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Abstract

:

Soil moisture (SM) is an important biophysical parameter by which to evaluate water resource potential, especially for agricultural activities under the pressure of global warming. The recent advancements in different types of satellite imagery coupled with deep learning-based frameworks have opened the door for large-scale SM estimation. In this research, high spatial resolution Sentinel-1 (S1) backscatter data and high temporal resolution soil moisture active passive (SMAP) SM data were combined to create short-term SM predictions that can accommodate agricultural activities in the field scale. We created a deep learning model to forecast the daily SM values by using time series of climate and radar satellite data along with the soil type and topographic data. The model was trained with static and dynamic features that influence SM retrieval. Although the topography and soil texture data were taken as stationary, SMAP SM data and Sentinel-1 (S1) backscatter coefficients, including their ratios, and climate data were fed to the model as dynamic features. As a target data to train the model, we used in situ measurements acquired from the International Soil Moisture Network (ISMN). We employed a deep learning framework based on long short-term memory (LSTM) architecture with two hidden layers that have 32 unit sizes and a fully connected layer. The accuracy of the optimized LSTM model was found to be effective for SM prediction with the coefficient of determination (  R 2  ) of 0.87, root mean square error (RMSE) of 0.046, unbiased root mean square error (ubRMSE) of 0.045, and mean absolute error (MAE) of 0.033. The model’s performance was also evaluated concerning above-ground biomass, land cover classes, soil texture variations, and climate classes. The model prediction ability was lower in areas with high normalized difference vegetation index (NDVI) values. Moreover, the model can better predict in dry climate areas, such as arid and semi-arid climates, where precipitation is relatively low. The daily prediction of SM values based on microwave remote sensing data and geophysical features was successfully achieved by using an LSTM framework to assist various studies, such as hydrology and agriculture.
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1. Introduction


Freshwater resources are being depleted daily due to climate change and the increasing world population. Hence, the effective use of available water is of the utmost importance, which makes its monitoring vital for water savings, mitigation, and adaptation to climate change. In the last decade, soil moisture (SM) monitoring has been investigated with its different aspects, covering drought monitoring [1,2], flood prediction [3], and agricultural applications [4,5]. In particular, in agriculture, SM significantly impacts planning, seeding, fertilization, and irrigation activities. In addition, its close relationship with crop productivity makes SM monitoring an essential factor for optimizing the use of available water resources [6,7].



The dynamics of SM are influenced by the physical properties of topography and soil as well as temporal changes in atmospheric conditions. The impact of these parameters on the variability of SM has been studied in depth concerning topographic data [8,9,10,11], soil texture [11,12,13], and climate variables [14,15,16]. In general, the prediction of SM in local studies (e.g., station-based SM forecasting) does not require static parameters, such as topography and soil texture, because these data vary insignificantly. However, the variability of SM in time depends on climate data in both local, regional, or global scale studies.



In the literature, researchers focused on minimizing the prediction uncertainties to estimate SM by using in situ measurements [17,18,19,20,21]. Including the meteorological parameters in estimating SM enhances the prediction accuracy significantly. The study conducted in [18] predicted the SM values of five stations located in Shandong Province of China by using varying depth measurements of SM together with meteorological variables. A similar study was performed in [19], extending the spatial distribution of stations worldwide, to forecast the SM values. In this study, however, the time series of each station were trained and validated separately. Another study carried out by [20] used the SM values of globally distributed stations of the International Soil Moisture Network (ISMN) coupled with climate, topography, and soil texture data to create a model for the daily prediction of SM in different depth layers. By spatially interpolating SM values of stations to form   0 .  25 ∘    grid cells, the trained model can predict SM in a quasi-global way. Although the sensor measurements provide more reliable estimations of SM values, the dependency of the model on SM sensors limits the use of the model within specific regions where in situ measurements exist. The lack of measurements in high latitudes resulted in poorer forecasts of SM values, specifically in arid regions.



Even though in situ measurements play a crucial role in understanding SM, their spatial coverage and network-related problems make them limited in global studies. Recent developments in satellite-based remote sensing allowed continuous monitoring of the Earth’s surface. In order to overcome the problems encountered in SM predictions when using in situ measurements, satellite data from microwave remote sensing has been used excessively [22,23]. In this context, satellite images are the key to breaking free from the dependency of SM prediction from in situ sensors. The data from the NASA soil moisture active passive (SMAP) [24] and ESA soil moisture and ocean salinity (SMOS) [25] missions are a valuable asset for the global SM monitoring with their 2–3 days temporal resolution. In 2020, ref. [26] expanded the near real-time SM predictions by integrating time series data from SMAP and SMOS missions by using a statistical approach to overcome the inconsistencies between the different SM retrieval algorithms.



Although SMAP and SMOS SM products enable the monitoring of Earth’s surface moisture in high temporal resolution, their applications are constrained due to their coarse spatial resolution. To overcome this limitation, researchers [27,28] used downscaling methods by merging higher-resolution satellite images with lower-resolution SMAP/SMOS data to achieve improved spatial resolution SM predictions. Even though these downscaling efforts are applicable in predicting SM, the generated maps still have an insufficient spatial resolution (∼5.6 km) for applications such as agricultural monitoring. In this regard, the launch of the Sentinel SAR satellites by ESA under the Copernicus Programme paved the way for accurate SM retrieval in smaller scale by acquiring higher spatial resolution microwave remote sensing images [29,30,31,32,33].



SM retrieval from remote sensing images has been improved by the state-of-art machine learning-based regression techniques owing to their ability to learn the relationship between predictors and SM from data [34,35,36,37]. An extensive review on the use of machine learning algorithms for predicting SM can be found in [38]. As computers have improved in performance, deep learning (DL) algorithms have become increasingly popular, as they can handle nonlinear and complex relationships between input and output [39].The SM forecasting studies that use remote sensing images exploited the ability of DL models to capture the spatial and temporal dynamics of SM at the expense of large datasets and high computational costs [5,40,41,42,43,44,45].



Among the different DL methods, artificial neural networks (ANNs) have been proposed to estimate SM from microwave remote sensing images integrated with some auxiliary data [46]. For example, although [47] coupled S1 images with soil texture information, ref. [44] used soil texture and soil temperature data to improve the prediction accuracy of SM retrieval. As an alternative to soil texture data, ref. [48] include climate and topography data to the ANN model. Furthermore, in [42], the combination of soil texture, topography, and climate data was utilized to improve the artificial neural network (ANN) model’s performance.



The recurrent neural network (RNN) is a DL technique that considers the sequential relationships between input data and their effects on the output data. Therefore, such DL models are more appropriate when the sequence modeling tasks are needed, such as SM prediction. However, RNN struggles to learn interdependency between input and output data when the sequence span gets longer [49]. In order to overcome the limitation of this DL technique, a special kind of RNN, long short-term memory (LSTM) is proposed by [50]. With the LSTM, information from a sequence can be carried along the consecutive sequences, and the model can learn the relationship between sequential data and output data.



The study conducted by [51] applied LSTM architecture for the first time in SM studies by using the SMAP L3_SM_P product with climate and soil texture data to improve the design accuracy of SMAP SM data. In 2018, ref. [52] presented a model for the long-term SM forecast on both surface and different depths over the continental US, aiming to exploit the SMAP data together with the land surface models. The model can predict long-term SM values in the same region by using the SMAP SM time series data. In [53], the LSTM model trained with the same data classes used in [51] to nowcast the SM data, when the SMAP L3_SM_P product became available. Another study [54] downscaled the SMAP SM data in (∼1 km) with the help of climate, soil texture, and topography data by implementing LSTM.



This research aims to improve short-term SM prediction by combining the high temporal resolution SMAP SM product and high spatial resolution S1 backscatter coefficients integrated with the auxiliary data to assist the agricultural activities in the field scale. In this context, we used the SM data of the ground stations from ISMN, distributed around the world, to train an LSTM model with two microwave radar data products (SMAP and S1) together with soil texture, climate, and topographical data that are considered as the predictors of SM. The short-term forecast of SM on a field scale was successfully achieved by utilizing an approach dependent on microwave remote sensing, satellite-based observations. The model used in this study predict accurate SM values of the next day with high spatial resolution in regions with different geophysical properties and climate classes.



The manuscript is structured as follows: Section 2 explains the materials and methods. Section 4 describes the experimental research with data processing, model optimization, and our findings by focusing on the accuracy assessments of utilized methods. Section 5 presents the interpretation of the results and focuses on the effects of land cover, especially in the presence of vegetation, soil texture, and climate, on SM estimation. We finalized the paper by highlighting the important outcomes of this study in Section 6.




2. Materials


In this research, we aim to predict SM by combining the satellite-based data (S1 and SMAP) with soil texture percentages (clay, silt, and sand), topography (elevation, slope, aspect, and hillshade), and climate (temperature, evapotranspiration, and precipitation). By using the features presented in Table 1, we modeled the SM in time by using an LSTM framework. The statistics of these features were presented in Table 2.



2.1. International Soil Moisture Network


ISMN is a data-hosting facility developed and still maintained by several universities [55,56,57]. It is supported by the European Space Agency’s (ESA) Earth Observation program. The ISMN stations include soil texture properties and SM values in time, freely available at https://ismn.geo.tuwien.ac.at/ (accessed on 17 August 2022). When we started the algorithm development, the total number of available stations was 1611 after 2017, when S1 data became available. The locations of the stations cover different climates and ecoregions. However, ∼70% of the available stations were located in the USA (see Figure 1).



In addition to the station locations, in Figure 2, we present the ternary distribution of the soil data. Ternary distribution depicts the data in a 3D space, making it simpler to understand relations. Figure 2 shows that most soil samples are located in the loam class, followed by sandy loam, clay loam, and silty loam.



Along with the soil texture and SM data, the metadata of each station includes land cover based on the ESA CCI land cover product [58] and Köppen–Geiger climate classes [59]. It should be noted that these data were used only for the evaluation of the model performance w.r.t. varying land cover and climate class of the stations, not for training the model.




2.2. Satellite Data


In this research, we accessed all satellite data via the Google Earth Engine (GEE) Python application programming interface (API) [60]. From the GEE, we downloaded the S1 data—one of the missions of ESA’s Copernicus initiative—together with NASA’s SMAP data on the location of the SM stations. Their ensured continuity for the future and sensitivity to changes in vegetation and soil properties makes both satellites a viable option for SM monitoring [5,61,62,63,64].



2.2.1. Sentinel-1 (S1)


S1 is a synthetic aperture radar (SAR) satellite mission with a C-band (5.6 cm) sensor. The advantage of S1 lies in its sensitivity to SM content [65]. There are two identical satellites in the S1 mission, S1a, and S1b. Each satellite has a temporal resolution of 12 days, resulting in an average of a six-day repeat cycle. Unfortunately, in December 2021, S1b failed data dissemination and became space junk. Since then, S1a has been providing data alone, and its temporal resolution depends on the area, with a minimum orbit repeat cycle of six days in Europe and 12 days in other areas. ESA is planning to launch S1c in the first half of 2023 to continue the dual satellite constellation.



This research used the ground range detected (GRD) 10-meter spatial sampled data processed by ESA. The data we have selected has vertical transmission–vertical received (VV) and vertical transmission–horizontal received (VH) polarizations.



In this study, all S1 passes between 31 December 2017 and 1 January 2021 were included for each station of ISMN. In the data processing step, 50 m × 50 m region of interest was defined around each station to calculate the mean value of S1 GRD backscatter signals. The mean backscatter signals were converted from logarithmic scale to linear scale. Additionally, the VH/VV ratio was added as a feature to the dataset.




2.2.2. Sentinel-2 (S2)


S2 is a multi-spectral instrument (MSI) satellite mission with spectral sensitivity to the visible-near-infrared region of the electromagnetic spectrum. In this mission, like S1, there are two identical satellites (a and b). Both satellites have a temporal resolution of 12 days, also resulting in an average of a six-day repeat cycle.



In our research, we used the Level-2a surface reflectance product processed by ESA. The data has 13 bands ranging from 10- to 60-m spatial resolution. We only used red and near-infrared bands to derive the vegetation indices. As in the case of S1, pixels within the 50 m × 50 m region of interest around the stations were extracted to calculate the mean NDVI values. However, this feature was only used to evaluate the model performance in the presence of vegetation and was not included in the feature set to train the model.




2.2.3. Soil Moisture Active Passive (SMAP)


In 2015, NASA launched the SMAP satellite to monitor the SM content by using L-band SAR (active) and radiometer (passive) instruments. SMAP has a temporal resolution of 2–3 days globally. In this research, we used Level-3 data of SMAP SM, which has 10-km spatial resolution [66].




2.2.4. Topography


The topography of the surface also influences the variation in the SM. With the GEE platform, topographic parameters, such as elevation, slope, aspect, and hill shade are obtained from the ALOS DSM Global 30 m dataset [67].





2.3. Climate Data


As an integral part of the water cycle, the dynamics of SM are closely associated with climate data, such as precipitation, temperature, and evapotranspiration. In this research, we gathered the precipitation (P), air temperature (T), and evapotranspiration (ET) data on the location of the SM stations by using the Meteomatics API [68]. The available meteorological data have a spatial resolution ranging from 1 km to 5 km. Under the assumption of lower spatial variability, we used the reported data without changing the processing pipeline. The usage of the API was made possible within the service provided to AgriCircle AG by Meteomatics.




2.4. Data Preprocessing


For SM modeling, we created a dataset that combines static and dynamic features, as previously shown in Table 1. The static features are soil texture and topography; the dynamic features are climate and satellite-derived time-series data. In addition, we added a time variable as a dynamic feature. Because the LSTM framework requires time-series data, we repeated the static features as the sequence length before feeding it to the LSTM framework.



For dynamic features, we prepared a three-year dataset that includes in situ observations acquired from ISMN stations from 31 December 2017 to 1 January 2021. In this dataset, we applied data cleaning to reduce the data-originated uncertainty and eliminate the inconsistency within the measurements. Data cleaning involves a two-step elimination criteria. The first criterion is related to the record length. The record length condition requires that those stations be discarded if more than 10% of the measurements were missing in any station. The second criterion is developed to ensure sequential dependence in the observations. The SM stations with more than 60 consecutive days of missing measurements are also excluded from the analysis because a solution like interpolation was unrealistic considering the complex nature of the problem. According to these criteria, we found 103 stations, shown by red dots in Figure 1, out of 1611 with time series of SM measurements suitable for the analysis. Because dynamic features are gathered from various sources with different temporal resolutions, we upsampled all data into daily sampling by using the linear interpolation method for temporal matching. The ground measurements are resampled into daily SM values to ensure the matching temporal resolution.



For the training of the LSTM model, we formed five different scenarios to determine the contribution of feature groups. As previously shown in Table 1, in SM monitoring, climate data, soil texture, and topographical data are the main drivers of SM. Beginning with the climate data (Case I), we consecutively included soil texture (Case II), topographical data (Case III), and satellite data (Case IV and Case V) and listed them below.



	Case-I

	
Climate data




	Case-II

	
Climate data, soil texture




	Case-III

	
Climate data, soil texture, topographical data




	Case-IV

	
Climate data, soil texture, topographical data, satellite data (SMAP)




	Case-V

	
Climate data, soil texture, topographical data, satellite data (SMAP, S1)







In each case, time variables (sine and cosine of time) are kept within the features set because they are independent variables that represent the positional encoding of input features in a time series.





3. Methods


We employed the satellite data, soil texture, climate, and topography features mentioned above to forecast the SM by using the following process chart shown in Figure 3. The process starts with the first row and ends with the accuracy assessment and prediction of SM.



3.1. Long Short-Term Memory


As a descendent of RNN, [50] proposed an approach called long short-term memory (LSTM) to overcome the vanishing gradient problem in RNN. In LSTM, the ordinary unit cell repeats the input–output sequence; in RNN, this is replaced by a memory cell. LSTM contains three gates: the input gate   i t  , forget gate   f t  , and output gate   o t  . In addition to these gates, there are two different parts: cell state   c t  , which keeps information from previous states and transfers it to the next, and the hidden state   h t  , which is the output of the LSTM cell. The equation of input gate, forget gate, and output gate is defined as


     i t     = σ   w i    h  t − 1   ,  x t   +  b i       



(1)






     f t     = σ   w f    h  t − 1   ,  x t   +  b f       



(2)






     o t     = σ   w o    h  t − 1   ,  x t   +  b o   ,     



(3)




where   w i  ,   w f  , and   w o   are the weight matrix,   x t   is input,   h  t − 1    is the hidden state from previous time step,   b i  ,   b f   and   b o   are bias vector and  σ  is the sigmoid activation function for the gates. The activation functions introduce nonlinearity by transforming inputs to targeted outputs with a nonlinear regression procedure, making the model capable of learning and performing more complex tasks. After the calculation of gates, the cell state and hidden state can be defined as


      c t  =  f t  ⊙  c  t − 1   +  i t  ⊙ tanh   w c    h  t − 1   ,  x t   +  b c       



(4)






      h t  =  o t  ⊙ tanh   c t   ,     



(5)




where   w c   is the weight matrix,   c  t − 1    is the cell state from the previous time step,   b c   is the bias vector,   t a n h   is the hyperbolic tangent activation function and ⊙ is the element-wise multiplication. The size of the weight matrix is determined according to the unit size and hidden layer size of the LSTM model, feature vector dimension, and feature sequence length. It should be noted here that the weight matrix of LSTM does not change through timesteps. For detailed information please refer to [69].




3.2. Accuracy Assessment


Four accuracy metrics, namely, coefficient of determination (  R 2  ), root mean square error (RMSE), unbiased root mean square error (ubRMSE), and mean absolute error (MAE) were used to evaluate the performance of the implemented model for the SM prediction. We have


      R 2  = 1 −    ∑  i = 1  N     y i  −   y ^  i   2     ∑  i = 1  N     y i  −   y ¯  i   2                M A E =    ∑  i = 1  N    y i  −  y ^    N        R M S E =     ∑  i = 1  N     y i  −   y ^  i   2   N               u b R M S E =     ( R M S E )  2  −   (  1 N   ∑  i = 1  N    y i  −   y ^  i   )  2    .     











In the above equations,   y i  ,    y ^  i  , and    y ¯  i   indicates actual SM, predicted SM, and mean value of the actual SM, at ith time step, respectively. Out of these four metrics, we use   R 2  , RMSE, and ubRMSE to evaluate the performance and MAE for station-based assessments of the trained model.




3.3. Implementation of the LSTM Framework


The SM value at time t (  Y t  ) was predicted by using n number of input features with previous w sequential days (window size) as   [  X  t − 1  n  ⋯  X  t − w  n  ]  . After preparing the dataset, we divided it temporally into 60% for training, 10% for validation, and 30% for testing purposes. The temporal split corresponds to 658 days used to train the model starting from 31 December 2017 until 20 October 2019, 109 days used to validate the model training between 21 October 2019 and 6 February 2020, and 330 days used to evaluate the trained model from 7 February 2020 until 1 January 2021. Whereas the LSTM model was built with training data, the hyperparameter tuning was carried out by using a validation dataset. After the optimum hyperpamater set was determined, independent evaluation of the model was conducted based on testing data.



Before starting the training, we normalized all the input features via the MinMaxScaler function of the sklearn Python package to ensure numerical stability. For the normalization, we followed different strategies for static and dynamic features. By their nature, the static features have global minimum and maximum values; therefore, we normalized them together. On the other hand, dynamic features have local variations that change each station’s minimum and maximum values, leading to a station-based normalization.



One of the primary flexibility features involved in the use of time series data is the varying length of past data to make future predictions. In such a structure, the number of previous timesteps is called the window size. The window size parameter must be selected carefully because it impacts forecast accuracy. For its determination in the SM forecast, we reformed the original dataset according to different window sizes: last one day, five days, ten days, and thirty days.



The LSTM networks were created by using TensorFlow back-end with GPU processing integration in the conda environment. We used the the gridSearchCV function of the sklearn Python library, to determine the LSTM model’s hyperparameters. In addition, in the LSTM architecture, all models started with an LSTM layer, followed by a one-dimensional dense layer as an output.





4. Results


The results of the SM prediction framework were presented in this section, starting with data preparation followed by model training, model parameter optimization, and finally the assessment of feature effects.



4.1. Model Parameter Optimization


The grid search algorithm was applied by using various hidden layers and unit sizes, learning rates, loss functions, and optimization functions for hyperparameter optimization. The number of hidden layers for LSTM was tested by gradually increasing from a single layer to three stacked layers. The unit size of these stacked layers was tested for 32, 64, and 128. The tested learning rates were 10    − 2   , 10    − 3   , and 10    − 4   . For the optimization function, we tested Adam, Adamax, and SGD [70]. For epoch number, the test was for values between 1000 and 1500 with 100 steps. Lastly, the dropout rate was between 0 and 0.5 with 0.05 increments.



The performances of the trained models with setups having different window sizes are presented in Table 3. We can see that the window size of five days is performing better than other window sizes, with the overall MAE reduced to ∼0.03 for both training and testing. Out of these four different window sizes, the one-day window size showed the worst prediction results with   R 2   values of ∼0.70 for both training and testing. Following the window size of five days, 10, and 30 days gave comparable results.



Focusing on the window size of the last five days, which performed better than the other tested cases, we found that LSTM with two hidden layers and 32 unit sizes followed by a one-dimensional dense layer having a learning rate of 10    − 3   , an epoch number of 1000, and a dropout rate of 0.25, and Adamax as the activation function gave the best accuracy for SM prediction. The summary of the grid search is given in Table 4.




4.2. Effect of the Different Features on the Model Performance


After the optimum window size and hyperparameters were assessed, we investigated the effect of a different group of features on the model’s prediction capability by designing five different cases. Table 5 summarizes the statistics of these cases for their corresponding feature combinations where the model hyperparameters are based on the best performing LSTM model with a window size of five days (see Table 4). We found that the optimum solution for SM prediction was achieved when all feature groups were combined, i.e., Case V, for training the LSTM model.




4.3. Overview of the Model Training


Figure 4 presents the training progress of the best performing LSTM model, the optimum hyperparameters of which are given in Table 4. The figure shows the change in the loss value,   R 2  , and RMSE w.r.t. epoch as the model continues its training with a constant learning rate of 10    − 3   . The loss value,   R 2  , and RMSE for training and validation datasets converge around epoch number 1000, and the model tends to overfit beyond 1000 epochs.



Figure 5 shows the outcomes of the training (left side) and testing (right side) SM predictions for all stations. The scatter plots between measured and estimated values for the training and testing datasets show a similar pattern when compared. The main population of the points is along the 1-1 line. The model can make good predictions with MAE of less than 0.035. In the second row, violin plots show the measurement and prediction distributions. The left side of the violin corresponds to actual values, while the right side stands for the predictions. In an ideal case, we should see a mirror-like shape, which is also the case for our predictions with small differences due to the error previously mentioned in the scatter plots.





5. Discussion


The LSTM-based SM forecast model relies on satellite-driven data, soil texture, topography, and climate. Therefore, as the predictions are conducted for different conditions, we investigated the prediction performances for land cover classes, biomass variations based on the NDVI calculated from the Sentinel-2 satellite, climate classes, and soil texture.



5.1. Relationship between Model Performance and Land Cover


The physical characteristics of the land cover affect the prediction accuracy of the developed LSTM model. This effect originates from the physical heterogeneity of the observed area.



In the ISMN, every station is provided with its land cover type. The corresponding land covers are based on the ESA CCI land cover product [58]. In a total of 103 stations, 34 croplands, 20 grasslands, 18 shrublands, 23 trees/forests, and 6 mosaics (mixture of trees, shrubs, herbaceous, and cropland), and two urban sites exist. However, we did not investigate the urban sites due to the insufficient number of samples.



Figure 6 presents the model’s prediction capability for different land covers. The smallest MAE (∼0.02) was achieved for shrubland class. The model shows similar performance for cropland, grassland, and tree covers with a mean MAE of approximately ∼0.03. However, the variance of MAE for the cropland cover is higher than the others. The worst MAE, (∼  0.05  ), is obtained for the mosaic cover due to the complexity of the surface. This can be explained by the scattering mechanism of SAR imagery in the presence of vegetation and forest. Because the shrubland land cover class is sparsely vegetated area, radar signals can interact with the soil more than vegetation or forest canopy.




5.2. Relationship between Model Performance and NDVI


The presence of biomass over soil may affect the model’s prediction capability because the satellite data also carries information regarding the vegetation. To see the effect of the biomass, we calculated the NDVI from the S2 surface reflectance image during the testing periods and compared it with the MAE values of the model for the prediction dates.



Figure 7a visualizes the distribution of MAE values for all available stations together with the NDVI    m e a n    and NDVI    m a x    values. The figure shows the correlation between the mean NDVI    m e a n    and MAE values. MAE values tend to increase with increasing NDVI    m e a n    values.



The violin plot given in Figure 7b shows the distribution of the actual vs. predicted SM values at stations whose MAE values are lower (Station ID: 1569, 1541, 1577) with low soil moisture and higher (Station ID: 1527, 816, 1481) with high soil moisture. Here, we focused on finding out the origins of the variations in MAE values among these stations. For this purpose, the variation of the NDVI values were used. This analysis showed that the NDVI variation is one of the reasons for the deterioration of the SM prediction.



The backscattered signals obtained from SAR data were strongly affected by high biomass due to the interaction between electromagnetic radiation, plants, and soil. Therefore, these findings show that the model’s estimation performance is prone to uncertainties from the existing biomass. Similar findings also exist in previous studies [35,71,72,73]. These studies found that the SM content in bare or low-density vegetation areas is more predictable than in high-density vegetation areas.



Another investigation that we conducted on the impact of NDVI variation was using station-based time series. For this purpose, we focused on some stations that show a variation in NDVI over the years. We see that the growth cycle of NDVI values before seeding and after harvest is lower than crops’ vegetative and reproductive phases. We believe that the prediction capability of the model thoughout the growth cycle is an important detail that needs to be investigated. Hence, we prepared the Figure 8a to show the model’s performance in time. According to Figure 8a, the model’s performance on the SM forecasting dropped approximately between May 2020 to October 2020 due to very low SM values. During this period, we can see an increase in the NDVI values from ∼0.2 to ∼0.9. We observed a similar situation in the other stations as well. In the time series of stations 827 and 1572, given in Figure 8b,c, the station has higher NDVI values from June to the end of December and from mid-April to the beginning of November, respectively. These three stations and the others with similar behavior have MAE values less than   0.075  .




5.3. Relationship between Model Performance and Soil Texture


The variation in the soil texture is a driving factor for the spatial and temporal changes in the SM. Soils with high clay or silt fraction are associated with high water-holding capacity, resulting in a generally higher SM value. On the other hand, such soils lose their moisture slower than the others. From an agricultural point of view, clay soils have the highest soil moisture content in general; however, silty soils are more favorable for plants.



We provide a ternary plot in Figure 9 to show the MAE values of stations, which are scattered based on their soil texture contents. In the same figure, we also included each station’s NDVI    m e a n    values in a color map. The combination of soil texture and NDVI    m e a n    allows us to observe the relationship between the amount of silt and clay in the soil and vegetation activity.



The size of each circle, representing a station, is proportional to its MAE value. We observe that the smaller circles generally accumulate in areas where the sand fraction is high. Among all the stations, 61% have sandy soil with an average MAE of   0.03  , and 38% of them are silty soils with   0.04   average MAE.



As we focus on particular stations for an in-depth investigation, it was observed that the silt content of the stations, having cropland cover, given in Figure 8 are 52%, 61%, and 42% for stations 816, 827, and 1572, respectively. In the corresponding stations, we have similar findings that justify the performance of the model w.r.t. the change in the NDVI values.



In addition to silt and clay-dominated soils, the soil types in which the sand proportion is higher generally have a lower trend in SM values because the sandy soil has low water-holding capacity. This property makes them less suitable for agricultural applications. In order to investigate the sand effect, we present the time series of SM predictions at stations 815, 1541, and 1569 in Figure 10. The typical features of these stations are the high percentage of sand fraction in soil content (81%, 52%, and 52% for stations 815, 1541, and 1569) and lower NDVI values along the time series. The mean NDVI value for these stations is 0.15, 0.19, and 0.11, respectively. Unlike the findings from Figure 8, we saw that in Figure 10a, the higher sand fraction leads to lower and less fluctuated SM values. Thus, the highest accuracy was obtained at stations with sandy soils having low NDVI values.




5.4. Relationship between Model Performance and Climate Classes


Lastly, we investigated the effect of climate classes. To this aim, we used [59], which defines four classes in total: tropical (A), dry (B), temperate (C), and continental (D). Our selected stations are distributed as   23 %   in class B and   75 %   in class C. The remaining   2 %   belongs to classes A and D, with one station for each.



In Figure 11, we present the model’s prediction performance under different climate conditions as a boxplot. The stations in class B shows lower MAE values compared to those in class C (see Figure 11a). Considering the climate class properties, the rapid changes in the moisture affect the dielectric properties of the target [32,74]; at the same time, precipitation is a significant factor that negatively impacts the SM prediction due to the change in the interaction between SAR signals and land surface.



We obtained better soil moisture predictions in arid climates (Bw) than those in semi-arid climates (Bs) regions due to less precipitation and more evapotranspiration. We also observed a similar behavior between no-dry-season climate (Cf) and dry summer (Cs) temperate climate classes (see Figure 11b). The no-dry-season climate, as inferred by its name, has a high precipitation rate compared to a dry summer climate, which makes the stations located in this climate region challenging for SM prediction.





6. Conclusions


In this study, we investigated the short-term SM prediction based on satellite-derived data with LSTM. For this purpose, the static and dynamic features were combined to create sequential input data and used in situ SM measurements of 103 stations from ISMN as an output to train an LSTM model. Our approach uses soil texture and topographical data as static features and satellite (S1 and SMAP) and climate data as dynamic features. As SM monitoring is crucial for water resource management, we employed the SAR data due to its lower sensitivity to atmospheric conditions than optical data. To optimize the LSTM models’ hyperparameters, we used the gridSearchCV algorithm. After the optimization, the overall testing accuracy of the model was calculated as    R 2  = 0.87  ,   R M S E = 0.046  , and   M A E = 0.033  . The values obtained from different stations are summarized in Appendix A, including the station ID, network and station name, soil texture, NDVI mean and max values, climate, land cover classes, and the corresponding MAE values.



During our investigations, it was observed that the model’s prediction performance is affected by the soil texture, vegetation status, and climate conditions. Variations in soil texture change the soil water-holding capacity. In the case in which the amount of sand was dominant, the SM values were easier to model than in the case of silt and clay dominance due to the low SM values and fewer fluctuations in sandy soils. We also observed that vegetation affects the interaction between the SAR signal and the soil. Thus, the model’s prediction ability was lowered in vegetated areas with high NDVI values. Moreover, the model can predict better under dry climate conditions, such as arid and semi-arid climates in relatively low precipitation.



This study used satellite-based products to create a model to forecast SM values. For operational purposes, we know that obtaining soil texture data on the pixel level is challenging. However, we can overcome this by conducting an intensive sampling campaign for soil texture, or existing models can be used [75], which employs S1 and S2 multi-temporal data.



In the future, we plan to combine the LSTM model with the attention mechanism to study the contribution of each variable to SM prediction. The LSTM model combined with the attention mechanism can determine the importance of each feature and its temporal relationship with SM phenomena. Thus, we can increase the accuracy of the model predictions and explain the physical behavior of the black-box model.
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Table A1. Soil texture, NDVI, climate and land-cover class features of stations with their MAE of SM prediction.






Table A1. Soil texture, NDVI, climate and land-cover class features of stations with their MAE of SM prediction.





	Station ID
	Network
	Station Name
	Clay
	Sand
	Silt
	    NDVI _ min    
	    NDVI _ max    
	    NDVI _ mean    
	CC-I
	CC-II
	LCC
	MAE





	139
	FR_Aqui
	hillan2
	13
	69
	18
	0.377
	0.823
	0.661
	C
	Cf
	Tree
	0.022



	140
	FR_Aqui
	parcmeteo
	19
	48
	33
	0.247
	0.994
	0.593
	C
	Cf
	Cropland
	0.022



	292
	HOAL
	Hoal_02
	23
	30
	47
	0.361
	0.872
	0.592
	C
	Cf
	Cropland
	0.051



	617
	REMEDHUS
	Casa_Periles
	21
	48
	31
	0.112
	0.934
	0.321
	C
	Cs
	Cropland
	0.020



	619
	REMEDHUS
	El_Coto
	18
	51
	32
	0.125
	0.581
	0.267
	C
	Cs
	Cropland
	0.028



	620
	REMEDHUS
	El_Tomillar
	16
	54
	30
	0.150
	0.471
	0.234
	C
	Cs
	Cropland
	0.019



	622
	REMEDHUS
	Guarrati
	16
	51
	34
	0.130
	0.612
	0.366
	C
	Cs
	Cropland
	0.067



	624
	REMEDHUS
	La_Cruz_de_Elias
	21
	48
	31
	0.097
	0.381
	0.226
	C
	Cs
	Cropland
	0.046



	625
	REMEDHUS
	Las_Arenas
	16
	55
	29
	0.093
	0.303
	0.214
	C
	Cs
	Cropland
	0.042



	626
	REMEDHUS
	Las_Bodegas
	21
	46
	33
	0.233
	0.565
	0.406
	C
	Cs
	Cropland
	0.033



	627
	REMEDHUS
	Las_Brozas
	17
	52
	31
	0.195
	0.303
	0.228
	C
	Cs
	Cropland
	0.025



	628
	REMEDHUS
	Las_Eritas
	23
	49
	28
	0.110
	0.431
	0.260
	C
	Cs
	Cropland
	0.028



	629
	REMEDHUS
	Las_Tres_Rayas
	20
	49
	32
	0.155
	0.470
	0.310
	C
	Cs
	Cropland
	0.037



	630
	REMEDHUS
	Las_Vacas
	21
	52
	27
	0.083
	0.486
	0.222
	B
	Bs
	Cropland
	0.031



	631
	REMEDHUS
	Las_Victorias
	20
	49
	31
	0.113
	0.479
	0.217
	C
	Cs
	Cropland
	0.022



	633
	REMEDHUS
	Paredinas
	17
	53
	30
	0.154
	0.514
	0.281
	C
	Cs
	Cropland
	0.018



	634
	REMEDHUS
	Zamarron
	20
	48
	32
	0.037
	0.252
	0.177
	C
	Cs
	Cropland
	0.027



	639
	RSMN
	Bacles
	28
	27
	44
	0.287
	0.752
	0.562
	C
	Cf
	Urban
	0.026



	659
	SCAN
	AAMU_jtg
	18
	25
	57
	0.266
	0.863
	0.773
	C
	Cf
	Grassland
	0.041



	661
	SCAN
	Adams_Ranch_#1
	17
	59
	24
	0.177
	0.417
	0.294
	B
	Bs
	Shrubland
	0.026



	685
	SCAN
	Charkiln
	18
	52
	30
	0.300
	0.648
	0.412
	C
	Cs
	Tree
	0.018



	689
	SCAN
	Cochora_Ranch
	15
	57
	28
	0.091
	0.177
	0.114
	B
	Bs
	Shrubland
	0.012



	698
	SCAN
	Deep_Springs
	10
	69
	21
	0.049
	0.166
	0.113
	B
	Bw
	Shrubland
	0.020



	713
	SCAN
	Fort_Reno_#1
	18
	35
	46
	0.202
	0.727
	0.445
	C
	Cf
	Grassland
	0.038



	715
	SCAN
	French_Gulch
	19
	47
	34
	0.336
	0.671
	0.436
	C
	Cs
	Tree
	0.046



	719
	SCAN
	Goodwin_Creek_Timber
	12
	17
	71
	0.575
	0.894
	0.769
	C
	Cf
	Grassland
	0.027



	729
	SCAN
	Holden
	20
	40
	40
	0.083
	0.233
	0.124
	B
	Bs
	Shrubland
	0.020



	746
	SCAN
	Knox_City
	18
	42
	41
	0.166
	0.508
	0.304
	C
	Cf
	Cropland
	0.038



	747
	SCAN
	Koptis_Farms
	16
	58
	25
	0.171
	0.765
	0.587
	C
	Cf
	Cropland
	0.029



	750
	SCAN
	Kyle_Canyon
	20
	46
	34
	0.322
	0.708
	0.506
	C
	Cs
	Tree
	0.020



	752
	SCAN
	Levelland
	18
	66
	16
	0.043
	0.195
	0.109
	B
	Bs
	Cropland
	0.020



	753
	SCAN
	Lind_#1
	11
	29
	60
	0.179
	0.533
	0.366
	B
	Bs
	Cropland
	0.036



	757
	SCAN
	Los_Lunas_Pmc
	18
	56
	26
	0.157
	0.535
	0.291
	B
	Bs
	Urban
	0.041



	758
	SCAN
	Lovell_Summit
	18
	51
	30
	0.042
	0.513
	0.376
	C
	Cs
	Tree
	0.045



	764
	SCAN
	Mammoth_Cave
	19
	14
	67
	0.434
	0.926
	0.700
	C
	Cf
	Tree
	0.036



	768
	SCAN
	Marble_Creek
	13
	59
	28
	0.078
	0.206
	0.155
	C
	Cs
	Shrubland
	0.015



	769
	SCAN
	Maricao_Forest
	47
	25
	27
	0.669
	0.902
	0.823
	A
	Af
	Tree
	0.037



	772
	SCAN
	Mason_#1
	16
	55
	29
	0.177
	0.736
	0.469
	C
	Cf
	Cropland
	0.035



	775
	SCAN
	Mcalister_Farm
	17
	23
	60
	0.243
	0.885
	0.454
	C
	Cf
	Cropland
	0.035



	776
	SCAN
	Mccracken_Mesa
	15
	58
	27
	0.114
	0.188
	0.147
	B
	Bs
	Shrubland
	0.039



	777
	SCAN
	Milford
	28
	26
	45
	0.088
	0.956
	0.479
	B
	Bs
	Cropland
	0.038



	780
	SCAN
	Monocline_Ridge
	27
	41
	32
	0.067
	0.650
	0.202
	B
	Bs
	Shrubland
	0.022



	782
	SCAN
	Morris_Farms
	15
	58
	27
	0.196
	0.761
	0.367
	C
	Cf
	Mosaic
	0.064



	786
	SCAN
	N_Piedmont_Arec
	20
	28
	52
	0.234
	0.699
	0.601
	C
	Cf
	Grassland
	0.055



	790
	SCAN
	North_Issaquena
	30
	19
	51
	0.131
	0.953
	0.370
	C
	Cf
	Cropland
	0.029



	798
	SCAN
	Perthshire
	36
	12
	52
	0.139
	0.897
	0.381
	C
	Cf
	Cropland
	0.017



	802
	SCAN
	Powder_Mill
	14
	47
	39
	0.226
	0.809
	0.477
	C
	Cf
	Grassland
	0.037



	814
	SCAN
	San_Angelo
	28
	37
	36
	0.092
	0.515
	0.330
	C
	Cf
	Shrubland
	0.054



	815
	SCAN
	Sand_Hollow
	9
	81
	10
	0.116
	0.191
	0.153
	B
	Bw
	Grassland
	0.011



	816
	SCAN
	Sandy_Ridge
	34
	14
	52
	0.136
	0.921
	0.369
	C
	Cf
	Cropland
	0.070



	819
	SCAN
	Sellers_Lake_#1
	2
	87
	11
	0.591
	0.813
	0.730
	C
	Cf
	Tree
	0.015



	820
	SCAN
	Selma
	16
	56
	28
	0.511
	0.760
	0.659
	C
	Cf
	Tree
	0.027



	827
	SCAN
	Silver_City
	19
	19
	61
	0.150
	0.845
	0.524
	C
	Cf
	Cropland
	0.043



	831
	SCAN
	Spooky
	12
	70
	18
	0.125
	0.190
	0.155
	B
	Bs
	Grassland
	0.024



	837
	SCAN
	Sudduth_Farms
	13
	40
	46
	0.553
	0.800
	0.675
	C
	Cf
	Tree
	0.057



	840
	SCAN
	TNC_Fort_Bayou
	8
	64
	28
	0.384
	0.726
	0.630
	C
	Cf
	Mosaic
	0.078



	846
	SCAN
	Tule_Valley
	18
	47
	35
	0.045
	0.130
	0.064
	B
	Bs
	Shrubland
	0.020



	851
	SCAN
	UAPB_Dewitt
	15
	14
	71
	0.487
	0.747
	0.640
	C
	Cf
	Cropland
	0.032



	852
	SCAN
	UAPB_Earle
	24
	22
	54
	0.049
	0.334
	0.211
	C
	Cf
	Cropland
	0.036



	862
	SCAN
	Vernon
	26
	31
	43
	0.089
	0.680
	0.360
	C
	Cf
	Grassland
	0.033



	867
	SCAN
	Wakulla_#1
	0
	90
	10
	0.362
	0.540
	0.443
	C
	Cf
	Tree
	0.015



	872
	SCAN
	Weslaco
	28
	47
	25
	0.113
	0.716
	0.296
	B
	Bs
	Cropland
	0.053



	874
	SCAN
	Youmans_Farm
	14
	69
	17
	0.216
	0.775
	0.637
	C
	Cf
	Mosaic
	0.032



	953
	SNOTEL
	Bar_M
	28
	32
	40
	0.195
	0.431
	0.354
	C
	Cs
	Tree
	0.024



	985
	SNOTEL
	Chalender
	34
	28
	38
	0.050
	0.340
	0.178
	C
	Cs
	Tree
	0.041



	1044
	SNOTEL
	GUTZ_PEAK
	23
	45
	32
	0.145
	0.606
	0.395
	C
	Cs
	Grassland
	0.020



	1049
	SNOTEL
	HAPPY_JACK
	28
	32
	40
	0.145
	0.683
	0.508
	C
	Cs
	Tree
	0.046



	1061
	SNOTEL
	HOLLAND_MEADOWS
	17
	43
	39
	0.389
	0.851
	0.530
	C
	Cs
	Tree
	0.035



	1113
	SNOTEL
	LITTLE_GRASSY
	19
	51
	30
	0.174
	0.353
	0.278
	C
	Cs
	Tree
	0.021



	1171
	SNOTEL
	Mormon_Mountain
	22
	34
	43
	0.162
	0.530
	0.379
	C
	Cs
	Tree
	0.034



	1230
	SNOTEL
	SILVER_CREEK
	15
	49
	36
	0.100
	0.638
	0.458
	D
	Ds
	Shrubland
	0.031



	1475
	USCRN
	Asheville_13_S
	19
	48
	33
	0.385
	0.834
	0.671
	C
	Cf
	Tree
	0.039



	1477
	USCRN
	Austin_33_NW
	26
	40
	34
	0.262
	0.513
	0.369
	C
	Cf
	Grassland
	0.074



	1478
	USCRN
	Avondale_2_N
	17
	38
	44
	0.265
	0.836
	0.683
	C
	Cf
	Mosaic
	0.035



	1480
	USCRN
	Batesville_8_WNW
	17
	31
	52
	0.331
	0.854
	0.625
	C
	Cf
	Cropland
	0.033



	1481
	USCRN
	Bedford_5_WNW
	19
	19
	63
	0.377
	0.870
	0.722
	C
	Cf
	Grassland
	0.063



	1487
	USCRN
	Bronte_11_NNE
	23
	48
	29
	0.081
	0.591
	0.351
	C
	Cf
	Grassland
	0.017



	1496
	USCRN
	Corvallis_10_SSW
	27
	28
	44
	0.000
	0.850
	0.518
	C
	Cs
	Grassland
	0.029



	1503
	USCRN
	Durham_11_W
	15
	47
	39
	0.412
	0.716
	0.600
	C
	Cf
	Mosaic
	0.036



	1511
	USCRN
	Fallbrook_5_NE
	19
	54
	27
	0.115
	0.496
	0.340
	C
	Cs
	Tree
	0.018



	1512
	USCRN
	Gadsden_19_N
	15
	34
	51
	0.498
	0.865
	0.661
	C
	Cf
	Grassland
	0.033



	1527
	USCRN
	Lafayette_13_SE
	20
	16
	64
	0.337
	0.866
	0.654
	C
	Cf
	Cropland
	0.092



	1529
	USCRN
	Las_Cruces_20_N
	17
	66
	17
	0.000
	0.187
	0.130
	B
	Bw
	Shrubland
	0.012



	1538
	USCRN
	Merced_23_WSW
	28
	34
	38
	0.209
	0.568
	0.315
	B
	Bs
	Grassland
	0.027



	1539
	USCRN
	Mercury_3_SSW
	7
	74
	19
	0.016
	0.141
	0.095
	B
	Bw
	Shrubland
	0.011



	1541
	USCRN
	Monahans_6_ENE
	18
	52
	29
	0.145
	0.237
	0.191
	B
	Bs
	Shrubland
	0.014



	1542
	USCRN
	Monroe_26_N
	11
	35
	54
	0.383
	0.686
	0.560
	C
	Cf
	Tree
	0.026



	1549
	USCRN
	Newton_5_ENE
	24
	32
	44
	0.379
	0.717
	0.561
	C
	Cf
	Grassland
	0.045



	1556
	USCRN
	Panther_Junction_2_N
	25
	49
	27
	0.151
	0.229
	0.182
	B
	Bw
	Shrubland
	0.014



	1559
	USCRN
	Quinault_4_NE
	13
	46
	41
	0.528
	0.844
	0.697
	C
	Cf
	Tree
	0.051



	1560
	USCRN
	Redding_12_WNW
	17
	48
	36
	0.142
	0.432
	0.300
	C
	Cs
	Tree
	0.037



	1562
	USCRN
	Salem_10_W
	16
	29
	55
	0.244
	0.700
	0.471
	C
	Cf
	Grassland
	0.031



	1569
	USCRN
	Socorro_20_N
	19
	52
	29
	0.079
	0.148
	0.109
	B
	Bw
	Shrubland
	0.014



	1572
	USCRN
	Stillwater_2_W
	19
	38
	42
	0.204
	0.726
	0.449
	C
	Cf
	Cropland
	0.052



	1573
	USCRN
	Stillwater_5_WNW
	19
	39
	43
	0.233
	0.772
	0.520
	C
	Cf
	Grassland
	0.034



	1574
	USCRN
	Stovepipe_Wells_1_SW
	6
	67
	27
	0.000
	0.058
	0.032
	B
	Bw
	Shrubland
	0.020



	1577
	USCRN
	Tucson_11_W
	20
	55
	25
	0.048
	0.237
	0.140
	B
	Bs
	Shrubland
	0.015



	1578
	USCRN
	Versailles_3_NNW
	19
	13
	68
	0.373
	0.827
	0.666
	C
	Cf
	Grassland
	0.034



	1579
	USCRN
	Watkinsville_5_SSE
	18
	55
	27
	0.280
	0.839
	0.654
	C
	Cf
	Grassland
	0.030



	1581
	USCRN
	Williams_35_NNW
	19
	47
	34
	0.052
	0.198
	0.140
	B
	Bs
	Shrubland
	0.021



	1596
	WEGENERNET
	6
	20
	38
	42
	0.528
	0.891
	0.757
	C
	Cf
	Tree
	0.031



	1597
	WEGENERNET
	77
	23
	37
	41
	0.215
	0.883
	0.525
	C
	Cf
	Cropland
	0.043



	1598
	WEGENERNET
	78
	23
	37
	40
	0.368
	0.876
	0.699
	C
	Cf
	Mosaic
	0.050







CC-I: Climate Class-I, CC-II: Climate Class-II, LCC: Land Cover Classification.













References


	



Jung, H.C.; Kang, D.H.; Kim, E.; Getirana, A.; Yoon, Y.; Kumar, S.; Peters-lidard, C.D.; Hwang, E. Towards a soil moisture drought monitoring system for South Korea. J. Hydrol. 2020, 589, 125176. [Google Scholar] [CrossRef]

	



Berg, A.; Sheffield, J. Climate change and drought: The soil moisture perspective. Curr. Clim. Chang. Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]

	



Norbiato, D.; Borga, M.; Degli Esposti, S.; Gaume, E.; Anquetin, S. Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. J. Hydrol. 2008, 362, 274–290. [Google Scholar] [CrossRef]

	



Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]

	



Efremova, N.; Seddik, M.E.A.; Erten, E. Soil Moisture Estimation using Sentinel-1/-2 Imagery Coupled with cycleGAN for Time-series Gap Filing. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]

	



Lawless, C.; Semenov, M.A.; Jamieson, P.D. Quantifying the effect of uncertainty in soil moisture characteristics on plant growth using a crop simulation model. Field Crop. Res. 2008, 106, 138–147. [Google Scholar] [CrossRef]

	



Dai, X.; Huo, Z.; Wang, H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crop. Res. 2011, 121, 441–449. [Google Scholar] [CrossRef]

	



Famiglietti, J.; Rudnicki, J.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef]

	



Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef]

	



Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Odgaard, M.V.; Nygaard, B.; Svenning, J.C. Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere 2013, 4, art91. [Google Scholar] [CrossRef]

	



Gwak, Y.; Kim, S. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Process. 2017, 31, 431–445. [Google Scholar] [CrossRef]

	



Vereecken, H.; Kamai, T.; Harter, T.; Kasteel, R.; Hopmans, J.; Vanderborght, J. Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophys. Res. Lett. 2007, 34, L22402. [Google Scholar] [CrossRef]

	



Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48, 2011WR011518. [Google Scholar] [CrossRef]

	



Wilson, D.J.; Western, A.W.; Grayson, R.B. Identifying and quantifying sources of variability in temporal and spatial soil moisture observations. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]

	



Teuling, A.J.; Hupet, F.; Uijlenhoet, R.; Troch, P.A. Climate variability effects on spatial soil moisture dynamics. Geophys. Res. Lett. 2007, 34, L06406. [Google Scholar] [CrossRef]

	



Wang, T.; Franz, T.E.; Li, R.; You, J.; Shulski, M.D.; Ray, C. Evaluating climate and soil effects on regional soil moisture spatial variability using EOFs. Water Resour. Res. 2017, 53, 4022–4035. [Google Scholar] [CrossRef]

	



Liu, M.; Huang, C.; Wang, L.; Zhang, Y.; Luo, X. Short-term soil moisture forecasting via Gaussian process regression with sample selection. Water 2020, 12, 3085. [Google Scholar] [CrossRef]

	



Yu, J.; Zhang, X.; Xu, L.; Dong, J.; Zhangzhong, L. A hybrid CNN-GRU model for predicting soil moisture in maize root zone. Agric. Water Manag. 2021, 245, 106649. [Google Scholar] [CrossRef]

	



Li, Q.; Zhu, Y.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 2022, 409, 115651. [Google Scholar] [CrossRef]

	



O, S.; Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 2021, 8, 170. [Google Scholar] [CrossRef]

	



Souissi, R.; Zribi, M.; Corbari, C.; Mancini, M.; Muddu, S.; Tomer, S.K.; Upadhyaya, D.B.; Al Bitar, A. Integrating process-related information into an artificial neural network for root-zone soil moisture prediction. Hydrol. Earth Syst. Sci. 2022, 26, 3263–3297. [Google Scholar] [CrossRef]

	



Dobson, M.; Ulaby, F. Active Microwave Soil Moisture Research. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 23–36. [Google Scholar] [CrossRef]

	



Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]

	



Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]

	



Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Bitar, A.A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]

	



Sadri, S.; Pan, M.; Wada, Y.; Vergopolan, N.; Sheffield, J.; Famiglietti, J.S.; Kerr, Y.; Wood, E. A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP. Remote Sens. Environ. 2020, 246, 111864. [Google Scholar] [CrossRef]

	



Peng, J.; Niesel, J.; Loew, A. Evaluation of soil moisture downscaling using a simple thermal-based proxy—The REMEDHUS network (Spain) example. Hydrol. Earth Syst. Sci. 2015, 19, 4765–4782. [Google Scholar] [CrossRef]

	



Peng, J.; Loew, A.; Zhang, S.; Wang, J.; Niesel, J. Spatial Downscaling of Satellite Soil Moisture Data Using a Vegetation Temperature Condition Index. IEEE Trans. Geosci. Remote Sens. 2016, 54, 558–566. [Google Scholar] [CrossRef]

	



Hornacek, M.; Wagner, W.; Sabel, D.; Truong, H.L.; Snoeij, P.; Hahmann, T.; Diedrich, E.; Doubkova, M. Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1303–1311. [Google Scholar] [CrossRef]

	



Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef]

	



Liu, Z.; Li, P.; Yang, J. Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal. Remote Sens. 2017, 9, 1197. [Google Scholar] [CrossRef]

	



Fan, D.; Zhao, T.; Jiang, X.; Xue, H.; Moukomla, S.; Kuntiyawichai, K.; Shi, J. Soil Moisture Retrieval From Sentinel-1 Time-Series Data Over Croplands of Northeastern Thailand. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]

	



Nguyen, H.H.; Cho, S.; Jeong, J.; Choi, M. A D-vine copula quantile regression approach for soil moisture retrieval from dual polarimetric SAR Sentinel-1 over vegetated terrains. Remote Sens. Environ. 2021, 255, 112283. [Google Scholar] [CrossRef]

	



Attarzadeh, R.; Amini, J.; Notarnicola, C.; Greifeneder, F. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale. Remote Sens. 2018, 10, 1285. [Google Scholar] [CrossRef]

	



Greifeneder, F.; Notarnicola, C.; Wagner, W. A machine learning-based approach for surface soil moisture estimations with google earth engine. Remote Sens. 2021, 13, 2099. [Google Scholar] [CrossRef]

	



Xue, Z.; Zhang, Y.; Zhang, L.; Li, H. Ensemble Learning Embedded with Gaussian Process Regression for Soil Moisture Estimation: A Case Study of the Continental U.S. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4508817. [Google Scholar] [CrossRef]

	



Lei, F.; Senyurek, V.; Kurum, M.; Gurbuz, A.C.; Boyd, D.; Moorhead, R.; Crow, W.T.; Eroglu, O. Quasi-global machine learning-based soil moisture estimates at high spatio-temporal scales using CYGNSS and SMAP observations. Remote Sens. Environ. 2022, 276, 113041. [Google Scholar] [CrossRef]

	



Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]

	



Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]

	



El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef]

	



Hegazi, E.H.; Yang, L.; Huang, J. A Convolutional Neural Network Algorithm for Soil Moisture Prediction from Sentinel-1 SAR Images. Remote Sens. 2021, 13, 4964. [Google Scholar] [CrossRef]

	



Chung, J.; Lee, Y.; Kim, J.; Jung, C.; Kim, S. Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components. Remote Sens. 2022, 14, 465. [Google Scholar] [CrossRef]

	



Chaudhary, S.K.; Srivastava, P.K.; Gupta, D.K.; Kumar, P.; Prasad, R.; Pandey, D.K.; Das, A.K.; Gupta, M. Machine learning algorithms for soil moisture estimation using Sentinel-1: Model development and implementation. Adv. Space Res. 2022, 69, 1799–1812. [Google Scholar] [CrossRef]

	



Cui, H.; Jiang, L.; Paloscia, S.; Santi, E.; Pettinato, S.; Wang, J.; Fang, X.; Liao, W. The Potential of ALOS-2 and Sentinel-1 Radar Data for Soil Moisture Retrieval With High Spatial Resolution Over Agroforestry Areas, China. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4402617. [Google Scholar] [CrossRef]

	



Nativel, S.; Ayari, E.; Rodriguez-Fernandez, N.; Baghdadi, N.; Madelon, R.; Albergel, C.; Zribi, M. Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation. Remote Sens. 2022, 14, 2434. [Google Scholar] [CrossRef]

	



Eroglu, O.; Kurum, M.; Boyd, D.; Gurbuz, A.C. High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sens. 2019, 11, 2272. [Google Scholar] [CrossRef]

	



Hachani, A.; Ouessar, M.; Paloscia, S.; Santi, E.; Pettinato, S. Soil moisture retrieval from Sentinel-1 acquisitions in an arid environment in Tunisia: Application of Artificial Neural Networks techniques. Int. J. Remote Sens. 2019, 40, 9159–9180. [Google Scholar] [CrossRef]

	



suk Lee, C.; Sohn, E.; Park, J.D.; Jang, J.D. Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea. Gisci. Remote Sens. 2019, 56, 43–67. [Google Scholar] [CrossRef]

	



Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1310–1318. [Google Scholar]

	



Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]

	



Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network. Geophys. Res. Lett. 2017, 44, 11–030. [Google Scholar] [CrossRef]

	



Fang, K.; Pan, M.; Shen, C. The value of SMAP for long-term soil moisture estimation with the help of deep learning. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2221–2233. [Google Scholar] [CrossRef]

	



Fang, K.; Shen, C. Near-Real-Time Forecast of Satellite-Based Soil Moisture Using Long Short-Term Memory with an Adaptive Data Integration Kernel. J. Hydrometeorol. 2020, 21, 399–413. [Google Scholar] [CrossRef]

	



Ming, W.; Ji, X.; Zhang, M.; Li, Y.; Liu, C.; Wang, Y.; Li, J. A Hybrid Triple Collocation-Deep Learning Approach for Improving Soil Moisture Estimation from Satellite and Model-Based Data. Remote Sens. 2022, 14, 1744. [Google Scholar] [CrossRef]

	



Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]

	



Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]

	



Montzka, C.; Bogena, H.R.; Herbst, M.; Cosh, M.H.; Jagdhuber, T.; Vereecken, H. Estimating the Number of Reference Sites Necessary for the Validation of Global Soil Moisture Products. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1530–1534. [Google Scholar] [CrossRef]

	



European Space Agency. Land Cover CCI Product User Guide Version 2 Tech. Rep. 2017. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 18 July 2022).

	



Rubel, F.; Brugger, K.; Haslinger, K.; Auer, I. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorologische Zeitschrift 2017, 26, 115–125. [Google Scholar] [CrossRef]

	



Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]

	



Liu, Y.; Qian, J.; Yue, H. Combined Sentinel-1A with Sentinel-2A to Estimate Soil Moisture in Farmland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1292–1310. [Google Scholar] [CrossRef]

	



Baghdadi, N.N.; El Hajj, M.; Zribi, M.; Fayad, I. Coupling SAR C-Band and Optical Data for Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1229–1243. [Google Scholar] [CrossRef]

	



Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Belhouchette, H. A Comparison of Two Soil Moisture Products S2MP and Copernicus-SSM Over Southern France. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3366–3375. [Google Scholar] [CrossRef]

	



Liang, J.; Liang, G.; Zhao, Y.; Zhang, Y. A synergic method of Sentinel-1 and Sentinel-2 images for retrieving soil moisture content in agricultural regions. Comput. Electron. Agric. 2021, 190, 106485. [Google Scholar] [CrossRef]

	



Palmisano, D.; Satalino, G.; Balenzano, A.; Mattia, F. Coherent and Incoherent Change Detection for Soil moisture retrieval from Sentinel-1 data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2503805. [Google Scholar] [CrossRef]

	



Entekhabi, D.; Yueh, S.; O’Neill, P.; Kellogg, K.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.; et al. SMAP Handbook Soil Moisture Active Passive: Mapping Soil Moisture Freeze/Thaw from Space; JPL Publication: Pasadena, CA, USA, 2014. [Google Scholar]

	



Takaku, J.; Tadono, T.; Tsutsui, K. Generation of high-resolution global DSM from ALOS Prism. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Suzhou, China, 14–16 May 2014. [Google Scholar]

	



Longden, A.J. Meteomatics. In Proceedings of the 102nd American Meteorological Society Annual Meeting, Houston, TX, USA, 23–27 January 2022. [Google Scholar]

	



Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]

	



Sun, R.Y. Optimization for Deep Learning: An Overview. J. Oper. Res. Soc. China 2020, 8, 249–294. [Google Scholar] [CrossRef]

	



Bai, J.; Cui, Q.; Zhang, W.; Meng, L. An approach for downscaling SMAP soil moisture by combining Sentinel-1 SAR and MODIS data. Remote Sens. 2019, 11, 2736. [Google Scholar] [CrossRef]

	



Millard, K.; Richardson, M. Quantifying the relative contributions of vegetation and soil moisture conditions to polarimetric C-Band SAR response in a temperate peatland. Remote Sens. Environ. 2018, 206, 123–138. [Google Scholar] [CrossRef]

	



Çelik, M.F.; Erten, E. Biophysical parameter estimation of crops from polarimetric synthetic aperture radar imagery with data-driven polynomial chaos expansion and global sensitivity analysis. Comput. Electron. Agric. 2022, 194, 106781. [Google Scholar] [CrossRef]

	



Benninga, H.J.F.; van der Velde, R.; Su, Z. Impacts of radiometric uncertainty and weather-related surface conditions on soil moisture retrievals with Sentinel-1. Remote Sens. 2019, 11, 2025. [Google Scholar] [CrossRef]

	



Yuzugullu, O.; Lorenz, F.; Fröhlich, P.; Liebisch, F. Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping. Remote Sens. 2020, 12, 1116. [Google Scholar] [CrossRef]








[image: Remotesensing 14 05584 g001 550] 





Figure 1. The spatial distribution of ISMN sites. Red dots display the distribution of 103 stations with reliable data. 
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Figure 2. Ternary plot of the soil class distribution of ISMN sites. 
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Figure 3. The overall process chart of the study, starting from data sources and ending with the final-user output. 
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Figure 4. Accuracy of the best-performing LSTM model according to epoch. The upper figure shows the training progress of the model w.r.t. loss value per epoch, and the lower figure shows the change in accuracy w.r.t.   R 2   and RMSE. 
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Figure 5. The scatter plot (top left and right) and distribution graph (bottom left and right) of (a) training and (b) testing data of windows size 5. 
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Figure 6. Overall MAE for land cover classes. 
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Figure 7. Model performance w.r.t. NDVI variation. (a) Scatter plot shows the distribution of MAE vs. NDVI relationship for each station. (b) Violin plots representing the statistical distribution of actual and predicted temporal SM data at the ISMN stations with their minimum and maximum NDVI values. 
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Figure 8. Time series of SM predictions during the testing period for stations 816, 827, and 1572. 
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Figure 9. Soil texture ternary plot w.r.t. MAE of each station. The circles are scaled based on their MAE value and are colored based on NDVI    m e a n   . 






Figure 9. Soil texture ternary plot w.r.t. MAE of each station. The circles are scaled based on their MAE value and are colored based on NDVI    m e a n   .



[image: Remotesensing 14 05584 g009]







[image: Remotesensing 14 05584 g010 550] 





Figure 10. Time series of SM predictions during the testing period for stations 815, 1541, and 1569. 






Figure 10. Time series of SM predictions during the testing period for stations 815, 1541, and 1569.



[image: Remotesensing 14 05584 g010]







[image: Remotesensing 14 05584 g011 550] 





Figure 11. Overall mean absolute error for first-order (a) and second-order (b) Köppen–Geiger climate classes [59]. 
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Table 1. Data used in this research provided with its descriptions, spatial, and temporal resolutions.
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	Category
	Feature Description
	Spatial Res.
	Temporal Res.





	Climate Data 1
	T(   ∘  C), ET (mm) & P (mm)
	1 to 5 km
	Daily



	Satellite Data 2 (S1)
	VV, VH & VH/VV
	10 m
	6–12 days



	Satellite Data (SMAP)
	Surface & Subsurface SM (mm)
	10 km
	3 days



	Soil Texture
	Sand, Clay, Silt (%)
	Point-wise
	Constant Values



	Topographical Data 3
	H (m), S (   ∘  ), A (   ∘  ), HS (   ∘  )
	30 m
	Constant Values



	Soil Moisture Data
	SM of top 5 cm (m   3  /m   3  )
	Point-wise
	15 min







1 T: temperature, ET: evapotranspiration, P: precipitation, 2 S1 backscatter coefficients in linear scale, 3 H: elevation, S: slope, A: aspect, HS: hillshade.
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Table 2. The statistics of features used in the study.
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	Feature
	Mean
	Std
	Feature
	Mean
	Std





	Temperature (T)
	8.81
	11.03
	Sand
	42.81
	13.91



	Evapotranspiration (ET)
	2.80
	1.96
	Clay
	18.77
	6.90



	Precipitation (P)
	2.64
	11.01
	Silt
	38.42
	10.87



	VV
	0.019
	0.019
	Elevation (H)
	1400.48
	1150.57



	VH
	0.088
	0.076
	Slope (S)
	7.55
	7.16



	VH/VV
	0.229
	0.281
	Aspect (A)
	162.99
	104.83



	SMAP SM (Surface)
	14.70
	8.62
	Hillshade (HS)
	180.10
	23.09



	SMAP SM (Subsurface)
	52.56
	37.97
	Soil Moisture (SM)
	0.18
	0.12
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Table 3. Accuracy of LSTM models with different window size.
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Window Size

	
Train

	
Test




	
    R 2    

	
RMSE

	
ubRMSE

	
MAE

	
    R 2    

	
RMSE

	
ubRMSE

	
MAE






	
1

	
0.701

	
0.069

	
0.069

	
0.053

	
0.695

	
0.071

	
0.071

	
0.053




	
5

	
0.922

	
0.035

	
0.035

	
0.026

	
0.871

	
0.046

	
0.045

	
0.033




	
10

	
0.922

	
0.035

	
0.044

	
0.026

	
0.859

	
0.048

	
0.048

	
0.035




	
30

	
0.900

	
0.040

	
0.040

	
0.029

	
0.837

	
0.052

	
0.048

	
0.038
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Table 4. Hyperparameter ranges of LSTM model and selected values for the last five days window size.
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	Hyperparameters
	Tested
	Selected





	Hidden Layer
	1, 2, 3
	2



	Unit Size
	32, 64, 128
	32



	Learning Rate
	0.01, 0.001, 0.0001
	0.001



	Activation Function
	Adam, Adamax, SGD
	Adamax



	Epoch Number
	1000–1500
	1000



	Dropout Rate
	0–0.5
	0.25
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Table 5. Accuracy analysis of LSTM with different features set.
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Case No.

	
Train

	
Test




	
    R 2    

	
RMSE

	
ubRMSE

	
MAE

	
    R 2    

	
RMSE

	
ubRMSE

	
MAE






	
Case-I

	
0.366

	
0.101

	
0.101

	
0.082

	
0.337

	
0.105

	
0.104

	
0.085




	
Case-II

	
0.663

	
0.074

	
0.074

	
0.057

	
0.651

	
0.076

	
0.076

	
0.058




	
Case-III

	
0.875

	
0.045

	
0.045

	
0.033

	
0.843

	
0.051

	
0.051

	
0.037




	
Case-IV

	
0.908

	
0.038

	
0.038

	
0.028

	
0.860

	
0.048

	
0.046

	
0.034




	
Case-V

	
0.922

	
0.035

	
0.035

	
0.026

	
0.871

	
0.046

	
0.045

	
0.033
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