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Abstract: The tire-road peak adhesion coefficient (TRPAC), which cannot be directly measured by
on-board sensors, is essential to road traffic safety. Reliable TRPAC estimation can not only serve the
vehicle active safety system, but also benefit the safety of other traffic participants. In this paper, a TR-
PAC fusion estimation method considering model uncertainty is proposed. Based on virtual sensing
theory, an image-based fusion estimator considering the uncertainty of the deep-learning model and
the kinematic model is designed to realize the accurate classification of the road surface condition on
which the vehicle will travel in the future. Then, a dynamics-image-based fusion estimator consider-
ing the uncertainty of visual information is proposed based on gain scheduling theory. The results of
simulation and real vehicle experiments show that the proposed fusion estimation method can make
full use of multisource sensor information, and has significant advantages in estimation accuracy,
convergence speed and estimation robustness compared with other single-source-based estimators.

Keywords: tire-road peak adhesion coefficient; vehicle dynamics; machine vision; uncertainty handling;
multi-sensor fusion; intelligent vehicle; intelligent transportation system

1. Introduction
1.1. Motivation

The interaction force between the tire and the road is the result of the complex inter-
action between the tire rubber and the road surface, and the interaction force is also one
of the main factors affecting the stability of the vehicle chassis [1,2]. The tire-road peak
adhesion coefficient (TRPAC) is defined as the ratio of the tire peak adhesion force to the
tire vertical load, which can characterize the tire-road adhesion ability. If precise and real-
time TRPAC estimation of the current road can be realized, it is possible to minimize the
probability of serious traffic accidents under harsh road surface conditions (e.g., slippery
roads, snow-covered roads, etc.). TRPAC is one of the important factors to ensure the safety
of traffic participants. However, TRPAC cannot be directly measured by on-board sensors.

1.2. Related Work

TRPAC is especially critical for automotive active safety control systems, such as anti-
lock braking system (ABS) and traction control system (TCS). Many scholars have proposed
TRPAC estimation methods based on the tire dynamic response measured by low-cost on-
board sensors. The tire dynamics-based methods can be mainly divided into two categories:
longitudinal dynamics-based and lateral dynamics-based methods. Longitudinal dynamics-
based estimation methods mainly depend on the relationship between the longitudinal
tire force and slip rate in the tire model. Generally, state observers based on different tire
models (e.g., Magic Formula [3], Burckhardt [4], LuGre [5]) were designed to estimate
TRPAC under acceleration and braking conditions. Lateral dynamics-based estimation
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methods are mainly established based on the relationship between the lateral tire force
or tire alignment torque and the tire slip angle in the tire model. Based on Brush [6,7],
TMSimple [8,9] and other tire models, Kalman filter-based or state observer-based methods
were extensively studied to estimate TRPAC under steering maneuver conditions.

The working conditions of dynamics-based estimators (DEs) are easily satisfied based
on the vehicle state data provided by on-board sensors. However, the identification
accuracy of DEs strongly depends on the tire modeling accuracy. In addition, sufficient road
excitation is necessary to ensure the obvious differences in the tire mechanical characteristic
curves under different road adhesion conditions. In highly dynamic and complex excitation
conditions, the convergence speed and accuracy of DE will face severe challenges.

With the improvement of vehicle intelligence, an increasing number of vehicles are
equipped with environmental perception sensors, such as cameras and lidars. The percep-
tion information fed back by such sensors is predictive, which brings a new development
opportunity for research on vehicle state parameter estimation [10]. Considering that
cameras are the primary sensors for intelligent vehicles, the representative literature on
image-based estimators (IEs) will be reviewed below. The image texture and color fea-
ture information extracted by the gray level co-occurrence matrix was utilized to train
a support vector machine (SVM) for the classification of road surface conditions [11–13].
In recent years, convolutional neural networks have been widely employed in various
fields. Roychowdhury et al. [14] designed a deep learning-based two-stage estimation
method to classify roads into snow, slush, wet and dry asphalt. Cheng et al. [15] proposed
a deep learning-based method for the classification of road surface condition, and a new
activation function was constructed to make the model have better generalization and
classification performance. Based on high-definition cameras, Du et al. [16] used a local
binarization algorithm and gray-level co-occurrence matrix to extract the spatial feature
texture information of road images and concatenated the feature information into a mod-
ified VGGNet to estimate road adhesion levels. Since the camera can sense the driving
road ahead in advance, the estimation results of IEs are predictive and there is no need for
specific road excitation input. However, the disadvantage is that it is easily disturbed by
external environmental factors, which will cause the degradation of sensor measurement
information and aggravate the uncertainty of the model [17].

Considering the advantages of different sensors, some scholars designed fusion es-
timation methods based on multi-sensor fusion. Considering the noise of the sensor,
Chen et al. [18] proposed a fusion estimation method based on data fusion in the frequency
domain, which used the frequency spectrum of the in-wheel motor drive system and the
steering system to obtain the longitudinal and lateral dynamic responses, respectively. Then
the recursive least square algorithm was applied to estimate TRPAC. Combining the pre-
dictability of IE and the robustness of DE, Svensson et al. [19] proposed a fusion estimation
method based on Gaussian process regression. However, the tuning of hyperparameters
in Gaussian process regression limits the application of this method to different driving
conditions. The overall performance of fusion estimation is bounded by the performance
of a single estimator.

1.3. Contribution

In this paper, aided by prior visual information, a dynamics-image-based fusion
estimator (DIFE) considering model uncertainty is proposed to accelerate the convergence
rate of DE for accurate and robust TRPAC estimation. The main contributions of this paper
are summarized as follows: (1) Considering the model uncertainty caused by external
interference, an image-based fusion estimator (IFE) based on virtual sensing theory is
proposed to output the identification results and visual information confidence of the
upcoming road area ahead of the vehicle; (2) Combining the robustness of DE to external
interference and the high sensitivity and predictability of IE for sudden changes in road
surface conditions, a TRPAC fusion estimation method with the assessment of visual
information confidence is established; (3) Simulation and real vehicle experiments were
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carried out for each module to verify the effectiveness of the proposed TRPAC fusion
estimation method.

1.4. Paper Organization

The rest of this paper is organized as follows: In Section 2, a fusion estimation frame-
work considering model uncertainty is constructed, which consists of an image-based
fusion estimator (IFE) and a dynamics-image-based fusion estimator (DIFE). In Section 3,
the IFE considering model uncertainty is described, including road feature identification
module based on multi-task learning and temperature scaling, and a fusion identification
module based on improved Dempster-Shafer evidence theory (DSET). The spatiotemporal
transformation strategy for identification results is introduced. In Section 4, considering
visual information confidence, a DIFE is established based on the fusion of DE and IFE. In
Section 5, the performance validation of the proposed IFE is presented. Then, simulation
and experimental validation are performed to test the effectiveness of the proposed DIFE.
Finally, the conclusions are summarized in Section 6.

2. Estimation Framework

Considering the critical problems in the estimation of TRPAC, such as slow conver-
gence and low accuracy caused by low-quality sensor information, a fusion estimation
framework considering model uncertainty as shown in Figure 1 is designed, including
an image-based fusion estimator, and a dynamics-image-based fusion estimator. The esti-
mation process is as follows: (1) The road feature extraction network based on multi-task
learning (MTL) is used to segment the drivable area without shadows; (2) The regions
of interest are selected in the trajectory confidence ellipse region generated by the ego-
vehicle trajectory reckoning module, considering the uncertainty of the kinematic model;
(3) Considering the uncertainty of the deep learning model, the road feature classification
network is calibrated with temperature scaling (TS) to output more reliable classification
confidence of each region of interest; (4) Then, the IFE fusion module is used to fuse the
confidence of each region of interest output by the calibrated road feature classification
network; (5) Finally, a sequence of spatial distributions of IFE estimation results and visual
information confidence is obtained as the prior information to make the proposed DIFE
achieve reliable TRPAC estimation.
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(“CAL” denoted as “calibrated”.) Figure 1. Overall framework of the proposed estimation method considering model uncertainty.
(“CAL” denoted as “calibrated”.)

3. Design of Image-Based Fusion Estimator Considering Model Uncertainty

In order to extract the road surface features from the images collected by the front-view
camera, IE based on the voting strategy [20] was proposed in our previous work. The main
idea is to first use the semantic segmentation network to segment the drivable area and
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extract the regions of interest (ROIs) from the obtained drivable area segmentation mask.
Based on the classification network model, the class with the largest number of votes will
be determined as the identification result. Finally, the estimated TRPAC is obtained through
the established mapping relationship between the classification result and the empirical
value of TRPAC.

Since the light sensor of the camera is very sensitive to changes in the external environ-
ment, the image quality of the sensor will be greatly reduced under external interference
such as road shadows, abnormal exposure, and motion blur. As a result, the performance
of IE will also be greatly affected. Therefore, considering the common visual degradation
factors mentioned above, an image-based fusion estimator is proposed to identify the road
surface condition that the vehicle will travel in the future period.

3.1. Road Feature Identification Module Considering Deep-Learning Model Uncertainty

As shown in Figure 2, the road feature extraction network is designed in our previous
work [21]. The network structure is a typical encoder and decoder structure, and the
network parameters of the encoder part are shared to the two decoder branches at the same
time. Each decoder branch undertakes a segmentation task, namely, to achieve drivable
area segmentation and road shadow segmentation.
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Figure 2. Road feature extraction network based on multi-task learning.

Considering the computing power limitation of on-board equipment of intelligent
vehicles, the lightweight neural network ShuffleNet [22] is selected as the road feature
classification model. The basic unit of the ShuffleNet network is improved based on
the residual module of ResNet. It mainly adopts point group convolution and channel
random shuffling, which achieves the purpose of improving computational efficiency and
maintaining classification accuracy. However, due to the inherent noise in the sample
data and insufficient training samples, deep learning models suffer from aleatoric and
epistemic uncertainty [23]. Therefore, the deep learning model still has limitations in
high-risk application scenarios such as medical treatment and autonomous driving, and the
uncertainty estimation of the model is of great significance in the above application fields.

For multi-classification tasks of road surface conditions, the uncertainty distribution
of the model can be obtained by the confidence distribution output by the softmax layer
of ShuffleNet. Due to the uncertainty of deep learning models, deep neural network
models often suffer from overconfidence or underconfidence. The confidence of the model
prediction results does not match the actual accuracy. The model calibration error can be
evaluated based on the quantitative index: the expected calibration error (ECE) and the
maximum calibration error (MCE) [24].

In order to train and calibrate the classification model, a structured road image dataset
containing the samples disturbed by common visual degradation factors is constructed to
expand the sample space of the validation set for subsequent model calibration. Figure 3
shows the samples of the road image dataset based on BDD100K and the self-collected
road image dataset. The constructed road image dataset with noised samples contains
common visual degradation factors (i.e., abnormal exposure, motion blur, road shadow).
BDD100K provides image data of dry asphalt road and wet asphalt road. The self-collected
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dataset provides image data of snow/ice road and supplements the image data of dry
asphalt road. The image data augmentation library Albumentations [25] is used to generate
abnormal exposure and motion blur interference. Some abnormal exposure interference in
the self-collected dataset is generated by adjusting the camera exposure gain.
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Considering the large workload of manual extraction from the entire image, first the
original road image data are divided according to the road surface condition (i.e., dry
asphalt, wet asphalt and snow/ice). Then, the trained road feature extraction network
model is used to automatically segment the drivable area and extract the road image parts.
The distribution of the constructed road image part dataset is presented in Table 1.

Table 1. The distribution of the constructed road image part dataset with noised samples.

Title 1 Dry Asphalt Wet Asphalt Snow/Ice

Training set (normal) 4258 2442 1214
Validation set (normal) 1075 617 299
Validation set (noised) 750 450 221

In Table 1, it is worth noting that the training set in the constructed dataset in this
paper does not contain the road image parts extracted from the noised samples and only
contains noised samples in the validation set. This can prevent the model from learning
noised features to avoid a significant drop in the model’s prediction accuracy for regular
samples. The training loss function is set to cross-entropy loss. The Adam optimizer is also
used to train the model, and the initial learning rate is set to 0.0001.

Model calibration methods mainly include regularization calibration methods based
on modified training loss function and postprocessing calibration methods based on valida-
tion set. Since the addition of noised samples in the training set will make the model learn
relevant noised features, the regularization method based on adjusting the loss function
may lead to the model underfitting, so the temperature scaling [24] in the postprocessing
calibration method is chosen to calibrate the original ShuffleNet model.

Temperature scaling is a soft label smoothing technology. The main principle is to
introduce a temperature coefficient T into the original softmax function to smooth or
sharpen the logic vector output by the model. When T > 1, the information entropy
of the confidence distribution of the model output will increase, and the model output
will become smooth to alleviate the overconfidence of the model. When T ∈ (0, 1), the
information entropy of the confidence distribution of the model output will decrease, and
the model output will become sharp to alleviate the underconfidence of the model. In
addition, since the temperature scaling factor T is a parameter greater than zero, the order
of the dimensions of the output logic vector after temperature scaling will not change. As
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a result, the model calibration method based on temperature scaling will not affect the
classification performance of the model. The temperature scaling factor can be learned by
optimizing the cross-entropy loss function of the validation set. The learning process of the
temperature scaling factor is shown in Figure 3.

The reliability diagrams of the classification model before and after calibration are
presented in Figure 4, respectively. As can be seen from Figure 4, the model confidence
of the uncalibrated model does not match the actual average accuracy, and the degree of
overconfidence is large. Overconfidence of the model is generally caused by the cross-
entropy loss function used for training. During the training process of the model, only the
dimension of the label corresponding to the maximum value in the confidence distribution
participates in the calculation of the loss function, and the relationship between the real
label and other labels is ignored, so the output of the model may be extremely biased
toward one class, which makes the model overconfident. It can be seen from Figure 4b that
both the expected calibration error (ECE) and the maximum calibration error (MCE) of the
model are significantly reduced, indicating that the model is well calibrated.
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3.2. Ego-Vehicle Trajectory Reckoning Module Considering Kinematic Model Uncertainty

Existing image-based road recognition methods usually only process the front-view
image provided by the camera. Due to the perspective effect of the obtained front-view
image, the representative area of the obtained prediction result is often large, and the
processing of irrelevant areas in the image may interfere with the final identification result
and reduce the computational efficiency. Therefore, in order to accurately identify the
road surface condition of the area that the front wheels will pass through, an ego-vehicle
trajectory reckoning module considering kinematic model uncertainty is introduced.

Considering that most of the existing mass-produced vehicles are still at the partial
driver assistance level below L3, there is no reference trajectory provided by the decision-
making and planning system. In addition, most of the vehicle’s driving conditions do not
involve extreme driving conditions, so the ego-vehicle trajectory is reckoned based on the
extended kinematic bicycle model.

As shown in Figure 5, taking the vehicle acceleration a and the front wheel steering
angle δ f as the control input, the vehicle single-track kinematics model in the inertial
coordinate system can be established. In order to reckon the trajectory of the left and right
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front wheels, the single-track bicycle model can be extended to the double-track form, as
shown in Equation (1).

xL(k) = x(k) + l f cos(ψ(k))− b
2 sin(ψ(k))

yL(k) = y(k) + b
2 cos(ψ(k)) + l f sin(ψ(k))

xR(k) = x(k) + l f cos(ψ(k)) + b
2 sin(ψ(k))

yR(k) = y(k)− b
2 cos(ψ(k)) + l f sin(ψ(k))

(1)

where xL, yL are the horizontal and vertical coordinates of the left front wheel in the inertial
coordinate system, respectively, xR, yR are the horizontal and vertical coordinates of the
right front wheel in the inertial coordinate system, respectively, and b is the front wheel
track, ψ is the vehicle yaw angle, v is the vehicle speed, and l f , lr are the distances between
the vehicle center of gravity and the front or rear axles, respectively.
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Due to the uncertainty of driving behavior, the reckoned ego-vehicle trajectory based
on the kinematic model will not be completely consistent with the real trajectory. Gen-
erally, it can be considered that the reckoned trajectory is relatively accurate in a short
time, and the relative error of the reckoned trajectory in a long time is relatively large.
Therefore, it is necessary to establish the uncertainty distribution to better characterize the
trajectory distribution.

It can be seen from Equation (1) that the system variables that directly affect the
reckoned trajectory are the coordinates of the vehicle center of gravity x, y and the vehicle
yaw angle ψ. For the modeling of vehicle state uncertainty, the uncertainty of the vehicle
state can be described as a Gaussian distribution [26]. Therefore, the Gaussian distribution
shown in Equation (2) is used to describe the uncertainty of the above system variables.

∑x,y,ψ∼ N
(

0, σ2
x,y,ψ

)
(2)

Since the error of the reckoned trajectory will continue to be superimposed, assuming
that the system state variable X =

[
x y vx vy

]T changes linearly, the state prediction
equation considering the uncertainty distribution is derived as follows.{

X(k + 1) = FX(k) + W
P(k + 1) = FP(k)FT + Q

(3)

where P represents the system uncertainty distribution (i.e., system covariance distribution),
the definitions of the state transition matrix F and the noise covariance matrix Q are shown
in Equation (4). Due to the high consistency of the lateral distribution of the road surface,
in order to facilitate the extraction of ROIs, σ2

x = k1v and σ2
y = k2v (k1 < k2) can be set.

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

, Q =


0 0 0 0
0 0 0 0
0 0 σ2

x 0
0 0 0 σ2

y

 (4)

where ∆t is the sampling period, σ2
x and σ2

y are the uncertainty variances of the horizontal
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and vertical coordinates of the vehicle center of gravity, respectively.
It can be seen from Equation (3) that with the increase of the recursion time, the

uncertainty distribution variance of the reckoned trajectory will increase. Therefore, a
95% confidence ellipse with a certain step interval can be set to represent the uncertainty
distribution of the reckoned trajectory.

3.3. Fusion Module Based on Improved DSET

In our previous work, the class corresponding to the maximum number of candidate
ROIs in a frame is defined as the prediction result of the frame [20]. Considering that in
real driving scenarios, the accuracy of model recognition cannot reach 100%. Moreover, it
is easily interfered with by various external environmental factors, causing the estimation
results to oscillate. Therefore, the image-based fusion module based on improved DSET
is added for subsequent high-quality fusion of IE with DE. The main idea is to define
candidate ROIs as virtual sensors to make them form redundant sensor networks. The
confidence distribution output by the calibrated road feature classification model is defined
as the evidence, and the visual information confidence of the candidate confidence ellipse
region is defined. Then, the improved DSET is used to obtain the fusion prediction results
and visual information confidence.

For the subsequent extraction of candidate ROIs, it is necessary to project the uncer-
tainty distribution of the reckoned trajectory based on the vehicle coordinate system into
the image coordinate system.

It is assumed that the road where the vehicle is located is flat, and the coordinate in
the vehicle coordinate system is defined as Pv = (xv, yv, 0)T . The origin of the vehicle
coordinate system is the center of the front axle of the vehicle. The coordinate in the
image coordinate system is Pi = (xi, yi)

T , and the origin is the upper left corner pixel
of the image. The coordinate in the camera coordinate system is Pc = (xc, yc, zc)

T . The
following transformation relationship between the camera coordinate system and the image
coordinate system is derived.

Pi =
Tci
cn

Pc (5)

where cn is the normalization coefficient, and Tci is the camera internal parameter matrix
obtained by calibration.

Based on Equation (5), the transformation relationship from the image coordinate
system to the vehicle coordinate system can be expressed as:

Pi =

(
Tci
cn

Tcv

)
Pv = HcvP (6)

where Pv and Pi represent the normalized vehicle coordinate system coordinates and image
coordinate system coordinates, respectively, Tcv is the camera extrinsic parameter matrix
obtained by calibration, and Hcv is the transformation matrix from the vehicle coordinate
system to the image coordinate system.

A sample of the reckoned trajectory and uncertainty distribution of the reckoned
trajectory in the vehicle coordinate system is shown in Figure 6. The sample after projection
to the image coordinate system is shown in Figure 7.

Considering that if the candidate ROIs are extracted directly based on the center of the
candidate confidence ellipse within the reckoned trajectory, the following problems may
be caused: (1) The extracted part of the road surface area is limited, and the identification
result is easily disturbed by the external environment; (2) The identification results of the
candidate ROI are not representative of the local region. In the image coordinate system,
the feature details of the image near the vehicle are richer, and the feature details of the
image far away from the vehicle are slightly blurred. Therefore, based on the distance from
the vehicle, the confidence ellipses within the selected image regions can be grouped to
extract candidate ROIs.
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Based on the above analysis, a method for extracting candidate ROIs in the confidence
ellipse region is proposed as shown in Figure 8. Firstly, the selected area in the vehicle
coordinate system is divided into grids with size a, and then the coordinates of the corner
points of the divided grids are projected and transformed. The total number of corner
points covered by road shadows in the group of confidence ellipses nrs, the total number of
grid corner points in the group of confidence ellipses nell , and the proportion of non-shaded
grid corner points in the group of confidence ellipses putil are calculated, respectively. If
the number of remaining coverage grids in the confidence ellipse region without shadow
coverage (nell − nrs) ≤ 1, it means that the available area is too small, then exit the
algorithm and continue to search for the next candidate group of confidence ellipses.
Otherwise, the b sets of grid corners are randomly sampled in the confidence ellipse region
without shadow coverage according to the relative distance, and finally the sequence of
candidate ROIs in the confidence ellipse region is output.

The extraction process of the proposed candidate ROIs extraction method is shown
in Figure 9. It is worth noting that both the grid size a and the random sampling group
number of the grid corners b will affect the extraction efficiency and accuracy of candidate
ROIs. In this paper, a = 0.02 m is selected based on reasonable experiments. Since the
feature details in the confidence ellipse region with a farther distance from the vehicle are
more blurred, it is necessary to sample the image features in the farther region multiple
times and select b = 4/6/8, respectively.
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After obtaining candidate ROIs, inspired by virtual sensing theory, a fusion method
based on improved DSET is designed. A virtual sensor is a unique form of sensor, which
outputs the required measurement information based on the established mathematical
and statistical analysis model. The measurements derived from the mathematical model
are defined as outputs of virtual sensors [27]. The candidate ROIs extracted in each frame
are regarded as virtual sensors. The measurement information is defined as the predicted
probability of each road surface condition output by the calibrated road feature classification
model. Based on the rich measurement information of road surface conditions provided
by the constructed redundant virtual sensor network, the improved DSET is used to fuse
them to ensure the stability and accuracy of the IFE estimation results.

DSET is a data fusion method that can objectively deal with ambiguous and uncertain
information. By combining the independent judgments of multiple incompatible bodies of
evidence on the sub-propositions of the identification framework, more reliable conclusions
can be drawn than with a single source of information [28].
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In this paper, the DSET combinational rule can be derived as follows:
K = ∑

S1∩···∩Sn 6=∅
m1(S1) ·m2(S2) · · ·mn(Sn)

Prd
Fusion = 1

K ∑
S1∩S2∩···∩Sn=rd

m1(S1) ·m2(S2) · · ·mn(Sn), rd = dry, wet, snow
(7)

where Sn is defined as a virtual sensor (i.e., evidence in DSET), m(·) is the basic probability
assignment of each road surface condition in each piece of evidence, K is the conflict
coefficient, which can measure the degree of conflict between evidence, Prd

Fusion is the fusion
confidence corresponding to a certain class of road surface condition.

However, the basic DSET still has the following two problems in practical applica-
tions: (1) The fusion problem when a strong conflict exists between evidence. The DSET
combinational rule may not be able to combine the known evidence; (2) The problem of
the basic probability assignment generation of evidence. The generation result of the basic
probability assignment will directly affect the fusion result output by the system. The basic
DSET defaults that the weight of each evidence is the same. When the evidence is strongly
conflicting, it leads to abnormal fusion results.

In order to solve the problem of abnormal fusion results caused by strong conflicts
between evidence, the historical identification results are used to assign different weights
to the evidence corresponding to each road surface condition. As a result, a new basic
probability assignment is constructed and the weights in it are updated online.

The constructed new basic probability assignment is shown in Equation (8).
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 m(rd) =
wdry ·∑ Pdry+wwet ·∑ Pwet+wsnow ·∑ Psnow

ndry ·wdry+nwet ·wwet+nsnow ·wsnow

m0(rd) = m(rd)
m(dry)+m(wet)+m(snow)

, rd = dry, wet, snow
(8)

where Pdry, Pwet, and Psnow represent the confidence of each class of candidate ROIs output
by the road feature classification model, wdry, wwet, and wsnow represent the evidence weight
corresponding to different road surface conditions, ndry, nwet, and nsnow represent the
number of candidate ROIs classified as different road surface conditions, and m0(rd) is the
normalized basic probability assignment corresponding to a certain road surface condition.

Considering that the road surface condition changes very slowly within a certain
sampling time, an online update strategy for the evidence weight shown in Equation (9) is
proposed to make the fusion result as stable as possible. In addition, if there is no candidate
ROI or only a single ROI in a certain frame, the class corresponding to the maximum weight
value can be defined as the prediction result based on the historical information.

w−rd(k)= sigmoid
[
wrd(k− 1) + σ ·

(
nrd
nact
− wrd(k− 1)

)]
, rd = dry, wet, snow

wrd(k) =
w−rd(k)

w−dry(k)+w−wet(k)+w−snow(k)
, rd = dry, wet, snow

(9)

where w−rd(k) is the updated weight of the road surface condition rd at time k, wrd(k− 1)
is the normalized weight of the road surface condition rd at time (k− 1), wrd(k) is the
normalized weight of road surface condition rd at time k, nact is the total number of
extracted candidate ROIs, nrd is the number of candidate ROIs predicted by ShuffleNet
as road surface condition rd, and σ is a relaxation factor that balances update rate and
update stability.

Based on the candidate ROIs extraction method shown in Figure 8, the obtained
sequence of candidate ROIs can be input into the calibrated road feature classification
model for uncertainty distribution estimation. Based on the proposed fusion method based
on improved DSET, the fusion prediction results and fusion confidence PFusion

i in a single
group of confidence ellipses can be obtained. Therefore, the visual information confidence
Qv for a single group of confidence ellipses within the uncertainty distribution can be
defined as follows.

Qv = putil · PFusion
i (10)

where putil is the proportion of the available area in the candidate confidence ellipse region
of group i. Considering the subsequent fusion, the visual information confidence flag is
defined. After a reasonable experiment, when Qv > 0.5, the flag is set to flag “1”.

3.4. Spatiotemporal Transformation Strategy for Identification Results

Since the visual information is predictive, it is necessary to consider the algorithm
processing time and the camera image acquisition cycle to perform spatiotemporal transfor-
mation processing on the identification results of the proposed IFE. The vehicle speed in the
geodetic coordinate system is defined as vx, and P0 represents the preview distance from
the image captured by the camera to the front wheel of the vehicle. When the algorithm
finishes processing one frame, P2 represents the current center position of the front wheel
of the vehicle in the geodetic coordinate system derived from the reckoned trajectory. Con-
sidering that the feature details near the vehicle are rich, this paper chooses to update the
identification results of each frame in real time, and then the displacement stamp (Xlb, Xub)
of the final identification results of the frame in the geodetic coordinate system can be
obtained as follows. {

Xlb = P2 + P0 −
∫ ∆t1

0 vx dt
Xub = P2 + P0 −

∫ ∆t1
0 vx dt +

∫ ∆t2
0 vx dt

(11)

where ∆t1 is the processing time of the algorithm for one frame, and ∆t2 is the cycle time of the
camera to capture the image. Here, ∆t1 = ∆t2 is set for subsequent synchronization processing.
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The spatial position relationship in the spatiotemporal transformation strategy is
shown in Figure 10, including the image coordinate system and the vehicle coordinate
system at the corresponding moment of the frame. P1 is the vehicle’s front wheel position
in the geodetic coordinate system when the camera captures the frame. After the algorithm
processing time ∆t2, the vehicle reaches the position P2 as shown in Figure 10, and the
identification results of all groups of the candidate confidence ellipses in the red trapezoid
can be obtained. Based on the frame-by-frame update strategy selected in this paper, the
identification results corresponding to the coordinate (P0, P0 + Xub − Xlb) in the vehicle
coordinate system corresponding to the displacement stamp (Xlb, Xub) in the geodetic
coordinate system can be recorded as the final identification results of the frame. The
preview distance set in this paper is P0 = Xlb − P1 = 2.5 m, which is the distance between
the bottom of the red trapezoid in Figure 10 and the center of the front wheel of the vehicle.
The preview distance can be adjusted according to the application requirements.
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4. Design of Dynamics-Image-Based Fusion Estimator
4.1. Modeling

The wheel dynamics model can be expressed as follows:

.
ω =

1
Iω

[Tm − Fx(θ, λ, Fz) · R] (12)

λ =
sgn(ω · R− vx) · (ω · R− vx)

max(ω · R, vx)
(13)

where Fx(θ, λ, Fz) is the longitudinal tire force, θ is the TRPAC, λ is the wheel slip rate, Tm
is the wheel driving or braking torque loaded at the wheel, R is the wheel rolling radius, Iω

is equivalent rotational inertia, vx is the longitudinal vehicle speed, ω is the wheel angular
velocity and Fz is the tire vertical load.

In order to better describe the performance of tire mechanical properties, the original
Dugoff tire model is modified by introducing a correction factor [29]. The mapping rela-
tionship between road surface conditions and TRPAC is set based on statistical empirical
values. Hence, 0.8, 0.6 and 0.2 are set as the TRPAC statistical empirical values of dry
asphalt, wet asphalt and snow/ice, respectively [30].

4.2. Fusion Estimator Design

As shown in Equations (14)–(16), a nonlinear state observer for TRPAC and longitudi-
nal tire force is designed based on the theory of disturbance observation [31].

F̂x =
Iω

R
(s + Kω)− Fz · µ(θ̂, λ) (14)
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.
s = − K

Iω
(Tm + RF̂x) +

R
Iω
· ∂µ(θ̂, λ)

∂θ
·

.
θ̂ (15)

.
θ̂ = γ[θ(λ, F̂x)− θ̂] (16)

where F̂x is the estimated longitudinal tire force, s is the intermediate variable in the
estimator construction, K is the gain of longitudinal tire force estimator, µ(θ̂, λ) is the
utilized adhesion coefficient obtained by inputting the estimated value of TRPAC and slip
rate into the tire model, θ̂ is the estimated value of TRPAC, γ is the gain of TRPAC estimator,
and θ(λ, F̂x) is the unique solution of TRPAC obtained by substituting the estimated values
of slip rate and longitudinal tire force into the tire model.

Since the mapped empirical estimated value θ̂img of the proposed IFE is based on
a large number of statistics, the difference between the mapped empirical value of the
proposed IFE and the reference value of TRPAC

∣∣∣θ̂img − θre f

∣∣∣ can be considered to be a
bounded small value. Therefore, considering the uncertainty of visual information, a
dynamics-image-based fusion estimator as shown in Equation (17) can be constructed.

.
θ̂ = γ[θ(λ, F̂x)− θ̂ + ε · Kv

(
θ̂img − θ̂

)
(17)

where ε is the visual information confidence factor, corresponding to the visual information
confidence flag of the IFE, and Kv is the auxiliary gain based on the visual information.

When
∣∣θ̂img − θ̂

∣∣ is large, the auxiliary gain Kv should be also large to assist the estima-
tor to converge quickly. When the visual information confidence is low, the interference
caused by inaccurate visual information should be avoided. The DIFE for this case can be
derived as follows: 

.
θ̂ = γ[θ(λ, F̂x)− θ̂] if ε = 0
.
θ̂ = γ[θ(λ, F̂x)− θ̂] + ε · Kv

(
θ̂img − θ̂

)
if ε = 1

(18)

When
∣∣θ̂img − θ̂

∣∣ is small, the auxiliary gain Kv should be also small to make the
estimator converge stably. The visual information at this time does not contribute to the
DIFE. The DIFE for this case is shown in Equation (19).

.
θ̂ ≈ γ[θ(λ, F̂x)− θ̂] (19)

Furthermore, the DIFE should stop working when the road excitation is insufficient
to obtain the ideal estimated value of TRPAC. Based on the above analysis, a fuzzy logic
controller is designed to dynamically optimize the auxiliary gain Kv and the slip rate-based
road excitation threshold to trigger the DIFE.

As shown in Table 2 and Figure 11, the mapped empirical estimated value θ̂img and the
difference between the mapped empirical value of the proposed IFE and the estimated value
of TRPAC

∣∣θ̂img − θ̂
∣∣ are defined as the membership function inputs of the designed fuzzy

logic controller, and the road excitation threshold and the auxiliary gain Kv are defined
as output. The domains of θ̂img and

∣∣θ̂img − θ̂
∣∣ are set to [0, 1] and [0, 1.2], respectively.

The domains of the road excitation threshold to trigger the DIFE and the auxiliary gain
Kv are set to [0, 0.06] and [0, 3], respectively. The input and output are fuzzified into the
membership degrees: S (small), M (medium) and B (large).

Table 2. Fuzzy rules for the road excitation threshold and the auxiliary gain.

θ̂img

∣∣∣θ̂img−θ̂
∣∣∣

S M B

S SS SM SB
M MS MM MB
B BS BM BB
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5. Simulation and Experimental Validation 

The test vehicle in this study is an electric vehicle equipped with four in-wheel mo-

tors, and the main parameters of the test vehicle are shown in Table 3. The motion state 

parameters of the test vehicle (e.g., vehicle longitudinal and lateral speed, yaw rate, lon-

gitudinal acceleration, lateral acceleration, and sideslip angle) were measured in real time 

by the inertial navigation unit Oxford®  RT3003 with dynamic real-time differential base 

station installed on the vehicle. The proposed IFE is implemented on an industrial per-

sonal computer (IPC: i9-9800HK CPU, 32 GB RAM) equipped with an NVIDIA 2080 Ti 

GPU. The resolution of the in-vehicle camera is 1920×1200, and the maximum frame rate 

is 40 FPS. The identification results are transmitted to the vehicle controller via CAN bus. 
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5. Simulation and Experimental Validation

The test vehicle in this study is an electric vehicle equipped with four in-wheel mo-
tors, and the main parameters of the test vehicle are shown in Table 3. The motion state
parameters of the test vehicle (e.g., vehicle longitudinal and lateral speed, yaw rate, longi-
tudinal acceleration, lateral acceleration, and sideslip angle) were measured in real time
by the inertial navigation unit Oxford® RT3003 with dynamic real-time differential base
station installed on the vehicle. The proposed IFE is implemented on an industrial personal
computer (IPC: i9-9800HK CPU, 32 GB RAM) equipped with an NVIDIA 2080 Ti GPU. The
resolution of the in-vehicle camera is 1920×1200, and the maximum frame rate is 40 FPS.
The identification results are transmitted to the vehicle controller via CAN bus. Finally, the
fusion estimation is executed in real-time on the vehicle controller. The experimental test
platform is shown in Figure 12.

The vehicle used in the simulation validation is also an electric vehicle, whose param-
eters are the same as shown in Table 3. The simulation validation was performed on the
joint software platform of MATLAB/Simulink and CarSim.
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Table 3. Main parameters of the test vehicle.

Parameter Value

Mass (kg) 1343.8
Wheelbase (m) 2.305

Wheel track (m) 1.356
Height of COG (m) 0.54

Tire rolling radius (m) 0.29
Distance between COG and rear axle (m) 1.193

Motor peak torque (Nm) 320

5.1. Performance Validation for IFE

In order to test the performance of the IFE, this subsection will verify the performance
of the model under the normal scenario and the scenario with environmental interference.
The inference time of the entire IFE framework on this test platform is less than 50 ms. The
test scenario is selected as the test road of the university campus. Test driving maneuvers
mainly include acceleration and deceleration, changing lanes during variable acceleration,
and driving through speed bumps. Due to the limitation of the test vehicle usage, the data
of the variable scene of wet asphalt and snow/ice roads with environmental interference
cannot be directly collected. Therefore, this paper chooses to perform data augmentation
operations on each frame by using the data augmentation library [25] based on the data
collected under the normal scenario. Motion blur with 100% probability and random
contrast and random brightness adjustment with 70% probability are applied to each frame
to construct a disturbed scenario with environmental interference. The evaluation metric of
the performance of the IFE in continuous video scenes is defined as nw, which is the number
of wrong classification results output by the IFE per 100 consecutive frames on average.

5.1.1. Test under the Normal Scenario

It can be seen from the classification results shown in Figure 13b,d that the nw value
of the proposed IFE can be kept below two. However, the nw value of the IE based on the
voting strategy is as high as 21.6621. Obviously, the proposed IFE has better prediction
accuracy and stability. Moreover, it can be seen from Figure 13c,d that some frames
are still classified incorrectly due to the interference of ambient light or the influence of
road surface markings. However, the visual information confidence flags corresponding
to most misclassified frames are determined as the flag “0”, which is judged as poor
visual information quality. Therefore, it plays a role in information prescreening, which is
beneficial to the subsequent fusion of IFE and DE.

5.1.2. Test under the Scenario with Environmental Interference

Figure 14 shows the test results under the scenario with environmental interference. It
can be clearly seen from Figure 14 that the performance of both IFE and IE based on the
voting strategy has been affected by environmental interference. It is worth noting that
the performance of IE based on the voting strategy has dropped significantly, and the nw
value is as high as 31.4714, while the nw value of the proposed IFE can still be maintained
below 13. In addition, it can also be seen from the visual information confidence flag shown
in Figure 14c that most of the IFE classification results corresponding to the flag “0” are
misidentified. This shows that the proposed IFE can better screen the interference infor-
mation to suppress the negative impact of the interference information on the subsequent
fusion estimation system as much as possible.
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Figure 13. Test results under the normal scenario (left front wheel). (a) Evidence weight distribution;
(b) Classification results of the IE based on the voting strategy; (c) Visual information confidence flag
of the IFE; (d) Classification results of the IFE. (“0”, “1” and “2” represent dry, wet and snow/ice
asphalt road, respectively.).
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Figure 14. Test results under the scenario with environmental interference (left front wheel).
(a) Evidence weight distribution; (b) Classification results of the IE based on the voting strategy;
(c) Visual information confidence flag of the IFE; (d) Classification results of the IFE. (“0”, “1” and “2”
represent dry, wet and snow/ice asphalt road, respectively.).

In the example of the test results shown in Figure 15, the road feature extraction
network based on multi-task learning can extract the road feature area without shadow
coverage. In Figure 15e, it can be seen that the road shadow greatly interferes with the
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performance of the IE based on the voting strategy. The proposed IFE can better avoid the
shadow area and output more accurate classification results.
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Figure 15. Example of the test results under the scenario with environmental interference. (a) Input
image with environmental interference; (b) Drivable area mask; (c) Drivable area mask after removing
road shadow; (d) Confidence ellipse region mask after removing road shadow; (e) Classification
results of the IE based on the voting strategy; (f) Classification results of the IFE. (“0”, “1” and “2”
represent dry, wet and snow/ice asphalt road, respectively.).

5.1.3. Specific Test Results of IFE

The specific test results of IFE are summarized in the Table 4.
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Table 4. Specific Test results of IFE.

Scenarios Methods Average Incorrect Classification Results
per 100 Consecutive Frames nw

Normal
IE based on voting strategy [20] 21.6621

IFE 1.5327

w/Interference
IE based on voting strategy [20] 31.4714

IFE 12.8406

5.2. Performance Validation for DIFE
5.2.1. Simulation on Variable Friction Road

In order to verify the performance of the proposed fusion estimation method under
variable friction road, the simulation condition shown in Figure 16 was designed. The
TRPACs of the road were set to 0.9 (simulating a high-friction road), 0.3 (simulating a
low-friction road), and 0.5 (simulating a middle-friction road). The road length of each road
surface condition is 20 m. The vehicle was driven with pulsed acceleration maneuvers to
simulate the intermittent road excitation obtained during real driving maneuvers. To test
the robustness of the fusion estimator system under disturbances, the video data used for
the simulation is noised based on the image data augmentation library [29]. The simulation
result is shown in Figure 17.
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Figure 17. Simulation result. (a) Vehicle speed; (b) Tire slip rate; (c) Start-and-stop flag of the DIFE;
(d) Visual information confidence flag; (e) Auxiliary gain of the DIFE; (f) Estimation result of different
estimators; (g) Estimation error of different estimators.

It can be seen from Figure 17b that due to the acceleration of the vehicle from the
start, the vehicle obtained a brief road excitation, but it was still insufficient. In the initial
stage, both DE and DIFE started to work, but the underestimation of DE was more obvious.
During the following 0.3–5.14 s, the estimated value of DIFE remained relatively stable, and
the estimated value of DE changed slightly due to small road excitations. When the vehicle
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entered the low-friction road at around 5.14 s, the road excitation suddenly increased.
Due to the discontinuity of road excitation, both DE and DIFE had different degrees of
intermittent response. When the road excitation was sufficient, the auxiliary gain increased
rapidly to assist the DIFE to converge quickly. It took DIFE approximately 0.5 s to converge
to the real value, while DE converged slowly with a convergence time as high as 0.9 s.
At about 7.85 s, the vehicle traveled to a middle-friction road. At this time, the vehicle
was unpowered, and the road excitation was insufficient. Therefore, both DE and DIFE
were unresponsive. At approximately 8.14 s, DE and DIFE started to work as the motor
torque increased. After DIFE is triggered, the auxiliary gain increases rapidly to make the
estimated value converge quickly, while it takes DE approximately 1.5 s to converge to near
the real value.

In addition, it is worth noting that, thanks to the visual information confidence flag
shown in Figure 17d, DIFE can better avoid the influence of incorrect IFE estimation results
on the fusion estimation system. It can be seen that DIFE has obvious advantages over
DE, the convergence time is about 0.5 s, and the steady-state convergence error can be
maintained within 0.02 in slippery road conditions (i.e., middle-friction road and low-
friction road).

5.2.2. Vehicle Test on Variable Friction Road

As shown in Figure 18, the total length of the road for the vehicle test is 150 m, and the
rain-fog simulation system was used to treat the road surface as wet and slippery. A BM-3
pendulum friction tester was used to test the TRPAC of the test road, where the TRPAC of
the first 50 m was measured as 1.0 (dry asphalt road) and the TRPAC of the last 100 m was
0.8 (wet asphalt road). The vehicle started from a standstill, and the accelerator pedal was
pulsed to create intermittent road excitation throughout the driving process. The vehicle
test result is shown in Figure 19.
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However, the visual information was used by DIFE in the initial stage, and the auxiliary 

gain increased rapidly, which made the convergence speed significantly faster than DE. 

Figure 19. Vehicle test result. (a) Vehicle speed; (b) Tire slip rate; (c) Start-and-stop flag of the DIFE;
(d) Visual information confidence flag; (e) Auxiliary gain of the DIFE; (f) Estimation result of different
estimators; (g) Estimation error of different estimators.

The road excitation for the test case shown in Figure 19 was discontinuous, thereby
challenging the performance of the estimator. As shown in Figure 19f, the DE convergence
was slow in the initial stage due to the influence of sensor noise at the time of 0–13.3 s.
However, the visual information was used by DIFE in the initial stage, and the auxiliary
gain increased rapidly, which made the convergence speed significantly faster than DE.
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This is because the road excitation was relatively limited, which caused the estimator to
work for a short duration. Based on the auxiliary gain of visual information, DIFE could
make better use of short-lived excitations, so that the estimated values of TRPAC were
fully converged.

In the stage of 13.3–20 s, the convergence of DE was obviously delayed due to insuffi-
cient excitation, while DIFE can not only perceive road changes quickly, but also converge
more smoothly in the steady-state stage, and the estimation error of DIFE was small. The
steady-state estimation error of DIFE is within ±0.03, and the convergence time is within
0.4 s.

5.2.3. Specific Test Results of DIFE

The specific test results of DIFE are summarized in the Table 5.

Table 5. Specific Test results of DIFE.

Condition Methods Steady-State
Estimation Error Convergence Time

Simulation
IFE 0.1~0.5 0.03 s
DE 0.08 1.45~1.6 s

DIFE ≤0.02 ≤0.5 s

Vehicle test
IFE 0.2~0.4 0.03 s
DE >0.09 >4 s

DIFE ≤0.03 ≤0.4 s

6. Conclusions

In this paper, a TRPAC fusion estimation method considering model uncertainty is
proposed to achieve fast and accurate estimation of TRPAC. The results achieved in this
paper are as follows.

(1) Considering common visual degradation factors, an IFE is proposed to achieve ac-
curate classification of the road surface condition on which the vehicle will travel.
The road image is segmented and classified in the road feature identification module
to obtain road features without shadow coverage. Then, the ego-vehicle trajectory
reckoning module is applied to extract the effective road area. Based on the fusion
module, the candidate ROIs on the effective road area are fused to output the defined
visual information confidence and classification results at the same time.

(2) Based on gain scheduling theory, a DIFE considering the visual information confidence
is designed to accelerate the convergence of DE while considering the uncertainty of
visual information. In this way, the influence of incorrect IFE estimation results can
be avoided as much as possible, and the accuracy of TRPAC estimation results can
be ensured.

(3) The performance of the IFE is verified in the vehicle tests under undisturbed and
disturbed scenarios. The effectiveness of DIFE is verified in simulation and real ve-
hicle experiments. The results show that the proposed DIFE has better estimation
robustness and estimation accuracy than other single-source-based estimators. More-
over, the proposed DIFE can quickly respond to dangerous conditions such as sudden
changes in the road surface, which is beneficial to the vehicle active safety system and
intelligent transportation system.
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