, MAE and R2 are 0.163, 0.103 and 0.84, respectively,
which is slightly better than the statistical metrics obtained using the MC method. The
accuracy of NNAeroG is better than 6SV-LUT in all aspects. The validation of the AOD
retrieved using FY-4A/AGRI data over vegetated areas with the NNAeroG method shows
that the quality is sufficient for AOD production.

4.2.2. Arid Areas

The surface reflectance of arid areas is relatively high and distinguishing atmospheric
aerosol contributions to the TOA reflectance is difficult [45]. The comparison of FY-
4A/AGRI/NNAeroG AOD retrieval results over arid areas with reference AERONET
and SONET data is shown in Figure 6. The values of the statistical metrics RMSE, MAE, R2
and EE15 are 0.358, 0.228, 0.539 and 47.6%, respectively. For AOD < 0.3, the retrieval results
are in good agreement with the AERONET and SONET data. However, for AOD > 0.5, the
majority of the AGRI retrieval results are underestimated. The retrieval of arid areas needs
further improvement.
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4.2.3. Marine and Coastal Areas

The environmental characteristics of coastal waters are a challenge for aerosol remote
sensing. The turbidity of coastal waters, the transition between water and land surface,
and the sun glint area have strong spectral and spatial variability leading to poor aerosol
retrieval results [46,47]. The retrieval results over marine and coastal areas are shown in
Figure 7.

The RMSE, MAE, R2 and EE15 for the validation of the AOD retrieved over marine
and coastal areas are 0.257, 0.201, 0.793 and 38.8%, respectively. The retrieval errors for
AOD < 0.1 are generally high with values up to 0.5. For AOD > 0.3, the retrieved AOD is
generally low. When the AOD of the ocean-atmosphere is less than 0.1, the satellite does
not have enough aerosol optical signals to retrieve the AOD [10]. There are barely any pure
marine samples (CE318 sites are located on the land or coast) for our training, therefore the
training in marine areas is insufficient. The application of NNAeroG in marine and coastal
areas needs much improvement and the method is currently not suitable enough for AOD
production. However, this does not mean other algorithms also poorly retrieve AOD of
FY-4A/AGRI over the ocean. A Coastal Water AOD retrieval algorithm such as that which
was applied on MODIS would achieve high accuracy [47].
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4.3. Fine and Coarse Mode AOD

As discussed by Chen et al. [27], NNAeroG can discriminate between the fine and
coarse mode AOD fractions. Figure 8 shows the comparisons between the FY-4A/AGRI
retrieved fine and coarse mode fractions and those available from the reference data sets.
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Figure 8. Scatterplots of the fine and coarse mode AOD retrieved using FY-4A/AGRI data versus
AERONET and SONET reference data. (a) FMF ≤ 0.4, (b) 0.4 < FMF < 0.7, (c) FMF ≥ 0.7. The blue
lines are the EE envelopes for AOD of ± (0.05 + 15%). The red line is the linear fitting line of AOD.
The black line represents the 1:1 line.

Figure 8 shows the validation of the AOD retrieved using FY-4A/AGRI data with the
NNAeroG algorithm according to the fine and coarse modes. When FMF ≤ 0.4, it belongs
to coarse mode and the values of the statistical metrics RMSE, MAE, R2 and EE15 are 0.263,
0.144, 0.555 and 48.8%, respectively. The coarse mode is mainly composed of sand and dust,
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which are naturally discharged and mostly occur in arid areas. It is difficult to retrieve
when the surface is bright. When 0.4 < FMF < 0.7, the values of the statistical metrics
RMSE, MAE, R2 and EE15 are 0.133, 0.083, 0.851 and 71%, respectively. When FMF ≥ 0.7, it
belongs to fine mode and the values of the statistical metrics RMSE, MAE, R2 and EE15 are
0.273, 0.18, 0.711 and 54.2%, respectively. The result is relatively discrete, which may be
that the surface is composed of complex surfaces such as artificial buildings and dominated
by anthropogenic emissions such as black carbon [27].

5. Discussion

This section generally discusses the FY-4A/AGRI High Temporary Resolution AOD
produced by NNAeroG and the comparison with the AOD results of Himawari-8/AHI.

5.1. High Temporal Resolution Products

As an example, Figure 9 shows the spatial distributions of the AGRI-retrieved AOD
using the NNAeroG algorithm for the FY-4A/AGRI full disk on 23 April 2020 for every
hour from 03:00 to 10:00 UTC. The FY-4A/AGRI AOD spatial distributions are shown as
hourly averages. The data clearly show the hour-to-hour variation of the AOD and the
different diurnal evolution of the AOD between locations.

Remote Sens. 2022, 14, 5591 14 of 20 
 

 

This section generally discusses the FY-4A/AGRI High Temporary Resolution AOD 

produced by NNAeroG and the comparison with the AOD results of Himawari-8/AHI. 

5.1. High Temporal Resolution Products 

As an example, Figure 9 shows the spatial distributions of the AGRI-retrieved AOD 

using the NNAeroG algorithm for the FY-4A/AGRI full disk on 23 April 2020 for every 

hour from 03:00 to 10:00 UTC. The FY-4A/AGRI AOD spatial distributions are shown as 

hourly averages. The data clearly show the hour-to-hour variation of the AOD and the 

different diurnal evolution of the AOD between locations. 

 

 

Figure 9. Cont.



Remote Sens. 2022, 14, 5591 14 of 19Remote Sens. 2022, 14, 5591 15 of 20 
 

 

  

  

Figure 9. Hourly averaged spatial distributions of the AOD retrieved from FY-4A/AGRI data over 

the full disk using the NNAeroG algorithm, for each hour from 03:00 to 10:00 (UTC) on 23 April 

2020. At 04:00 UTC, the area in the red dashed with dot is South Asia. At 05:00 UTC, the area in the 

red dashed is the land–sea boundary area in northwest Australia. 

As shown for the land–sea boundary area marked with the red square in Figure 9 

retrieved at 05:00 UTC, the AOD is different over land than over sea. There are barely 

enough marine samples for our training, therefore the training in marine areas is insuffi-

cient even though we used the sites on the coastline. In the area south of the Australian 

continent, although we only used “clear sky” in FY-4A/AGRI CLM products, elevated 

AOD due to cloud contamination is still observed. Furthermore, at 06:00 and 07:00 UTC, 

the AOD results over marine areas have overestimation such as the high latitude ocean 

area, which is in the south of Australia. The blank of ground-based sites over this area 

leads to under-training and low retrieval accuracy. Due to the lack of pure ocean site data 

for training, the precision of AOD retrieval of NNAeroG-FY4A at the sea–land boundary 

and over the ocean is poor. Therefore, the current AOD products over the ocean of 

NNAeroG-FY4A are not recommended.  

From Figure 9, the spatial distribution of AOD is generally consistent with Figure 6 

of Xie et al. [26] in the same area (red dash-dot in 04:00 UTC) and time. Both of us can 

reflect the high AOD value phenomenon in South Asia and we aim at the full disk AOD 

Figure 9. Hourly averaged spatial distributions of the AOD retrieved from FY-4A/AGRI data over
the full disk using the NNAeroG algorithm, for each hour from 03:00 to 10:00 (UTC) on 23 April 2020.
At 04:00 UTC, the area in the red dashed with dot is South Asia. At 05:00 UTC, the area in the red
dashed is the land–sea boundary area in northwest Australia.

As shown for the land–sea boundary area marked with the red square in Figure 9
retrieved at 05:00 UTC, the AOD is different over land than over sea. There are barely
enough marine samples for our training, therefore the training in marine areas is insufficient
even though we used the sites on the coastline. In the area south of the Australian continent,
although we only used “clear sky” in FY-4A/AGRI CLM products, elevated AOD due
to cloud contamination is still observed. Furthermore, at 06:00 and 07:00 UTC, the AOD
results over marine areas have overestimation such as the high latitude ocean area, which
is in the south of Australia. The blank of ground-based sites over this area leads to under-
training and low retrieval accuracy. Due to the lack of pure ocean site data for training,
the precision of AOD retrieval of NNAeroG-FY4A at the sea–land boundary and over the
ocean is poor. Therefore, the current AOD products over the ocean of NNAeroG-FY4A are
not recommended.

From Figure 9, the spatial distribution of AOD is generally consistent with Figure 6 of
Xie et al. [26] in the same area (red dash-dot in 04:00 UTC) and time. Both of us can reflect
the high AOD value phenomenon in South Asia and we aim at the full disk AOD retrieval.
Land and straw-burning activities led to high AOD values in South and Southeast Asia,
reflecting the close relationship between regional air quality and human activities [48]. Due
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to the high temporal and spatial resolution of FY-4A/AGRI, continuous monitoring of full
disk aerosol can be realized.

5.2. Comparison with Himawari-8 AOD

Figure 10 shows a comparison between the AOD retrieved using Himawari-8/AHI
data, i.e., the Himawari-8/AHI official (JAXA) product (top line) and retrieved using the
NNAeroG algorithm (Chen et al.) [25] (middle) and the AOD retrieved with the NNAeroG
algorithm using FY-4A/AHI data (bottom). All three data sets were retrieved using obser-
vations on 23 April 2020 for each hour from 03:00 to 06:00 UTC (left to right).
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Figure 10. Hourly averaged spatial distributions of the AOD retrieved from Himawari-8/AHI and
FY-4A/AGRI data over the full disk from 03:00 to 06:00 UTC on 23 April 2020. The first line is the
Himawari-8/AHI AOD retrieval result obtained from the official JAXA product (Version 3.0), the
second line is the Himawari-8/AHI AOD retrieval result that used the NNAeroG algorithm, and the
third line is the FY-4A/AGRI AOD retrieval result that used the NNAeroG algorithm.

As shown in Figure 10, the spatial distribution of FY-4A/AGRI AOD is generally
consistent with AHI AOD. In the second column, the spatial continuity of Himawari-
8/AHI is not as good as that of FY-4A/AGRI. However, the FY-4A/AGRI CLM data
are different from Himawari-8/AHI. FY-4A/AGRI AOD is affected by cloud mask data,
especially in the Pacific area (30◦N–10◦S, 170◦E–180◦E). Himawari-8 has sun glint in this
area, while FY-4A has not, which leads to different retrieval results in the same areas (red
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box area in 03:00 UTC NNAeroG FY-4A/AGRI and Himawari-8/AHI). In general, the
AOD retrieval accuracy using the NNAeroG algorithm is higher than the Himawari-8/AHI
official algorithm (from Table 4) [23,24], especially in spatial continuity.

5.3. Improvement Test over Arid Area

To analyze whether increasing the number of samples could improve the retrieval
accuracy in arid areas, three sites’ samples (Ieodo_Station (32.123◦N, 125.182◦E), Dong-
sha_Island (20.699◦N, 116.729◦E), REUNION_ST_DENIS (20.901◦S, 55.485◦E)) were copied
and augmented by adding 2% Gaussian noise. The independent AOD validation results
predicted by the retrained NNAeroG are shown in Figure 11.
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Figure 11. Scatterplots of the AOD retrieved using FY-4A/AGRI over full disk (a) and arid areas
(b) versus AERONET and SONET reference data. The blue lines are the EE envelopes for AOD of
± (0.05 + 15%). The red line is the linear fitting line of AOD. The black line represents the 1:1 line.

Figure 11 shows the validation of the AOD retrieved using FY-4A/AGRI data with
the arid-augmented NNAeroG algorithm. Over the arid areas, the values of the statistical
metrics RMSE, MAE, R2 and EE15 are 0.3068, 0.2062, 0.6498 and 49.3%, respectively. Al-
though the AOD retrieval accuracy EE15 in arid areas was improved by 1.7% with arid
sample augmentation, the EE15 of full disk retrieval accuracy was decreased by 1%. Only
increasing samples through data expansion without obtaining more actual observations
cannot achieve significant improvement.

6. Conclusions

The official AOD product of FY-4A/AGRI has not been released and the previous
studies of FY-4A/AGRI AOD retrieval only focus on dark target areas which are not
oriented to the full disk. In this paper, FY-4A/AGRI full disk AOD retrieval was realized
for the first time since FY-4A was launched on 11 December 2016. FY-4A/AGRI has good
AOD retrieval capability and it is worth further developing a comprehensive AOD retrieval
algorithm. The algorithm of NNAeroG based on FCNN was used to retrieve AOD over the
FY-4A/AGRI full disk area. The 4 km full disk FY-4A/AGRI data from 2017 to 2020, L1.5
AERONET data from 2017 to 2020 and L1.5 SONET data from 2017 to 2019 were collocated
with the FY-4A/AGRI data for training, with part of the ground-based network data set
aside as reference data set for independent validation. In NNAeroG, the RF method is
used to optimize the features of FY-4A/AGRI spectral information and spatial information
and screen the important input features. The NDVI and different spectral band data of
Himawari-8/AHI were used in a modified version of NNAeroG. The algorithm is applied
to retrieve AOD using FY-4A/AGRI data with a spatial resolution of 4 km and temporal
resolution of 15 min to realize continuous aerosol monitoring throughout the day for the
full disk.



Remote Sens. 2022, 14, 5591 17 of 19

(1) For independent validation, 58.7% of the AOD retrieved using the validation data
are within EE15, the RMSE, MAE and R2 are 0.237, 0.145 and 0.733, respectively. The AOD
predicted by NNAeroG is consistent with the ground-based data generally;

(2) Over different surface types, the AOD is the best over vegetated areas and poor
over arid and marine areas. The accuracy of AOD retrieval over vegetated, arid, and marine
areas within EE15 are 66.7%, 47.6%, and 38.8%, respectively. Based on the NNAeroG test on
FY-4A AOD retrieval, it was shown that NNAeroG has the ability for AOD retrieval. Over
marine areas, there are barely any ocean sites and few effective observation data for neural
network training. Furthermore, when the AOD of the ocean-atmosphere is less than 0.1,
the satellite does not have enough aerosol optical signals to retrieve the AOD. Therefore,
the current AOD products over the ocean of NNAeroG-FY4A/AGRI are not recommended.
Further development of targeted algorithms for marine areas is expected to improve the
full disk AOD retrieval accuracy. In the future, supplementary ocean satellite products for
training would be considered;

(3) AOD retrieval is overestimated in the high latitude marine areas. The lack of
ground-based sites over this area leads to under-training and low retrieval accuracy.

The accuracy of NNAeroG generally rises with the increase in the number of training
sites (effective observation data), rather than the simple augmentation of the number of
training samples. More ground-based data from AERONET and SONET sites or combined
MISR or POLDER or future data sets from planned sensors with polarization can be used
for higher accuracy AOD retrieval in the future.
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