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Abstract: The aim of this study was to assess the LULC changes over 26 years from 1995 to 2021
to find the most changed land use conditions within the 25 km territory of the main river systems
of Bangladesh. In addition, the prediction of vulnerable areas for agricultural land use in terms of
inundation by river water was also analyzed. The study area includes river networks distributed
through eight administrative divisions (Rangpur, Rajshahi, Mymensingh, Sylhet, Dhaka, Khulna,
Barishal and Chittagong) of Bangladesh, covering an area of 64,556 km2. The study was conducted by
identifying permanent water bodies from NDWI indices and preparing LULC maps that include the
five main land use classes (water body, bare land, vegetation, agricultural land, and urban area) in the
Google Earth Engine platform using supervised classification. The LULC maps were then analyzed
in the ArcGIS® environment. A vulnerability map for agricultural land use was also prepared
using a fuzzy expert-based system applying multicriteria analysis. From the land use land cover
map of the study area, it was found that among the five land use classes, water bodies, bare land,
vegetation, and urban areas increased in size by 3.65%, 2.18%, 3.31% and 2.55%, respectively, whereas
agricultural land use significantly decreased by 11.68%. This decrease in agricultural land use was
common for the analyzed area of all administrative divisions. According to the vulnerable area map
of the eight divisions, more than 50% of the analyzed area of the Khulna and Dhaka divisions and
more than 40% of the analyzed area of the Rajshahi, Mymensingh, Sylhet, Barishal and Chittagong
divisions were highly vulnerable to agricultural land use due to the possibility of inundation by
water. However, approximately 44% of the analyzed area of the Rangpur division was not vulnerable
for agricultural land use. The prepared LULC and vulnerability maps can be helpful for the future
land use planning of Bangladesh to meet the increasing demand for food production and livelihoods
for increasing populations.

Keywords: LULC; river basin; agricultural land use; vulnerability; fuzzy expert system; remote
sensing; ArcGIS; Google Earth Engine; Bangladesh

1. Introduction

Bangladesh is a riverine country where a large number of small to large rivers flow and
merge in the delta toward the Bay of Bengal. Padma, Meghna, Jamuna, and Brahmaputra
are the main large rivers of Bangladesh. Rivers flow from the north to the south over the
country and contribute to the Bay of Bengal in the south. In addition to these main rivers,
there are many tributaries and distributaries of these rivers. These rivers experience severe
inundation during the monsoon periods of the year. In the monsoon season, most rainfall
occurs, and low-lying areas become flooded with rainwater. The rivers of Bangladesh
also become overloaded by rainwater, and water comes from upstream, which causes
seasonal floods on both sides of its banks. On the other hand, the land area is continuously
changing from one land use to another, such as agricultural to urban land, agricultural
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land to man-made vegetation, and bare land to natural vegetation. This land use change
mostly affects agricultural land [1], which is decreasing to meet the increasing demand of
higher populations. LULC assessment is an important process for meaningful planning
and management of land resources. The land use changes over the years can be recognized
through changing satellite imagery; this is a potential source of high-quality information at
the local, regional, and global scales [2,3].

Remote sensing technologies have become the best way to obtain and update infor-
mation about current conditions with dynamic changes in LULC from the Earth’s surface
over long periods of time. Therefore, in LULC classification, information about cultural
features, urban areas, natural vegetative surfaces, and agricultural land are described [4]. To
achieve environmental security and sustainable development, pattern and change detection
assessments of LULC have become a great concern of scientists worldwide [5]. Land use
inventories are becoming increasingly important in various sectors, such as urban planning,
environmental studies, operational planning, and agricultural planning. LULC data also
play an important role as an input for modeling, and they are related to the development
of policy as well as to facing the adverse effects of climate change [6].

As a deltaic area, Bangladesh faces climate change risks and outbreaks such as cyclones,
riverbank erosion, salinity intrusion, floods, and flash floods. All these natural calamities
affect the livelihoods of farmers and related stakeholders through their adverse effects by
destroying land and property as well as damaging crops. A large number of low-lying
agricultural areas become inundated by floods and flash floods during the rainy season
in Bangladesh, which causes an enormous deficit in agricultural production. Several
studies have been conducted to understand the adverse effects of cyclones, riverbank
erosion, floods, and flash floods covering different portions of Bangladesh [7–10]. However,
vulnerability assessments for agricultural land use in Bangladesh are rarely reported. In the
vulnerability assessment, the multiple criteria-based decision-making method has potential
uses in land use planning. The multi-criteria decision-making (MCDM) method has become
a very effective approach for vulnerability and suitability analysis for different aspects.
This approach has a significant advantage when used with GIS, which systematically
supports decision-making. According to Ferretti and Pomarico [11], MCDM provides a
transparent reflection of decisions using thematic maps. This multidisciplinary approach
is a powerful integrated method in complex land use scenarios. In diversified fields, this
MCDM approach has been used in spatial analysis for land use analysis [12–14].

The application of traditional methods for determining the degree of suitability and
vulnerability in any aspect is possible, but they are very difficult and time-consuming [15].
In recent decades, geographic information systems (GIS) and satellite remote sensing (RS)
tools have been suggested to be very effective and have attracted considerable attention in
the field of suitability and vulnerability assessment [16,17]. MCDM contributes significantly
to land suitability assessment in industrial development and the production of different
crops, such as cassava, tea, and maize [18–21]. However, LULC in the large riverine
networks was not exclusively projected in any of the studies, particularly agricultural land
use change to ensure the sustainability of agricultural lands over time. It is necessary to
predict the land use changes for deltaic countries for sustainable planning of agricultural
lands, settlements, and livelihoods. Additionally, LULC change detection is important to
identify water hazards or lands vulnerable to inundation in riverine-adjacent territories.
Thus, the first research question focuses on assessing the LULC in the large river basin for
long time periods, especially for agricultural land use change to ensure land use planning
for food production. Another important research question is how to predict the inundation
vulnerability for agricultural lands in spatial and time scales. In this regard, risk-prone flood
inundation mapping for policy implications in agriculture is important for agricultural
land use planning. Satellite remote sensing can predict the inundation vulnerability from
multi-spectral and multi-temporal perspectives in the distributed river basin. In this regard,
multi-criteria considering climate change, land use planning, distance and geographical
extent can help to estimate the inundation hazard.
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Therefore, the objectives of the present study were to assess the land use land cover
changes (LULC) in the river basin of Bangladesh from 1995 to 2021 to find the most changed
land use classes and to predict the lands vulnerable to agricultural land use by preparing a
vulnerability map using a fuzzy expert system and satellite remote sensing datasets.

2. Materials and Methods

The study was conducted using Landsat 5 and Landsat 8 OLI multispectral images
with 30 m spatial resolutions retrieved between 1995 and 1996 and between 2021 and 2022.
Satellite images were used to prepare LULC maps and different criteria maps for assessing
change detection. SRTM data were used to make the elevation map (Table 1). The distance
from the river map was calculated using the Euclidian distance utilizing the river shape
file. Annual average precipitation data from 2021 were collected from CHIRPS (1995–2022).
A rainfall map of the study area was prepared from the CHIRPS precipitation data. The
administrative and river shape files were retrieved from the Bangladesh Bureau of Statistics
(BBS), which were updated in 2020 (Table 1). Then, the study area was masked according to
riverine networks and adjacent territories. All LULC maps and criteria maps were prepared
in the Google Earth Engine platform. Satellite images of less than 1% cloud coverage taken
from the Landsat collection were utilized for the analysis. Finally, all other analyses were
carried out in the ArcGIS® environment.

Table 1. Data used for LULC classification and predicting lands vulnerable for agricultural activities.

Source Type of Data

Bangladesh Bureau of Statistics (BBS) Administrative area and river shape files.

USGS Landsat-8 OLI satellite images with bands (1 to 7) of 2021, 30 m
spatial resolution.

USGS Landsat-5 satellite images of 1990, including all bands (b1 to b7)
with 30 m spatial resolution.

SRTM (USGS) Digital Elevation Model (DEM) data

www.chrsdata.eng.uci.edu (accessed on 31 July 2022) Precipitation data for the year of 2021.

2.1. Study Area

Bangladesh is a deltaic area with a large number of small to large rivers flowing
through the country. These rivers are directly related to the human lives and livelihoods
of farmers. The study area covers eight administrative divisions of Bangladesh (Rangpur,
Rajshahi, Mymensingh, Sylhet, Dhaka, Khulna, Barishal, and Chittagong) from north to
south. The analysis was conducted within the 25 km territory of both banks of the main
rivers to understand the effect of rivers on LULC (Jamuna, Padma, Brahmaputra, and
Meghna, including their tributaries and distributaries) covering an area of 64,556 km2. The
analyzed areas for the eight administrative divisions were 7368 km2, 8132 km2, 18,112 km2,
1735 km2, 7534 km2, 6444 km2, 4828 km2, and 10,235 km2 for Rangpur, Rajshahi, Dhaka,
Khulna, Mymensingh, Sylhet, Barishal, and Chittagong, respectively (Figure 1). The ar-
eas vulnerable to agricultural land use were also assessed for riverine network cover in
all divisions.

Geologically, two major tectonic units of Bangladesh are (i) In the Northwest, the Stable
Precambrian Platform, and (ii) In the Southeast Geosynclinal basin. Another Northeast-
Southwest trending narrow unit that separates the above two units is Hinge Zone [22,23].
Among the eight administrative divisions of Bangladesh, Rangpur is the most northern
division and geologically falls in the North-Northwestern part of the Bengal basin. The
surface area is a recent floodplain deposit [24] composed of clay, silt, and fine to medium-
grained sand [25]. This division’s most common land use classes are water bodies, urban
areas, agricultural land, and natural vegetation. The coastal part of the Khulna division is
highly vulnerable to cyclones [9]. Barishal is in the south of Bangladesh, and the division
contains many small to large rivers. The Bay of Bengal is located in the south of the division.

www.chrsdata.eng.uci.edu
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The lands are mainly covered by water bodies, agricultural land, natural vegetation, and
urban areas. The coastal portions are highly vulnerable to cyclones. Chittagong is the
southernmost division of Bangladesh, called the port city. The eastern portion of this
division is a hilly region that mostly contains natural vegetation, and the southern part
contains the longest coast of the Bay of Bengal. The most common land use classes are
water bodies, natural vegetation, urban area, and agricultural land.
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Figure 1. Geographical extent of the study area in Bangladesh. (a) Location of the Bengal delta on the
South Asia map. (b) River distribution flow from north to south toward the Bay of Bengal.

2.2. Research Framework

The study was conducted in two stages. In the first stage, LULC maps for 1995 and
2021 were prepared for the study area to assess the LULC change over 26 years. Then,
permanent water bodies between 1995 and 2021 were detected from the NDWI (Normalized
Difference Water Index) map to understand the changes in the river basin area. In the
second stage, four criteria related to inundation by water were selected to prepare the
vulnerability map to predict the areas vulnerable to agricultural land use. A fuzzy expert
base multicriteria decision-making (MCDM) method was used for the vulnerability analysis.
A stepwise workflow has been described in (Figure 2).
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Figure 2. Research framework for LULC change assessment for predicting vulnerable agricultural lands.

2.2.1. Land Use Land Cover Change Assessment

The LULC maps of the study area for 1995 and 2021 were prepared under five major
land use classes: water bodies, bare land, vegetation, agricultural land, and urban areas.
Here, water bodies include main rivers as well as other permanent water bodies; bare
land includes the sandy land (chor land) near the rivers; vegetation includes both natural
forests and other vegetation such as fruit orchards; agricultural land includes land with
crops and land with no crops but still used for agricultural activity, and urban areas were
lands with built-up features. The maps were prepared in the Google Earth Engine platform,
which can easily handle a large study area. Working on this platform can also help to avoid
hardware limitations. Several studies have already been conducted on the Google Earth
Engine platform [26–29].

Landsat 5 image collections with less than 1% cloud coverage captured between
1 January 1995 and 30 March 1996 were used for preparing the LULC map for 1995. A
total of 2564 reference points were collected for five land use classes, where 713 sample
points for water bodies, 148 points for bare land, 302 points for vegetation, 1116 points for
agricultural land, and 285 points for urban areas were collected for the training dataset.
The reference points of every pixel value were collected and compared with the Google
Earth Pro® map. Of the datasets, 70% of the data was used for training, and 30% was used
for testing.

To prepare the LULC map for 2021, Landsat 8 OLI images with less than 1% cloud
coverage were captured between January 2021 and March 2022. A total of 1755 reference
points were collected for five land use classes, where 726 reference points were for water
bodies, 130 for bare land, 237 for vegetation, 415 for agricultural land, and 247 points were
for urban areas. The reference points of every pixel value were collected and compared
with the Google Earth Pro map. Of the datasets, 70% of the data was used for training, and
30% was used for testing.

Eight Landsat image tiles from three paths were analyzed for preparing both LULC
maps. They were retrieved from the path-136, row-42,43, 44; path-137, row-43,44; and path-
138, row 42,43,44). It is very hard to find a cloud-free image at the same time; therefore, a
long-time span was taken for image collection. Most of the agricultural lands in Bangladesh
are used for multi-crop cultivation. When few lands have crops, others may have none or
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may be preparing crops in the same area. To classify the agricultural land, we compared
the training data set for both lands with crops and with no crop to the images from Google
Earth Pro. We have also taken sample points for different growth stages of crops as their
spectral signature also varied in different stages.

The following scripts were used for preparing the LULC map. Three algorithms were
used for preparing the LULC maps for 1995 and 2021, Algorithms 1 and 2 were used for
LULC map preparation and Algorithm 3 was used for accuracy assessment of the prepared
land use land class maps. Original GEE codes are given in Appendices A.1 and A.2.

Algorithm 1: “Image retrival of Landsat 5 or 8, False color composite image preparation and
LULC map preparation for 1995”

Script
1 var L5 or L8 = ee.imagecollection(“Collection Snippet for landsat 5 or 8”)
2 .filterBounds (ROI)
3 .filterDate (“start date”, “end date”)
4 .filterMetadata(‘CLOUD_COVER’,’less_than’, 1)
5 .mean()
6 .clip(ROI)
7 Map.addLayer(L5 or 8, {bands:[“B4”, “B3”, “B2”]});
8 var training_points =landuse class1.merge(landuse class2).merge(..);

9
var training_data =
L5.sampleRegions({collection:training_points,properties:[‘LC’],scale:30})

10 var classifier = ee.Classifier.smileCart()

11
var classifier = classifier.train({features:training_data,classProperty:
‘LC’,inputProperties:[“B1”, “B2”, “B3”, “B4”, “B5”, “B6”, “B7”]});

12 var classified_image = L5 or L8.classify(classifier);

13
Map.addLayer(classified_image,{min:0, max:4, palette:[ ‘colour1’, ‘colour2’, ‘colour3’,
‘colour4’, ‘colour’]},’classified image’);
Run

Algorithm 2: “Image retrival of Landsat 5 or 8, False color composite image preparation and
LULC map preparation for 2021”

Script
1 var L5 or L8 = ee.imagecollection(“Collection Snippet for landsat 5 or 8”)
2 .filterBounds (ROI)
3 .filterDate (“start date”, “end date”)
4 . filterMetadata(‘CLOUD_COVER’,’less_than’, 1)
5 .mean()
6 .clip(ROI)
7 Map.addLayer(L5 or 8, {bands:[“B4”, “B3”, “B2”]});
8 var training_points =landuse class1.merge(landuse class2).merge(..);

9
var training_data =
L5.sampleRegions({collection:training_points,properties:[‘LC’],scale:30})

10 var classifier = ee.Classifier.smileCart()

11
var classifier = classifier.train({features:training_data,classProperty:
‘LC’,inputProperties:[“B1”, “B2”, “B3”, “B4”, “B5”, “B6”, “B7”]});

12 var classified_image = L5 or L8.classify(classifier);

13
Map.addLayer(classified_image,{min:0, max:4, palette:[ ‘colour1’, ‘colour2’, ‘colour3’,
‘colour4’, ‘colour’]},’classified image’);
Run
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Algorithm 3: “Accuracy assessment”

Script
1 var trainingData = training_data.randomColumn();
2 var trainSet = trainingData.filter(ee.Filter.lessThan(‘random’, 0.7));
3 var testSet = trainingData.filter(ee.Filter.greaterThanOrEquals(‘random’, 0.7));
4 var confusionMatrix = ee.ConfusionMatrix(testSet.classify(classifier)
5 .errorMatrix({
6 actual: ‘LC’,
7 predicted: ‘classification’
8 }))
9 print(‘Confusion Matrix’, confusionMatrix);
10 print(“Overall Accuracy:”, confusionMatrix.accuracy());

The prepared LULC images were resampled by 30 m × 30 m cell sizes as the GEE
platform produces an image in pixels, and final maps were prepared in the ArcGIS®

environment using resampling tools for 1995 and 2021 (Figure 3a,b).
NDWI maps were also prepared in the Google Earth Engine platform for 1995 and

2021 to identify permanent water bodies. Landsat 5 and Land 8 OLI image collections were
used to prepare the NDWI map. Algorithm 4 was used to calculate the NDWI indices and
map preparation. Original GEE codes are given in Appendix A.3.

Algorithm 4: “NDWI map preparation”

Script
Export var ROI: Table shapefile
1 var L5 or L8 = ee.ImageCollection(“Collection Snippet for Landsat 5 or 8”)
2 .filterBounds(ROI)
3 .filterDate(“start date”, “end date”)
4 .filterMetadata(‘CLOUD_COVER’,’less_than’, 1)
5 .mean()
6 .clip(ROI);
7 var green = L5.select(‘B2’); or = L8.select(‘B3’);
8 var nir = L5.select(‘B4’); or = L8.select(‘B5’);
9 var ndwi = green.subtract(nir).divide(green.add(nir)).rename(‘NDWI’);
10 var ndwiParams = {min: −1, max: 1, palette: [‘black’, ‘white’, ‘blue’]};
11 Map.addLayer(ndwi, ndwiParams, ‘NDWI image’);

The prepared NDWI images were downloaded from the Google Earth Engine cloud
server to Google Drive and analyzed in the ArcGIS® environment (ESRI, Redlands, Califor-
nia, USA) after resampling 30 m × 30 m cells using resampling tools. Both NDWI images
were classified into two classes (water body and non-water body) using the index value
for water 0 [30]. Finally, maps representing only permanent water bodies were prepared
(Figure 3c,d).

To represent the LULC changes, maps of individual land use classes against water
bodies were prepared (Figures 4 and 5).
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At the end, both LULC maps (1995 and 2021) were masked according to the admin-
istrative divisions (Figures 6 and 7) and analyzed to determine the division of land use
changes.
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2.2.2. Vulnerability Analysis for Agricultural Land Use

Considering the inundation risk of agricultural land, the vulnerability analysis for
agricultural land use in terms of inundation by water was performed on the same area
taken for land use/land cover change analysis. In this regard, the second stage of this
research was conducted to prepare a vulnerability map of the area for agricultural land use.
Vulnerability analysis was performed using reclassification of multicriteria analysis based
on the fuzzy membership functions.

Reclassification by Fuzzy Membership Function

Fuzzy set theories allow the modeling of both suitability and vulnerability assessment
within a GIS of a specific domain. In the fuzzy standard approach, it is clearly and crisply
defined within a membership class or set, and they are either in the class or not [31]. In
this study, to assign vulnerability classes for agricultural land use, fuzzy membership
classification was used to accommodate the high uncertainty scoring method. For standard-
ization, fuzzy membership functions were used. According to the literature review and
based on references, several membership functions were selected. Seven fuzzy membership
functions were built, and three were selected based on ecological, climatic, geological, and
geographical criteria. The membership functions are Linear, Small, and MS Large, which
produce continuous fuzzy classifications of standardized criteria (Equations (1)–(3)). A
fuzzy small membership function was used when smaller input values were more likely
to be a member of the set, a fuzzy MS large membership function was used when most of
the input values were large members of the set, and a fuzzy linear membership function
applied a linear function between the minimum and maximum values. The same equation
was used for MS large membership and large membership functions, according to the
ArcGIS®environment provided by ESRI. For reclassification, the natural breaks (Jenks)
method was used, as there were limited references regarding the vulnerability assessment
for agricultural land use in terms of water inundation in the river basin area.

µ = f (x) = ∑0
1

x − a
b − a

a < x < bx≤a
x≥b (1)

µ(x) =
1

1 + ( x
f 2 )

f 1 (2)

µ(x) =
1

1 + ( x
f 2 )

− f 1 (3)

In Equation (1), a and b represent the value for the x coordinate, where x represents
the real value (Crisp value). In Equations (2) and (3), x is the crisp value, f1 is the spread,
and f2 is the midpoint for the fuzzy large and MS large membership functions, which vary
for different criteria.

Criteria Selection for Vulnerability Assessment for Agricultural Land Use

For this study, four main criteria related to inundation by the water were selected.
These criteria were NDWI, rainfall, elevation, and distance from the river, which are geo-
logical and geographical criteria. All the criteria were directly related to water inundation
in the river basin area of Bangladesh. After calculating all the criteria, the vulnerability
maps were reclassified into four classes: V1 (highly vulnerable area for agricultural land
use), V2 (moderately vulnerable area for agricultural land use), V3 (marginally vulnerable
area for agricultural land use), and N (nonvulnerable area for agricultural land use).

Normalized Difference Water Index (NDWI)

The NDWI was taken as the criterion for the vulnerability analysis and was used to
predict vulnerable areas for agricultural land use in terms of water inundation. Furthermore,
NDWI was used to identify permanent water bodies, such as rivers and permanently
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waterlogged areas were very important for vulnerability assessment. The areas near the
water source were much more suitable for agriculture, but those areas were also vulnerable
to inundation during the rainy season by flood water. As our study area was within the
25 km territory of the main river systems of Bangladesh, NDWI could be an important
criterion for the prediction of vulnerable agricultural lands. In this study, Landsat-8 OLI
and Landsat-5 images were used to calculate the NDWI, and two spectral bands, green and
NIR, were utilized for the calculation. The following equation was used to calculate the
NDWI [32]:

NDWI =
Green − NIR
Green + NIR

(4)

Finally, the NDWI was standardized with the fuzzy linear membership function
(Figure 8a), and the study area was reclassified into four vulnerability classes for agricultural
land use (Figure 9a).
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Figure 8. Fuzzy membership functions used for vulnerability analysis of agricultural land use;
(a) fuzzy linear; (b) fuzzy small; (c) fuzzy MSlarge and (d) fuzzy linear.
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Rainfall

In this study, the average rainfall map for 2021 was used from the CHRS Data Portal.
According to the rainfall map for 2021 in Bangladesh, the highest and lowest rainfall was
recorded as 2455 mm and 1117 mm, respectively. The rainfall map was resampled with
a 30 m × 30 m cell size using the resampling tool and then standardized by applying the
fuzzy small membership function in ArcGIS (Figure 8b). Finally, the rainfall map was
reclassified according to four vulnerability classes (Figure 9d).

Elevation

There is a direct relationship between the elevation of land and inundation by water.
Lands of higher elevation are less likely to be affected by water than lands of low elevation.
Our analyzed area in this study was the 25 km territory of the main river systems of
Bangladesh. Landsat SRTM elevation data were analyzed for this study to prepare the
elevation map. From the analysis, the highest and lowest elevations were 225 m and −25 m,
respectively. As most areas of Bangladesh are plain lands and are suitable for agriculture,
they are at the same time vulnerable to inundation by flood water due to lower elevations
relative to the mean sea level. During floods and monsoons, most areas near the river
go underwater, which causes major damage to crops. The prepared elevation map from
Landsat SRTM data was standardized using the fuzzy MsLarge membership function
(Figure 8b), and the area was reclassified into the four vulnerability classes (Figure 9c).

Distance from the River

In this study, distance from the river was considered the most important criterion, as
the areas nearest the river have the highest inundation risk. To calculate the distance from
the river, a river shape file was collected from the Bangladesh Bureau of Statistics (BBS),
and the Euclidean distance tool was used to calculate the distance in the ArcGIS spatial
environment. Finally, a fuzzy linear membership function was used to standardize the
value (Figure 8d), and then the map was classified based on the four vulnerability classes
(Figure 9b).

Fuzzy Overlay for Vulnerability Analysis of Agricultural Land Use

In a multicriteria overlay analysis, the possibility of a phenomenon belonging to
multiple sets can be analyzed using fuzzy overlay tools. Fuzzy overlays analyze the
relationships between the membership of the multiple sets and determine in which sets
the phenomenon is possibly present. Five overlay methods are available to combine the
data based on set theory analysis. They are Fuzzy and, Fuzzy or, Fuzzy product, Fuzzy
sum, and Fuzzy gamma. In this study, a fuzzy gamma overlay was conducted to prepare a
vulnerability map from the criteria map produced from the fuzzy linear, fuzzy small, and
fuzzy MSlarge membership functions (Figure 9e). Fuzzy gamma is an algebraic product of
the fuzzy sum and fuzzy product, which can be expressed by the following expression [33]:

µ(x) = (FuzzySum)y × (FuzzyProduct)1 − y (5)

The default gamma value of 0.9 was used to generalize the fuzzy gamma overlay
function. Then, the prepared vulnerability map was reclassified into four classes using
the Jenks Natural Breaks algorithm [34]. In this classification, the classes were based on
inherent natural groupings in the database [35]. Finally, the prepared vulnerability map
was masked by the eight administrative division shape files of Bangladesh for further
analysis (Figure 10).
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Figure 10. Reclassified fuzzy overlay vulnerability map V1, V2 V3 and N refer to high, moderate,
marginal, and nonvulnerable areas, respectively, of different administrative divisions of Bangladesh:
(a) Rangpur; (b) Mymensingh; (c) Sylhet; (d) Rajshahi; (e) Dhaka; (f) Khulna; (g) Barishal and
(h) Chittagong.
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2.3. Accuracy Assessment

A total of 2564 sample points were taken for the training dataset as feature collections
of five land use classes for preparing the LULC map of 1995. Of the sample points, 713
were selected for water bodies, 148 points for bare land, 302 points for vegetation, 1116
points for agricultural land, and 285 points for urban areas. To prepare the LULC map
for 2021, a total of 1755 sample points were taken as feature collections of five land use
classes, where 726 sample points were for water bodies, 130 points were for bare land, 237
points were for vegetation, 415 points were for agricultural land, and 247 points were for
urban areas. In the accuracy assessment, the training datasets consisted of 70% of the total
samples, and 30% were used for testing in both 1995 and 2021. A confusion matrix was
generated from 30% of the training dataset points to identify the degree of misclassification
in this classification. Higher accuracy was observed in the Google Earth Engine platform,
and the script has been illustrated in the Materials and Methods section in Algorithm 4
(Appendices A.1 and A.2).

3. Results and Discussion
3.1. Land Use/Land Cover Assessment

The land use land cover (LULC) maps for 1995 and 2021 were prepared using Landsat
5 and Landsat 8 (OLI) images, respectively, for a total area of 64,555 km2. The analysis area
was distributed within a 25-km territory of the main river systems of Bangladesh. From the
LULC analysis for 1995, it was found that among the five land use classes, agricultural land
(44.41%) and bare land (2.96%) occupied the highest and the lowest amount of analyzed
area.

From the LULC map for 2021, it was also found that both agricultural land (32.73%)
and bare land (5.13%) possessed the highest and the lowest amount of studied area. Ac-
cording to our analysis, water bodies, bare land, vegetation, and urban areas increased in
26 years span from 1995 to 2021, whereas a significant reduction of 11.68% was observed in
agricultural land. The above results suggested that all other LULC classes occupied the
former agricultural land (Figure 11; Table 2). Agricultural lands were reduced to meet the
accommodation places, infrastructure as well as industrial facilities development for the
increasing population of Bangladesh. They have also been converted into orchards for fruit
production as fruit cultivations are less vulnerable to water inundation.
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Figure 11. LULC of five classes by area and changes from 1995 to 2021.

Table 2. LULC area of 1995 and 2021 for the study area.

LULC Classes For the Year 1995 For the Year 2021 Changes
Area (km2) Area (%) Area (km2) Area (%) Area (%)

Water body 12,277 19.02 14,630 22.66 3.65
Bare land 1908 2.96 3314 5.13 2.18
Vegetation 14,848 23.00 16,983 26.31 3.31
Agricultural land 28,667 44.41 21,129 32.73 −11.68
Urban area 6855 10.62 8499 13.17 2.55
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After analyzing the LULC map of eight administrative divisions, varied changes
in land use classes were observed. Between the five LULC classes, water bodies, bare
land, and urban areas increased in all the administrative divisions except Rangpur and
Mymensingh. The areas of vegetation increased significantly in the Rangpur, Mymensingh,
Sylhet, and Chittagong divisions. In the Rangpur division, vegetation increased by 19.44%,
whereas agricultural land decreased by 23.3%, which suggested that the major agricultural
land in this division was converted into areas of vegetation. Most of the areas of vegetation
were used for fruit cultivation. In the Dhaka, Khulna, Sylhet, and Chittagong divisions,
agricultural land decreased significantly from 1995 to 2021. In the Dhaka division, the urban
area increased by 4.2%, whereas agricultural land decreased by 7%, and this agricultural
land was converted into urban areas. The same scenario was observed for the Khulna,
Sylhet, and Chittagong divisions; however, vegetation also increased. The one change
that was common for all the divisions was a reduction in agricultural land area, which is
alarming for the food security of Bangladesh (Table 3; Figure 12).

Table 3. LULC changes from 1995 to 2021 in eight administrative divisions in Bangladesh.

LULC Classes Administrative Division For the Year 1995 For the Year 2021 Changes
Area (%) Area (km2) Area (%) Area (km2) Area (%)

Water body

Rangpur 9.07 668 11.28 831 2.21
Rajshahi 13.52 1099 14.61 1188 1.09
Dhaka 15.03 2723 15.91 2881 0.87
Khulna 7.45 129 10.19 177 2.74

Mymensingh 13.15 991 14.41 1086 1.26
Sylhet 25.20 1624 27.72 1786 2.53

Barishal 35.37 1708 41.83 2020 6.46
Chittagong 32.62 3368 38.04 3893 5.42

Bare land

Rangpur 8.21 605 9.98 736 1.77
Rajshahi 5.80 471 7.21 586 1.41
Dhaka 2.28 413 4.35 788 2.07
Khulna 4.62 80 7.99 139 3.37

Mymensingh 3.32 250 3.61 272 0.29
Sylhet 0.40 26 0.98 63 0.58

Barishal 0.16 8 7.50 362 7.33
Chittagong 0.38 39 2.20 225 1.82

Vegetation

Rangpur 11.96 881 31.39 2313 19.44
Rajshahi 27.56 2241 23.87 1941 −3.69
Dhaka 28.82 5219 28.64 5188 −0.18
Khulna 29.65 514 27.43 476 −2.22

Mymensingh 19.80 1492 26.61 2005 6.81
Sylhet 23.18 1493 29.34 1891 6.17

Barishal 16.42 793 11.33 547 −5.10
Chittagong 21.35 2205 25.17 2576 3.82

Agricultural land

Rangpur 56.99 4199 33.69 2483 −23.30
Rajshahi 39.62 3222 39.91 3246 0.29
Dhaka 44.13 7993 37.16 6731 −6.97
Khulna 50.39 874 41.77 724 −8.62

Mymensingh 48.24 3635 43.82 3302 −4.42
Sylhet 42.76 2756 27.76 1789 −15.01

Barishal 42.18 2037 33.36 1611 −8.82
Chittagong 37.65 3888 24.41 2499 −13.24

Urban area

Rangpur 13.77 1015 13.65 1006 −0.12
Rajshahi 13.51 1099 14.40 1171 0.89
Dhaka 9.73 1763 13.94 2524 4.20
Khulna 7.89 137 12.62 219 4.73

Mymensingh 15.48 1167 11.55 870 −3.94
Sylhet 8.47 546 14.20 915 5.73

Barishal 5.86 283 5.99 289 0.13
Chittagong 8.00 826 10.19 1043 2.19
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3.2. Vulnerability Analysis for Agricultural Land Use

According to our analysis of the 53,037 km2 area (total land area), 44.34% was found to
be highly vulnerable for agricultural land use, 37.75% was moderately vulnerable, 13.92%
was marginally vulnerable, and 3.98% was not vulnerable for agricultural use in terms
of inundation by water (Table 4). Similar research was also reported for the northeastern
region of Bangladesh, where every year, thousands of hectares of crops become damaged
in the haor area by flash floods [10].

Table 4. Vulnerable area for agricultural land use according to their vulnerability classes.

Vulnerability Classes Area (km2) Area (%)

V1 (highly vulnerable area for agricultural land use) 23,518 44.34
V2 (moderately vulnerable area for agricultural land use) 20,023 37.75
V3 (Marginally vulnerable area for agricultural land use) 7385 13.92
N (non-vulnerable area for agricultural land use) 2111 3.98

The vulnerability map was finally divided into the eight administrative divisions of
Bangladesh according to their coverage in the analyzed area. Of all the divisions, Dhaka,
Khulna, Mymensingh, and Barishal have the highest coverage of lands vulnerable for agri-
cultural land use, whereas Rangpur, Rajshahi, and Chittagong have less vulnerable areas,
and those divisions are relatively higher in elevation than the mean sea level. According
to the land use land cover change assessment, it was found that water bodies and urban
areas were increased in all administrative divisions, which made the agricultural land more
vulnerable in these divisions. Rangpur had the largest amount of nonvulnerable areas for
agricultural land use. However, most of the agricultural lands were transformed into fruit
cultivation which was reflected by the increment of vegetated land in the LULC change
assessment. In contrast, Khulna had the largest amount of vulnerable area for agricultural
land use. However, nonvulnerable agricultural land was found within the analyzed zone of
the Khulna division, as only a small area was analyzed for this study. Overall, most of the
areas of the eight divisions were in high to moderately vulnerable classes for inundation
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by floods, but those areas were also reported as suitable for agricultural land use (Table 5;
Figure 13).

Table 5. Vulnerable areas for agricultural land use according to the vulnerability classes in eight
administrative divisions in Bangladesh. (V1: highly vulnerable area, V2: moderately vulnerable area,
V3: marginally vulnerable area, and N: nonvulnerable area for agricultural land use).

Vulnerability Classes Administrative Divisions Area (%) Area (km2)

V1

Rangpur 0.05 2
Rajshahi 42.42 3190
Dhaka 54.26 9497
Khulna 73.31 1217

Mymensingh 40.81 2673
Sylhet 49.16 3144

Barishal 40.04 1149
Chittagong 37.52 2649

V2

Rangpur 13.87 533
Rajshahi 46.60 3504
Dhaka 38.66 6766
Khulna 26.17 434

Mymensingh 36.90 2418
Sylhet 37.31 2385

Barishal 39.64 1137
Chittagong 40.69 2873

V3

Rangpur 41.21 1584
Rajshahi 10.23 769
Dhaka 7.03 1231
Khulna 0.52 9

Mymensingh 19.52 1279
Sylhet 8.04 5134

Barishal 20.30 582
Chittagong 20.31 1434

N

Rangpur 44.87 1724
Rajshahi 0.74 56
Dhaka 0.05 8
Khulna 0.00 0

Mymensingh 2.77 181
Sylhet 5.49 351

Barishal 0.02 1
Chittagong 1.48 104

Land use conversion is a dynamic process in the river basin of the study area, and it
makes agricultural land vulnerable through erosion, flash flooding, and flooding during
the rainy season [10]. There were some limitations in obtaining permanent bench points
and a lack of yearly observations in the large deltaic region to compare the study results
with ground truth data. The vulnerability map for agricultural land use was compared with
the flood inundation map of Bangladesh developed from the 120-h forecast dataset by the
Bangladesh Water Development Board (BWDB) on 16 August 2017 [36]. The vulnerability
map of agricultural land use looks similar to the flood inundation map of 2017.
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4. Conclusions

The present study was conducted to assess the LULC changes from 1995 to 2021 over
26 years within the 25 km territory of the main river systems in Bangladesh. Furthermore,
the prediction of vulnerable areas for agricultural land use in terms of inundation by river
water was also addressed. All the river and administrative shape files were collected from
the Bangladesh Bureau of Statistics. The study was performed in the Google Earth Engine
platform and analyzed in the ArcGIS® environment. According to our LULC maps for
1995 and 2021, of the five land use classes, water bodies, bare land, vegetation, and urban
areas increased by 3.65%, 2.18%, 3.31%, and 2.55%, respectively, from 1995 to 2021 in the
analyzed area, whereas a significant reduction of 11.68% was observed in agricultural
land. The total reduction in agricultural land was approximately equal to the sum of the
increases of the other land use classes. The main causes of the reduction of agricultural
lands are conversion to urban and industrial settlements and the risk of crop loss due to
water inundation threatening the livelihoods of the inhabitants of the large river tracks.
That is why long-term land use planning, especially vulnerable lands in the river course, is
very much required throughout the country. This research is one of the first attempts to
identify the vulnerable land uses in the country’s river basins for assessments. According
to our vulnerability map of the study area for agricultural land use, which was prepared
by multicriteria analysis using a fuzzy expert system, the highly vulnerable area coverage
was 44.34%, the moderately vulnerable area was 37.75%, the marginally vulnerable area
was 13.98%, and the nonvulnerable area was 3.98% for agricultural land use. From the
analysis, it was observed that the most changed land use class was agricultural land, and
approximately 50% of the studied area was highly vulnerable to agricultural land use in
terms of water inundation.

The developed method for land use and land cover based on the google earth en-
gine had higher accuracy in interpreting changes in the country scale from the Ganges
Brahmaputra (GBM) track to the deltaic transformation. Therefore, the presented LULC
and vulnerability maps can be helpful for the future land use planning of Bangladesh to
meet the increasing demand for agricultural land use for food production. Furthermore, the
methodological process and outcomes of this research can be used for making an effective
agricultural policy mitigating the damage of agricultural lands during a specific time of
the year.
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Appendix A

Appendix A.1. LULC-1995
var L5 = ee.ImageCollection(“LANDSAT/LT05/C01/T1_TOA”)//Image retrieval of Landsat 5

.filterBounds(ROI)

.filterDate(“1995-01-01”, “1996-3-30”)

.filterMetadata(‘CLOUD_COVER’,’less_than’, 1)

.mean()

.clip(ROI);

Map.addLayer(L5, {bands:[“B4”, “B3”, “B2”]}); // False color Composite image preparation
var training_points = Water.merge(Chorland).merge(Vegetation).merge(Agriculture).merge(Urban);
var training_data = L5.sampleRegions({collection:training_points,properties:[‘LC’],scale:30})
var classifier = ee.Classifier.smileCart()
var classifier = classifier.train({features:training_data,classProperty: ‘LC’,inputProperties:[“B1”, “B2”,
“B3”, “B4”, “B5”, “B6”, “B7”]});
var classified_image = L5.classify(classifier);
var trainingData = training_data.randomColumn();
var trainSet = trainingData.filter(ee.Filter.lessThan(‘random’, 0.7));
var testSet = trainingData.filter(ee.Filter.greaterThanOrEquals(‘random’, 0.7));
Map.addLayer(classified_image,{min:0, max:4, palette:[ ‘pink’, ‘yellow’, ‘green’, ‘blue’, ‘red’]},’classified image’);

//Accuracy Assessment
//Classify the dataSet and get confusion matrix
var confusionMatrix = ee.ConfusionMatrix(testSet.classify(classifier)

.errorMatrix({
actual: ‘LC’,
predicted: ‘classification’

}))
print(‘Confusion Matrix’, confusionMatrix);
print(“Overall Accuracy:”, confusionMatrix.accuracy());

//Map export to google drive
Export.image.toDrive({

image: classified_image,
description:’ExportedData’,
folder:”GEE”,
region: ROI,
scale: 30,
maxPixels: 1e13,
});
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Appendix A.2. LULC-2021

//LULC-2021
var L8 = ee.ImageCollection(“LANDSAT/LC08/C01/T1_TOA”)//Image retrieval of Landsat 8(OLI)

.filterBounds(ROI)

.filterDate(“2021-01-01”, “2022-3-30”)

.filterMetadata(‘CLOUD_COVER’,’less_than’, 1)

.mean()

.clip(ROI);

Map.addLayer(L8, {bands:[“B5”, “B4”, “B3”]});//False color Composite image preparation
var training_points = Water.merge(Chorland).merge(Vegetation).merge(Agriculture).merge(Urban);
var training_data = L8.sampleRegions({collection:training_points,properties:[‘LC’],scale:30})
var classifier = ee.Classifier.smileCart()
var classifier = classifier.train({features:training_data,classProperty: ‘LC’,inputProperties:[“B1”, “B2”,
“B3”, “B4”, “B5”, “B6”, “B7”]});
var classified_image = L8.classify(classifier);
var trainingData = training_data.randomColumn();
var trainSet = trainingData.filter(ee.Filter.lessThan(‘random’, 0.8));
var testSet = trainingData.filter(ee.Filter.greaterThanOrEquals(‘random’, 0.8));
Map.addLayer(classified_image,{min:0, max:4, palette:[ ‘pink’, ‘yellow’, ‘green’, ‘blue’, ‘red’]},’classified image’);

//Accuracy Assessment
//Classify the testSet and get a confusion matrix
var confusionMatrix = ee.ConfusionMatrix(testSet.classify(classifier)

.errorMatrix({
actual: ‘LC’,
predicted: ‘classification’
}));
print(‘Confusion Matrix’, confusionMatrix);
print(“Overall Accuracy:”, confusionMatrix.accuracy());

//Map export to google drive
Export.image.toDrive({

image: classified_image,
description:’ExportedData’,
folder:”GEE”,
region: ROI,
scale: 30,
maxPixels: 1e13,
});

Appendix A.3. NDWI map for 1995 and 2021

//NDWI-1995
var L5 = ee.ImageCollection(“LANDSAT/LT05/C01/T1_TOA”)//Image retrieval of Landsat 5

.filterBounds(ROI)

.filterDate(“1995-01-01”, “1996-3-30”)

.filterMetadata(‘CLOUD_COVER’,’less_than’, 1)

.mean()

.clip(ROI);
var green = L5.select(‘B2’);
var nir = L5.select(‘B4’);

var ndwi = green.subtract(nir).divide(green.add(nir)).rename(‘NDWI’);
var ndwiParams = {min: -1, max: 1, palette: [‘black’, ‘white’, ‘blue’]};

Map.addLayer(ndwi, ndwiParams, ‘NDWI image’);
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//Map export to google drive
Export.image.toDrive({

image: ndwi,
description:’ExportedData’,
folder:”GEE”,
region: ROI,
scale: 30,
maxPixels: 1e13,
});

NDWI-2021
var L8 = ee.ImageCollection(“LANDSAT/LC08/C01/T1_TOA”) //Image retrieval of Landsat 8(OLI)

.filterBounds(ROI)

.filterDate(“2021-01-01”, “2022-3-30”)

.filterMetadata(‘CLOUD_COVER’,’less_than’, 1)

.mean()

.clip(ROI);
var green = L8.select(‘B3’);
var nir = L8.select(‘B5’);
var ndwi = green.subtract(nir).divide(green.add(nir)).rename(‘NDWI’);
var ndwiParams = {min: -1, max: 1, palette: [‘black’, ‘white’, ‘blue’]};
Map.addLayer(ndwi, ndwiParams, ‘NDWI image’);

//Map export to google drive
Export.image.toDrive({

image: ndwi,
description:’ExportedData’,
folder:”GEE”,
region: ROI,
scale: 30,
maxPixels: 1e13,
});
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