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Abstract: Three-dimensional point cloud has been widely used in the cultural heritage field in
the last two decades, gaining attention from both academic and industry communities. A large
number of scientific papers have been published concerning this topic, which covers a wide range
of journals, countries, and disciplines. There has been no comprehensive and systematic survey of
recent literature performed in a scientometric way based on the complex network analysis methods.
In this work, we extracted the terms (i.e., noun phrases included in the title, abstract and keywords),
the documents, the countries that the research institutions are located in, and the categories that the
literature belongs to from the Web of Science database to compose a term co-occurrence network,
document co-citation network, collaborative country network and category co-occurrence network
using CiteSpace software. Through visualizing and analyzing those networks, we identified the
research hotspots, landmark literature, national collaboration, interdisciplinary patterns as well as
the emerging trends through assessing the central nodes and the nodes with strong citation bursts.
This work not only provides a structured view on state-of-art literature, but also reveals the future
trends of employing 3D point cloud data for cultural heritage, aiding researchers carry out further
research in this area.

Keywords: point cloud; cultural heritage; CiteSpace; scientometric; visual analysis

1. Introduction

Three-dimensional (3D) point cloud data refers to a set of points defined by the X,
Y, and Z in the geo-coordinate system [1], which can be obtained from various sources
such as laser scans, images, and videos based on specific equipment and technologies [2–4].
Three-dimensional point cloud data is capable of representing the external surfaces of
objects with geometric details and texture, which can be imported and processed by
computers, providing effective support for digital storage as well as further analysis.
Cultural heritage, such as historical buildings, archaeological sites, and stone carvings,
etc., are objects with complex geometries and the historical memory of mankind. It is
critical to reconstruct, protect and restore cultural heritage in digital forms and sustain
them in the long run, and this is where 3D point cloud data proves to be a reliable data
source [5–7]. Applying 3D point cloud data in the cultural heritage field has gained more
and more attention in academic and industry communities since 2000 [8–10]. In recent
years, it has become a multidisciplinary field that interacts with a number of disciplinaries,
covering art, archaeology, computer science, environmental science, applied physics, and
chemistry analysis [11–14]. As such, it is necessary to provide insightful information for
those interested in investigating how this field has evolved over the past two decades.

Some scholars have conducted literature reviews and surveys on specific topics
through organizing the related work of 3D point cloud in the cultural heritage field in
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a methodology-based way. For example, Cheng et al. (2018) [15] presented a compre-
hensive review of LiDAR data registration in photogrammetry and remote sensing. It
reveals that multi-angle and multi-scale data obtained from various types of LiDAR hard-
ware plays an essential role in diverse applications serving cultural heritage protection.
Tobiasz et al. (2019) [16] surveyed the state-of-the-art documentation, management, and
sustainability techniques in cultural heritage. Moyano et al. (2021) [17] reviewed the
historical building information modeling (HBIM) process to extract geometries of cultural
heritage from the point cloud to create digital twins, particularly for the archaeological
and architectural heritage. Santos et al. (2022) [18] summarized existing work on historical
timber structures using HBIM, focusing on various geometric surveying and 3D modeling
methods and nongeometric information used for conservation, testing, and monitoring.
However, those reviews and surveys do not conduct a comprehensive, systematic, or
quantitative analysis to reveal the research topics, research trends and patterns, and future
research directions in the domain of utilizing 3D point cloud for cultural heritage.

Scientometrics is defined as the “quantitative study of science, communication in sci-
ence and science policy” [19], which is regarded as the science of science by some scholars.
Fortunato et al. (2018) [20] explained “science of science” as using large-scale data on the
production of science to search for universal and domain-specific patterns. The sciento-
metric analysis used for literature review is a branch of informatics that quantitatively
analyzes and maps patterns in scientific literature in order to understand the research
themes, emerging trends, and the knowledge structure of a research. Zhao et al. (2017) [21]
conducted a scientometric review of building information modeling (BIM) research between
2005–2016, providing researchers and practitioners with an in-depth understanding of the
status and trend of BIM research worldwide. Martinez et al. (2019) [22] conducted a scien-
tometric review of the articles published between 1999 and 2019 concerning the computer
vision techniques applied for construction to provide support for future research efforts.
Rashidi et al. (2020) [23] quantitatively analyzed the research patterns in the modern bridge
monitoring field, consisting of dominated sub-fields, co-occurrence of keywords, network of
researchers and their institutions within the last decade. Balz (2021) [24] presented in-depth
scientometric analysis of the full texts of all papers published in MDPI’s Remote Sensing
between 2009 and 2021, revealing distinctive styles and writing patterns, trends in publica-
tions, readability of abstracts and papers, and institutional co-authorship worldwide.

As such, we explore the literature concerning 3D point cloud used in the cultural
heritage field from the Web of Science (WoS) database, which returns a large number of
publications in English including title, author, abstract, keyword, journal, and citation
information. The non-English publications not included in the bibliographical database
are out of scope for our scientometric exploration, which may introduce a bias among the
academic range of publishes we are surveying. The publications in other languages and
databases can be further added for a larger-scale analysis. The co-occurrence and co-citation
relationship exist between different publications. Such information lays a solid information
for composing multi-type networks of various entities, such as keyword co-occurrence
and document co-citation, which are sufficient to represent the intellectual landscape of a
scientific field [25]. Those networks can be visualized by knowledge mapping, which is
an emerging approach and the knowledge structure for literature analysis. It is helpful for
researchers and engineers, as well as business investigators, to uncover and understand the
hot topics, multidisciplinary interaction patterns, developing trends, academic cooperation
between scholars and countries, etc., providing a holistic and comprehensive portrait for
a research domain. In this study, we use CiteSpace [26], a scientometric analysis and
visualization software, to make a co-citation and co-occurrence analysis of those studies
related to 3D point cloud data in the field of cultural heritage.

The main objectives of this study focus on making a term (i.e., key noun phrases) co-
occurrence network analysis to acquire hot topics, making a document co-citation network
analysis to identify key literature, making a collaborative country network analysis to reflect
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national cooperation, and making a category co-occurrence network analysis to explore the
interdisciplinary intersection in the domain of 3D point cloud data for cultural heritage.

There is no scientometric network-based review of recent studies on 3D point cloud
data for cultural heritage to investigate the hot topics and general development trends of
this domain through collecting and analyzing the qualified journal publications from WoS.
Our work fills this gap and contributes to the identification of emerging hotspots, research
structure and research evolution of this domain through constructing the scientometric
networks based on those WoS publications and discovering the clusters and bursting entities
from scientometric networks. The scientometric analysis results not only provide scholars
(architects, archaeologists, art historians, geographers, etc.) with a structured view on state-
of-art literature, but also aids them to capture the research hotspots, landmark literature, as
well as the changes of research themes over time in an efficient way. Such information is
critical for scholars, especially for those beginners who are new to this domain.

The rest of this paper is organized as follows. Section 2 introduces the background
knowledge concerning the technological and application aspects of 3D point cloud data in
the cultural heritage field. Section 3 presents the methodological framework for reviewing
the relevant studies and provides an overview of CiteSpace software as an analysis and
visualization tool. Section 4 analyzes and discusses the results. Finally, the main conclusions
are drawn in Section 5.

2. Background
2.1. Data Acquisition and Fusion

Three-dimensional point cloud data is an important data source for the 3D virtual
reconstruction of cultural heritage, which mainly includes 3D spatial geometry information,
color information and sensor reflection intensity information [27,28]. Such data can be
collected using 3D laser scanning technology and photogrammetry technology, equipped
with UAV (Unmanned Aerial Vehicle), mobile vehicle, ground, and other platforms, pro-
viding various approaches for obtaining point clouds of cultural heritage [29–33]. Recently,
ultra-light UAV systems [34], a handheld mobile 3D laser mapping system [35], low-cost
spherical cameras [36], and smart mobile phone LiDAR sensors [37,38] have been widely
used for 3D surveying in the cultural heritage domain. The emergence of these lightweight
devices makes 3D data collection of cultural heritage more popular and available to more
non-professional users. It also reflects how the application of point cloud data in the field
of cultural heritage has gained more and more attention in a wide range of fields and
among non-professionals.

The 3D point cloud data acquired by laser scanning mainly includes registration, noise
filtering, hole filling, surface reconstruction and texturing [39]. Shao et al. (2019) combined
Terrestrial Laser Scanning (TLS) in millimeter-scale resolution and a structured light scanner
in sub-millimeter resolution techniques to acquire detailed point cloud and register them
in the spatial reference to build 3D models of large artefacts. Ghorbani et al. (2022) [40]
introduced 3D key point detection for the registration of point cloud data. Since there
usually exists noise in the raw data, several noise filtering algorithms [41,42] have been
applied to eliminate noise points and outliers. Hole filling aims to fill the missing regions
caused by occlusions in the reconstructed 3D models. Yong et al. (2022) [43] proposed a
multi-scale upsampling GAN-based framework to build complete 3D cultural heritage
models with grained details. Regarding the 3D point cloud data acquired by photogram-
metry technology, other steps are required for data preprocessing. Shao et al. (2016) [44]
designed the Multi-View Stereo (MVS) algorithm to weaken the influence of occlusion and
noise on matching results. The whole image dataset is processed with color enhancement,
image denoising, color-to-gray conversion and image content enrichment to improve the
performance of orientation automation and dense 3D point cloud reconstruction [45].

In most cases, the single data acquisition method is challenging to obtain complete
point cloud data of the target scene within limited observation conditions and viewing
angles [46]. For instance, TLS usually obtains information on building facades, whereas
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UAV photogrammetry can provide the information for building roofs. Many scholars have
been attempting to completely represent geometric shapes of cultural heritage through
multi-source point cloud fusion through leveraging the advantages of multiple sensors
and data acquisition platforms. For instance, Achille et al. (2015) [47] integrated multi-
source point cloud data including TLS point cloud and photogrammetric data that were
collected by a UAV system. This solved the problem of data incompleteness in the vertical
direction caused by the restricted flying area of the UAV. Galeazzi (2016) [48] used 3D
laser scanning and photogrammetry techniques to produce archaeological records of the
microscopic strata of caves under extreme environment and light conditions. Rodriguez-
Gonzalvez et al. (2017) [49] synchronized LiDAR sensors with the inertial and global
navigation systems that are installed on mobile platforms to generate point clouds with
absolute geographic coordinates. It significantly improved the data acquisition efficiency of
large cultural heritage sites and reduced the problems caused by multi-site cloud splicing.
Erenoglu et al. (2017) [50] incorporated multiple sensors on the UAV to obtain visible,
thermal and infrared radiation in the electromagnetic spectrum. In addition to generating
high-precision geometric models. The classification results of the spectral analysis could
reveal the characteristics of materials. Puente et al. (2018) [51] reconstructed high-resolution
3D digital models of archaeological sites using ground-penetrating radar and terrestrial
light detection and ranging (T-LiDAR) techniques.

All in all, data fusion has proven to be a powerful method for documenting and pre-
serving cultural heritage sites, historical buildings, archaeological records, and monuments.
However, multi-platform and multi-sensor coupling observations lead to different point
cloud densities and spatial scales, and the overlap between data brings difficulties to point
cloud data registration [52], which are potentially to be addressed in the future. In addition,
the results of point cloud data acquisition (e.g., accuracy, resolution, and chromatic qual-
ity) need a comprehensive consideration of the ease of use, time consumption, economy,
instrumental and operator [53].

2.2. Data Processing and Application

Due to the large-scale and unorganized (without neighborhood information) charac-
teristics of 3D point cloud data, it is still challenging to directly apply point cloud data to
the cultural heritage field [54]. Therefore, certain data processing algorithms are required
for orthophoto image production, damaged area investigation, HBIM and geographic
information (GIS) system, virtual restoration, etc.

2.2.1. Orthophoto Image Production

With the aim of life-cycle conservation of cultural heritage, documentation is required
for the digital archiving of cultural heritage [55,56]. Orthophoto images are attractive for
archaeological and architectural documents since they guarantee both geometric precision
and visual quality. As cultural heritage is not always perpendicular or parallel to the
ground, the critical factor in the process of orthophoto image production is the selection
of an appropriate projection plane. In this case, plane detection algorithms of point cloud
data are often used to generate accurate projection planes to produce orthophoto images
automatically. For example, Markiewicz et al. (2015) [57] used RANdom SAmple Consensus
(RANSAC), Hough transform and a region growing algorithm to extract the projection
planes from the TLS point cloud of historical buildings, respectively. The digital image is
then matched with the projection plane to generate an orthophoto image.

2.2.2. Damage Detection

Three-dimensional point cloud data can be used to identify and evaluate façade surface
features (e.g., edges and cracks) from cultural heritage [58,59]. For instance, the point cloud
data obtained by TLS is able to detect cracks and defects that are caused by weather, age,
infiltration, and solar radiation at the millimeter level [60]. Galantucci et al. (2018) [61]
identified and quantified the surface damage of cultural relics caused by cracks or material
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loss through the line and surface extraction algorithm that was embedded in the close-
range photogrammetry-based 3D model. Wood et al. (2021) [62] employed geometric
surface descriptors including covariance, normal vector and curvature as damage-sensitive
features, based upon which, an ordering points to identify clustering structures (OPTICS)
algorithm was used to detect the lesion area of surface damage, defects and cracks in
the mural. Alkadri et al. (2022) [63] introduced and analyzed local features of geometric
information and radiation information of point cloud data to identify cracks and surface
material characteristics of cultural relics.

2.2.3. HBIM

HBIM, as a reverse modeling technique for 3D point cloud data post-processing,
allows the management of the geometric structure of buildings, the creation of complete
engineering drawings of historical buildings and cultural heritage sites, and the information
exchange (e.g., construction method and material composition) among cultural heritage
conservation experts [64,65]. Intelligently recording, interpreting and managing complex
and culturally significant heritage buildings make building protection, as well as project
design and management, more systematic and efficient [66]. The approach of capturing
accurate building geometries from 3D laser scanning to build a BIM or HBIM model is called
Scan to BIM [67]. Rocha et al. (2020) [68] established the HBIM of using 3D laser scanning
and photogrammetric techniques. Park et al. (2021) [69] constructed a BIM model based on
3D point cloud data to detect changes in historical buildings. Ursini et al. (2022) [70] used
scan-to-BIM to generate a structural finite element model of built heritage for dynamic
simulation. Pepe et al. (2020) [71] proposed a novel workflow named Scan to BIM to
FEA(finite element analysis) to make the 3D model suitable for structural analysis and
the parameterization of rheological and geometric information of every single element of
the structure. Moyano et al. (2020) [72] applied BIM in archaeology, i.e., A-BIM, to create
parameterized objects with complex archaeological shapes from 3D point cloud data.

Despite the above-mentioned research on semi-automatic or automatic BIM reconstruc-
tion from point cloud, there exists certain space for improving the accuracy, applicability,
and automation of existing techniques [73–76]. HBIM can be improved through extracting
geometric primitives for knowledge management and by establishing their connection
to manage heterogeneous knowledge. Yang et al. (2021) [77] combined the geometric
elements of HBIM with semantic ontologies and obtained an integrated model with object-
oriented knowledge. Identifying basic geometric elements or objects from point cloud
data and connecting them with semantic information mainly relies on feature extraction
and semantic segmentation algorithms [78–80]. Deep learning techniques for 3D point
cloud semantic segmentation can help identify historic building elements at a finer level
involving more details, improving the performance of the HBIM building process from
point cloud data [81,82]. In addition to geometric information, realistic textures are also a
challenge for HBIM, as the standard textures and materials provided in the HBIM library
are not sufficient for the reliable representation of cultural heritage [83].

2.2.4. Integration with 3D GIS

Point cloud data acts as one of the data sources for processing the geospatial infor-
mation of a wide range of cultural heritage items (such as historical sites) in geographic
information systems (GIS) and for recording 3D information [84]. HBIM focuses on the
geometric structure and attribute information of cultural heritage, while GIS enables the in-
tegration of 3D model and geospatial information, supporting spatial analysis and heritage
conservation [85,86], as well as risk and vulnerability analyses [87,88] at a large scale. Tobi-
asz et al. (2019) [16] presented GIS for management, storage, and maintenance of cultural
heritage documentation. Costantino et al. (2020) [89] developed a Web-GIS based database
for integrating different types of information layers (e.g., regional maps, orthophotos, re-
gional territorial landscape plans) according to a landscape approach. Pepe et al. (2021) [90]
built a 3D GIS model using point cloud data to connect different databases and provided a
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multidisciplinary approach. Sanchez-Sanchez et al. (2022) [91] constructed a 3D model of
ancient archaeological sites and heritage buildings based on photogrammetry technology.
The obtained model allowed geometric quantification of seismic deformation (e.g., dis-
placement, amplitude, and direction) in a GIS-based 3D environment to quantify oriented
damage of seismic origin.

2.2.5. Virtual Restoration

Principles of Seville defines virtual restoration as “using a virtual model to reorder
available material remains in order to visually recreate something that existed in the past”
(http://sevilleprinciples.com/, accessed on 21 October 2020). Virtual restoration in the
cultural heritage applies digital technology for restoration, which aims to infer the historical
geometric forms of cultural heritage under a certain assumption. This is not in conflict
with physical restoration since virtual restoration has no effect on the physical cultural
heritages [92]. In contrast, virtual restoration can assist physical restoration to rebuild the
damaged heritage, restore visual assets and reconstruct artifacts. Chen et al. (2016) [93]
determined the geometric shape of cultural relics based on the mechanical analysis of
the precise 3D models of the existing cultural relics and recovered the details of each
component. Setty and Mudenagudi (2018) [94] used region of interest (ROI)-based and
patch-based methods to restore naturally damaged models which were partly broken or
incomplete in artifacts at cultural heritage sites. Baik (2021) [95] provided an interactive and
virtual 3D model for cultural relics and conducted information interaction with users based
on the built BIM models, collecting historical photographs, documents about materials
and past restoration projects. Hou et al. (2018) [96] analyzed the spatial distribution and
relationship of the complex geometric structures of grottoes statues using 3D point cloud
data, assisting the physical restoration project. Yang et al.(2020) [97] performed virtual
stitching of cultural relic fragments based on contour feature extraction and an iterative
nearest point algorithm. In the absence of sufficient historical data, the results of virtual
restoration may not be verified. However, through feature extraction, feature matching
and feature description, it can provide effective references for physical restoration from the
geometric perspective.

2.3. Summary

The development of 3D point cloud data in the cultural heritage field is very depen-
dent on the data-information-knowledge model [98]. Firstly, 3D point cloud data obtained
by 3D laser scanning and photogrammetry provides a high-precision 3D digital model for
cultural heritage documentation. Since a single data acquisition platform usually cannot
meet the comprehensive analysis requirements of cultural heritage, many scholars have
achieved such goals (e.g., recording the indoor-outdoor, ground-façade-roof, and sight
occlusion areas of cultural heritage) based on multi-source point cloud fusion technology.
The geometrical information in the point cloud can be extracted by point, line and surface
feature extraction and segmentation. Subsequently, the point cloud semantic segmentation
methods are employed to associate the geometric information with the semantic informa-
tion. This information can be further used for 3D GIS integration or HBIM building, aiding
cultural heritage management, spatial analysis, and structure analysis. Learning-based
methods (machine learning and deep learning) provided the possibility of associating more
semantic information with cultural heritage through automatically semantic segmentation
and classification models [99]. However, these methods highly rely on a public benchmark
dataset, which are currently lacking.

Recently, researches have focused on the effective fusion of point cloud data and
knowledge, so that point cloud data can be directly used in knowledge mining and decision-
making [100]. For instance, Poux et al. (2016, 2017) [101,102] proposed a smart point cloud
structure for cultural heritage. Yang et al. (2021) [103] proposed a smart point cloud model-
ing process for complex geometric cultural relics. Ponciano et al. (2021) [104] stated three
knowledge-based 3D digitization processes of cultural heritage, including a recommen-

http://sevilleprinciples.com/


Remote Sens. 2022, 14, 5542 7 of 25

dation process of cultural data acquisition, object recognition process to structure the raw
data, and an enrichment process based on Linked Open Data to document cultural objects.
In a word, the development of 3D point cloud application in the field of cultural heritage
shows the trend of data-information-knowledge, involving data collection, information
extraction, and knowledge fusion. However, the topics and hotspots of each aspect vary
over time and location. It is necessary to learn a wide range of research topics from the
massive published high-level literature based on scientometrics analysis in order to find
the most important and key terms, clarify its past and present development process, and
identify the most active research frontiers and development trends.

3. Methodology

This section presents our data collection strategy, visualizes new trends, analyzes
general development, and identifies roles with significant influence in employing 3D
point cloud data for cultural heritage. Figure 1 demonstrates the overall framework for the
scientometric analysis of the literature in this domain, which mainly includes data collection,
term co-occurrence analysis, document co-citation analysis, national collaboration analysis
and category co-occurrence analysis.
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Figure 1. The overall framework of the scientometric survey in the domain of 3D point cloud data
for cultural heritage.

First, we collected qualified literature from the WoS using appropriate queries, e.g.,
topics and journals. The obtained literature was then processed by a series of analysis and
visualization using CiteSpace software. We conducted term (i.e., noun phrases included
in the title, abstract, keywords and keywords plus) co-occurrence analysis through a
knowledge network to identify the main clusters, representing a wide range of research
topics in the domain of 3D point cloud for cultural heritage.

Landmark articles were identified through the document co-citation network, and
the research basis and research hotspots that scholars are interested in were determined
according to the clustering results. Moreover, the collaborative country network and
category co-occurrence network were established to indicate the national collaboration and
multidisciplinary intersection, respectively. More details regarding each are elaborated in
the following sections.

3.1. Data Collection

In this work, we selected the high-quality papers that were published in journals
rather than those published in conference proceedings as our research data. This is because
the content of conference papers is limited to the themes of the conferences, which usually
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leads to a surge of papers in certain research directions in a short period of time. Such
bursts in a short time undermines the balance of the survey data. As such, we only selected
journal papers to review the research dynamics regarding 3D point cloud data used in the
cultural heritage field.

The paper data were retrieved from three databases on the Thomson Reuters Web
of Science (WoS) on 15 August 2022, including Science Citation Index Expanded (SCI-
Expanded), Social Sciences Citation Index (SSCI), Arts & Humanities Citation Index
(A&HCI). A set of topics combined with “AND” and “OR” logic was selected for querying
the literature to be reviewed. Specifically, the keywords and their logic used in this work
are ((point cloud*)) AND ((heritage*) OR (relic*) OR (historic building*) OR (ancient*) OR
(architectural*) OR (archaeological*)), where “AND” means the topics occur at the same
time in a paper, “OR” means at least one of those topics occur, and “*” represents any
characters. For instance, the papers including “point cloud” and “heritage” and the papers
including “point cloud” and “historic buildings” can be returned by the above-mentioned
query. As a result, a total of 349 qualified journal papers (article, early access, and review
article) included in the WoS were obtained, covering a wide range of journals with the
scope of cultural heritage as well as remote sensing and surveying and mapping. Among
the search results, journals with more than or equal to three related articles were selected.
Table 1 lists the selected journals and the number of related papers included by each journal,
which can be used as an indicator illustrating the closeness of the journal scope to 3D point
cloud for cultural heritage. For example, the journals named “Remote Sensing”, “ISPRS
International Journal of Geo-Information” and “Journal of Cultural Heritage” include more
related papers, revealing researchers in the surveyed field have more intention to publish
their work in those journals.

Table 1. Selected journals and the number of relevant papers.

Journals Papers

Remote Sensing 62
ISPRS International Journal of Geo Information 37
Journal of Cultural Heritage 31
Sensors 27
Applied Sciences Basel 17
ISPRS Journal of Photogrammetry and Remote Sensing 16
International Journal of Architectural Heritage 16
Automation in Construction 16
Sustainability 11
ACM Journal on Computing and Cultural Heritage 10
Journal of Archaeological Science Reports 9
Photogrammetrie Fernerkundung Geoinformation 7
Mediterranean Archaeology Archaeometry 7
Photogrammetric Record 6
Measurement 6
IEEE Access 6
Computers Graphics UK 6
Journal of Archaeological Science 5
Drones 5
Advanced Engineering Informatics 5
Symmetry Basel 4
Journal of Construction Engineering And Management 4
Journal of Building Engineering 4
International Journal of Remote Sensing 4
Heritage Science 4
Forests 4
Buildings 4
Archaeological Prospection 4
Survey Review 3
Remote Sensing of Environment 3
Journal of Computing in Civil Engineering 3
International Journal of Computer Vision 3
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Besides that, we also counted the number of papers published yearly to investigate
general research development. As shown in Figure 2, the first journal paper related to 3D
point cloud and cultural heritage was published in 2006 [63]. Since then, the yearly number
of published papers follows an increasing trend, especially after the year of 2016. There is
a decrease from 2021 to 2022 since only journal papers published before September 2022
were counted in this survey. The ever-increasing pattern indicates that researchers have
shown more and more interest in exploring the capability of leveraging 3D point cloud for
cultural heritage and this research direction has gained more and more attention during
the past two decades.
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Despite the general statistical information described above, the detailed information
of each qualified paper can be found in the bibliography document, including title, authors,
institution, fundings, abstract, keywords, references, etc. A capture of such information is
shown in Figure 3.
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3.2. Analysis Tools—CiteSpace Software

CiteSpace [105–108], a citation and co-occurrence network analysis and visualization
software based on scientometrics, was used to analyze and visualize the knowledge em-
bedded in the scientific literature that were collected in Section 3.1. The analysis results
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presented by CiteSpace can reveal the research network structure and research regularity, as
well as the spatial distribution related research. It identifies landmarks, hot spots, emerging
trends, and key points based on the literature collected from various knowledge bases.

In this work, we conducted four types of network analysis, including term co-occurrence
network analysis, document co-citation network analysis, collaborative country network
analysis, and category co-occurrence network analysis. The nodes and links are the basic
elements of the networks returned by CiteSpace. The types of nodes include noun terms
(e.g., keywords, abstracts, and titles), authors, countries, categories, etc. The size of the
nodes reflects the frequency of relevant data occurrence. The links are the relationships
between nodes, e.g., co-citation relationship and co-occurrence relationship. The thickness
of the links indicates the strength of the relationship between the nodes.

Specifically, the term co-occurrence network analysis was conducted to identify the
main research topics in the field of 3D point cloud for cultural heritage. A knowledge
map showing the term co-occurrence can reflect hot topics [109]. The term is defined as
noun phrases extracted from the title, abstract, keywords, and keywords plus, providing
information about the main content of an article. The part-of-speech (i.e., POS) tagging
technology, a widely-used natural language processing (NLP) tool, was used to realize the
above-mentioned term extraction [110]. Since the research topics are usually composed of
a set of noun phrases that highlight the main idea of the research, we selected the top K
terms to reflect hot research topics. The nodes are the terms, and the links are drawn by
investigating the co-occurrence relationship between terms. This paper reflects a research
topic through the top ten noun phrases that are most relevant to the topic. With regard
to a research domain, the term co-occurrence network analysis can reflect the temporal
distribution and strength change of research topics. The document co-citation network
analysis illustrates that if there exists a co-citation relationship between two documents (i.e.,
articles), it indicates that those two documents are associated and there is a link connecting
them. In this case, a node in the network represents a document. The milestone documents
are judged by the importance of nodes in the network. The structure and characteristics
of the document co-citation network is able to show the research focus, research interest,
research intention as well as research trends in the reviewed field [111]. The collaboration
country network analysis identifies the association between research communities that
may locate in different countries, depicting the research cooperation at the national level.
The size of nodes (i.e., countries) and the thickness of links (i.e., the times that different
countries cooperate) help to identify the contributions of different countries to the research
domain [112]. As each article is assigned with one or more subject categories (e.g., cultural
heritage, geography, and remote sensing), the category co-occurrence network analysis aims
at finding out the key disciplines as well as the interaction between different disciplines.
Furthermore, the clustering analysis was conducted based on the four types of networks,
from which the hot research topics, the key articles, the popular research location and
closely-related research subjects can be identified over time.

In order to quantificationally explain the network analysis results, a number of pa-
rameters were selected [107,108,110,113]. The degree of modularity reflects the structure’s
clarity at the decomposed cluster level, which is usually measured by Q value. If the Q
value is more than 0.3, it means that the modularization of the network is significant. As
the Q value increases, the clustering performance of the network improves. The silhouette
score of a cluster (i.e., S) measures the homogeneity of its members. If the S value is over 0.7,
it means that the clustering results are reasonable. As S moves closer to 1, the homogeneity
of the network increases. A network with a high modularity degree and high average
silhouette score is desirable. With regard to investigate the centrality of nodes, two types of
measures were used, including betweenness centrality and degree centrality. The between-
ness centrality is generally derived as a measure of centrality, which refers to the times
that a node as an intermediary bridges another two nodes on the shortest path [108,114].
The degree centrality of a node refers to the number of links it connects [115,116]. The
higher the degree centrality, the more central the node. The bursts value measures the
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rate of changes over time [117]. The higher the bursts value is, the more potentially an
abrupt change occurs. A node with strong bursts usually indicates an exciting work that
has attracted significant attention during a short period.

4. Results and Discussion
4.1. Term Co-Occurrence Network Analysis

Since researchers often express in different ways, the words used in different forms are
likely to represent the same meaning, e.g., synonyms, singular, plural, abbreviations, etc.
In this work, we configured CiteSpace software in order to keep the semantic consistency
of certain terms. For instance, in terms of synonyms, we converted “3-d model” and “three-
dimensional model” to “3d model”. The “historical building” was unified as “historic
building”. The plural, such as “3d point clouds “, “3d documentations”, “buildings”,
“3d scanners”, “devices”, etc., were all replaced with their singular form. With regard to
abbreviations, “tls” and “terrestrial laser” were replaced with “terrestrial laser scanning”,
“uav” was replaced with “unmanned aerial vehicle”, “bim” was replaced with “building in-
formation modeling”, “hbim” was replaced with “historic building information modeling”,
etc. There also exists certain differences between American English and British English,
resulting in spelling problems. In this case, we used American English for consistency, e.g.,
replacing “modelling” with “modeling”.

The literature was analyzed using CiteSpace software by setting the time slice as
two years, e.g., ranging from 2008 to 2009. The nodes (i.e., terms) of each time slice were
derived from the noun phrase of the top N cited articles, where N is equal to 100, that
has been widely used for such analysis. As a result, a total of 3380 nodes and 60,850 links
were included in the term co-occurrence network, which are visualized in Figure 4. A
link between two nodes represents the term co-occurrence relationship. The link color
corresponds to the color of the time slice when the link was first established between a pair
of terms.
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Figure 4. The term co-occurrence network and cluster analysis results.

Based on the composed term co-occurrence network, we further conducted a cluster-
ing analysis to better explore the research patterns and extract the hot research terms. The
Modularity indicated by Q is equal to 0.7973 that is over 0.3, and the Weighted Mean Sil-
houette indicated by S is equal to 0.9438 that is over 0.7, which both fall into the reasonable
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range by referring to the explanation of those parameters in Section 2.2. This illustrates the
efficiency of our clustering analysis results. As shown in Table 2, the cluster labels, average
research year, cluster size, and silhouette score are summarized for the top 16 clusters. The
label of each cluster was automatically extracted from the terms that were included in this
cluster using the log-likelihood ratio (LLR) algorithm provided by CiteSpace [110]. The
average year was computed by averaging the publishing years of all articles in this cluster.
The cluster size indicates the number of articles included in this cluster. The Silhouette
scores are all over 0.7 and close to 1, meaning high homogeneity of the network. In other
words, the terms grouped in the same cluster are highly similar.

Table 2. A summary of the top 16 clusters in the term co-occurrence network.

ClusterID Size Silhouette Label (LLR) Average Year

0 208 0.848 historic building information 2018
1 189 0.808 semantic segmentation 2017
2 184 0.896 unmanned aerial vehicle photogrammetry 2014
3 165 0.911 quick digital photogrammetric system 2016
4 143 0.944 cultural heritage structure 2016
5 140 0.939 quality specification 2018
6 138 0.969 urban facade parsing 2016
7 118 0.947 decision-making task 2012
8 116 0.946 monitoring structural deformation 2018
9 109 0.965 detailed architectural canopy model reconstruction 2018
10 108 0.951 close-range automatic correlation photogrammetry 2013
11 105 0.956 assessing structural damage 2016
12 97 0.961 genetic algorithm 2015
13 95 0.95 tls data 2017
14 94 0.933 large complex cultural heritage site 2016
15 91 0.963 mobile LiDAR system 2018

Each cluster consists of a list of terms and they own different degree centrality. The
degree centrality measures the number of connections this term has, which can reflect
the importance of this term in the network. In other words, those terms with higher
degree centrality are more frequently used in the surveyed domain. The higher the degree
centrality of the term is, the more focus and attention it gains in the research field. As
such, those terms with high degree centrality, together with the cluster label, can be used
to infer the research topics of each cluster. In this work, we selected the top ten terms by
ranking their degree centrality to represent the research topics. The research topics of the
top 16 clusters are summarized in Figure 5, including the representative terms and their
degree centrality.

As shown in Figure 5, the topic number aligns with the cluster number. Topic #0 was
retrieved from the largest and latest Cluster #0, which includes 208 articles. The cluster
was labeled as “historic building information”. The average research year is 2018. The
representative terms in this cluster include “terrestrial laser scanning”, “bim platform”,
“hbim”, “architectural structure”, and “parametric object”, revealing that 3D point cloud
data is the main data source in the BIM and HBIM, which are both used for parametric
modeling of architectural cultural heritage to express the architectural structure. The
top-term analysis results align with the background ground knowledge presented in
Section 2.2.3, e.g., HBIM is a typical application of 3D point cloud data in the cultural
heritage field, indicating that the scientometric analysis holds the potential to efficiently
mine the hot research topics in the reviewed field.

Topic #1 refers to the second largest Cluster #1 and was labeled as “semantic segmen-
tation”. The topic includes terms such as “architectural element”, “deep learning” and
“convolutional neural network”. It reflects the most advanced technology level of point
cloud semantic segmentation that is mainly applied to the geometric structure segmentation
of historical buildings.
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Topic #2 labeled as “unmanned aerial vehicle photogrammetry”, Topic #3 labeled
as “quick digital photogrammetric system”, Topic #10 labeled as “close-range automatic
correlation photogrammetry”, Topic #13 labeled as “tls data” and Topic #15 labeled as
“mobile lidar system” are all related to the technical approaches of 3D point cloud data
acquisition. The average research years of the above topics is relatively early because point
cloud data acquisition is the primary task in the research field. Different topics reflect the
distinctive technical characteristics of point cloud data acquisition methods in cultural
heritage. For example, the term “global navigation system” is included in the topic “mobile
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lidar system”, indicating that the mobile lidar data acquisition equipment needs to be
equipped with a navigation system.

Topic # 5 labeled as “quality specification” is related to the quality assessment of 3D
point cloud data. Topic #4 was labeled as “cultural heritage structure”, where the term
“finite element model” indicates an important method used for the structural analysis
of architecture heritage. Topic #6 labeled as “urban facade parsing”, Topic #7 labeled as
“decision-making task”, Topic #8 labeled as “monitoring structural deformation” and Topic
#11 labeled as “assessing structural damage” all focused on the practical applications of
point cloud data for cultural heritage protection.

4.2. Document Co-Citation Network Analysis

The document co-citation network analysis was performed for the identification of
key articles in the domain of 3D point cloud for cultural heritage during the timespan
ranging from 2006 to 2022. Similar to Section 4.1, the node selection was based on the Top
100 articles in each time slice covering two years. Each time slice was rendered with a
unique color. The link color corresponds to the specific time slice. As shown in Figure 6,
the merged document co-citation network contains 412 nodes and 4199 links. The nodes
represent the cited references among the collected articles. The links connecting nodes
represent the document co-citation relationship. The concentric tree rings represent the
temporal pattern of the publications in the corresponding years. The pink circle around
the nodes represents a betweenness centrality score more than 0.1. The Red circles around
the nodes indicate the number of times an article has been cited in a short period of time,
representing strong citation burst patterns. The purple circles indicate those articles that
hold strong centrality, which means that this paper is a hub between two research directions
in the surveyed domain. Larger node sizes suggest that the publication had been cited more
frequently and implies that the paper is an important one within the knowledge domain.
In other words, those articles with a large nodal size and purple rings are critical and worth
reading for researchers who intend to grasp the main idea of this domain efficiently. The
indexes of clustering effects are illustrated by a Modularity Q equal to 0.5191 > 0.3 and a
Weighted Mean Silhouette S equal to 0.8139 > 0.7, indicating that the composed network is
supportive for exploring document co-citation patterns.

We further investigated the details of those articles surrounded by purple circles
and red circles, which are with high betweenness centrality and strong citation bursts,
respectively. The article details are summarized in Table 3, including the authors, titles,
journal names and publication year. These articles can be regarded as the landmark articles
in the domain of leveraging 3D point cloud for cultural heritage. The most central article
was proposed by Grilli et al. (2017) [118], who concluded that 3D point cloud semantic
segmentation technology could improve the knowledge expression ability of cloud data
and could be applied for BIM. Dore et al. (2015) [119] proposed HBIM technology for
the structural simulation analysis of historical buildings. Both of these two articles were
published in the Int Arch Photogramm, which indicates that this journal plays a central role
among all journals that are relevant to 3D point cloud for cultural heritage on the other side.
Furthermore, those landmark articles extracted by the scientometric analysis tool exactly
reflect the research trends that was discussed in Section 2.3.
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Among the six articles with strong citation bursts, Furukawa et al. (2009) [120]
and Barazzetti et al. (2010) [121] proposed different image-based 3D reconstruction
methods, which were cited 3757 and 233 times, respectively, and extracted from Google
Scholar on 16 August 2022. Remondino et al. (2011) [122] surveyed the 3D scanning
and photogrammetry techniques that contributed significantly to the digital 3D doc-
umentation, mapping, conservation, and representation of landscapes and heritages.
Remondino et al. (2014) [123] also presented a critical review and analysis of the dense
image-matching algorithms, available as open-source and commercial software, for the
generation of dense point clouds. Image matching is one of the key steps for 3D modeling
and mapping. As such, the above four papers can be regarded as the knowledge base of
image-based and LiDAR sensor-based 3D reconstruction of cultural relics. In addition,
Murphy et al. (2013) [124] and Volk et al. (2014) [125] reviewed HBIM and BIM technology
for cultural heritage protection.

The clustering analysis of the document co-citation network was also conducted
to investigate the large and active areas of the domain. Combined with the clustering
analysis and the cluster labels shown in Figure 6, the knowledge structure of point cloud
data in the field of cultural heritage is constantly formed. Image-based and 3D laser
scanning are the main techniques for 3D reconstruction, which are indicated by three
clusters including Cluster #3 uav and Cluster #4 lidar point cloud and Cluster #5 3D
reconstruction. As indicated by Cluster #6 as-built bim and Cluster #0 hbim, the point cloud
semantic segmentation technology has been used to enhance the knowledge expression
ability of point cloud data and assist in the automatic construction of BIM and HBIM.
Besides, the structural assessment of cultural heritage represented by Cluster #2 relies on
the parametric model constructed by BIM and HBIM technology.
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Table 3. Landmark articles in the document co-citation network analysis.

Author Year Journal Abbr. Title

Articles with high betweenness centrality score

Grilli et al. [118] 2017 Int Arch Photogramm A review of point clouds segmentation and classification algorithms

Dore et al. [119] 2015 Int Arch Photogramm Structural simulations and conservation analysis Historic Building Information
Model (HBIM)

Articles with strong citation burst

Furukawa et al. [120] 2010 IEEE T Pattern Anal Accurate, sense, and robust Multiview stereopsis
Remondino et al. [123] 2014 Photogramm Rec State of the art in high density image matching

Barazzetti et al. [121] 2010 Photogramm Rec Orientation and 3D modelling from markerless terrestrial images: combining
accuracy with automation

Volk et al. [125] 2014 Automat Constr Building Information Modeling (BIM) for existing buildings—Literature review
and future needs

Remondino et al. [122] 2011 Remote Sens-Basel Heritage recording and 3D modeling with photogrammetry and 3D scanning

Murphy et al. [124] 2013 ISPRS J Photogramm Historic Building Information Modelling—Adding intelligence to laser and image
based surveys of European classical architecture

4.3. Collaborative Country Network Analysis

This section aims at analyzing and visualizing the national research collaboration
network that is made by research institutions worldwide. In the collaborative country
network, the country information was extracted from the authors’ affiliation. A country
acts as a node, and the collaboration between countries compose the links. As shown in
Figure 7, a total of 31 nodes and 57 links were included in this network. The concentric tree
rings reveal the temporal patterns of the articles published by this country. The color of
each concentric circle indicates the year of the publications, while the pink circle around
the nodes represents how the betweenness centrality score is over 0.1. The thickness of
the pink circles reflects the importance of this country in the research domain. The color
of the links aligns with the colors of the corresponding year when the national research
cooperation first appeared. The thicker the link, the stronger the national collaboration.
The red circles around the nodes indicate the citation bursts of the node. The Modularity Q
is equal to 0.4172 that is over 0.3 and the Weighted Mean Silhouette S is equal to 0.8026 that
is over 0.7, both of which indicates this collaborative country network is meaningful.
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As shown in Figure 7, Italy is the landmark node with the largest radius, indicating
that the key article in the domain of 3D point cloud for cultural heritage comes from Italy.
As evidence, the first author of this key article titled “From point cloud data to building
information modelling: an automatic parametric workflow for heritage” is a researcher
from the Department of Architecture, Built Environment, and Construction Engineering,
Politecnico di Milano, Milan, Italy. In addition, USA, China, Germany, Netherlands, France,
and Greece also own thick pink circles, indicating that they are central countries and make
critical contributions to this research domain.

The top five central countries ranked by the betweenness centrality are shown in
Table 4. The number of world heritage sites of each country is also listed for correlation
analysis. Among all of the countries, Italy has the highest degree centrality of 12 and
a betweenness centrality of 0.40. This aligns with the fact that Italy plays a landmark
role in the reviewed files, and it owns the largest circle with the most connections with
other countries as is shown in Figure 7. In contrast, Germany has a degree centrality
of 10 but has the highest betweenness centrality of 0.46. It reveals that Germany can be
regarded as the most important intermediary bridging other countries via the shortest path.
Furthermore, it presents a positive correlation between the centrality scores and the number
of cultural heritage sites located in each country. The countries with more international
cooperation also tend to have more cultural heritage sites. For example, Italy owns 58 world
cultural heritage sites, ranking first with regard to the number of world cultural heritage
sites. Similarly, China owns 56 world cultural heritage sites and Germany owns 51 world
heritage sites, ranking second and third regarding the number of world cultural heritage
sites all over the world, respectively, both of which have higher centrality scores.

Table 4. The top five countries ranked by betweenness centrality.

Country Betweenness Centrality Degree Centrality Number of World Heritage Sites

Germany 0.46 10 51
Peoples R China 0.41 11 56

Italy 0.40 12 58
Netherlands 0.23 7 12

Greece 0.18 6 18

We further performed a burst analysis to explore the development trends of deploying
3D point cloud for cultural heritage from 2006 to 2022 in terms of each country. The top
four countries with the strongest citation burst are illustrated in Figure 8. The USA has the
strongest citation burst of 4.13 in five years ranging from 2014 to 2019, while the citation
burst occurring in Germany lasts the longest period but with the weakest pattern among
those four countries. Italy showed a burst around 2010. The publications originating from
Italy drew burst attention concerning the point cloud data used in the cultural heritage
field around 2010. England owns the newest citation burst from 2018 to 2021. It shows
that England has received a lot of attention from other researchers in recent studies. Such
changes may be affected by policy guidance.
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4.4. Category Co-Occurrence Network Analysis

This section focuses on the analysis of the co-occurrence of categories to identify the
main categories that the articles associate with as well as the interdisciplinary patterns
among all categories. The category information was extracted from the field of “Cate-
gories/Classification” of WoS, indicating the research areas that this article belongs to.
Figure 9 demonstrates the temporal visualization of those categories in the bibliographic
literature that are related to 3D point cloud data for cultural heritage. The nodes refer to
the subject categories. If two categories co-occur in one article, there is a link between them.
We have selected the top 30 categories for each time slice in the timespan ranging from
2006–2022 to compose the category co-occurrence network. The merged network of subject
categories consists of 24 categories and 70 links. The Modularity Q = 0.5461 > 0.3, Weighted
Mean Silhouette S = 06745 > 0.7, indicating this network makes sense.
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In order to better interpret the results represented in Figure 6, we use the same color
and symbols as were introduced in Section 4.3 for consistency. Correspondingly, the
concentric tree rings reveal the temporal patterns of the articles published in this category,
and the color of each concentric circle indicates the year of the publications. The pink circle
around the nodes represents how the betweenness centrality score is over 0.1. The thicker
the pink circle, the higher the betweenness centrality of this category. The color of the links
aligns with the color of the corresponding year when the cross-disciplinary first appeared
between the two categories. The thickness of the links reflects the strength of the category
co-occurrence relationship. As the application of point cloud in the field of cultural heritage
is a typical interdisciplinary research domain, a number of strong connections can be found
between the categories. For instance, Geosciences is strongly correlated with archaeology,
art, and spectroscopy. It is obvious that the category of “Geosciences Multidisciplinary”
has the largest radius and is surrounded by a thick pink circle, indicating that it is the
most highly cited category and a central category of the domain. This aligns with the
fact that integrating point cloud data with 3D GIS is a typical application in the cultural
heritage field that was introduced in Section 2.2.4. Aiming to investigate the centrality
of each category and their contribution to facilitating the interdisciplinary research, we
summarized the betweenness centrality scores of the top ten categories in Table 5. The
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quantitative scores prove that both “Geosciences Multidisciplinary” and “Humanities
Multidisciplinary” are the most central categories in the domain of 3D point cloud data for
cultural heritage, which holds the same centrality score of 0.53. A major difference exists in
the publication year, illustrating that the former is the most central area researched in the
last decade while the latter is the most central area researched in recent years. Following
them closely are the categories of “Materials Science Multidisciplinary”, “Computer Science
Interdisciplinary Applications” and “Chemistry Analytical” with the centrality score of
0.44, 0.44 and 0.40, respectively.

Table 5. The top ten categories based on the betweenness centrality in literature for the years 2006–2022.

Category Betweenness Centrality Year

Geosciences Multidisciplinary 0.53 2006
Humanities Multidisciplinary 0.53 2018
Materials Science Multidisciplinary 0.44 2011
Computer Science Interdisciplinary Applications 0.44 2016
Chemistry Analytical 0.40 2009
Engineering Electrical Electronic 0.35 2014
Engineering Civil 0.35 2015
Environmental Sciences 0.24 2014
Engineering Multidisciplinary 0.15 2018
Imaging Science Photographic Technology 0.10 2008

Burstiness identifies the subject categories which are active in the relevant research area
during a period. The higher the citation bursts of a disciplinary, the more connections it has
with other disciplinaries. The history of the citation burst of the top five subject categories
is demonstrated in Figure 10. The results reveal that “Archaeology” is the category with
the strongest citation burst of 6.31 from 2010 to 2015. “Geosciences Multidisciplinary”
is the earliest and the longest active category lasting for 9 years from 2006 to 2015. The
most recent citation bursts occur in “Imaging Science Photographic Technology” from
2016–2017. This may be because more and more advanced image-based techniques (e.g.,
image-based dense point cloud matching algorithms) have been leveraged to improve the
performance of employing 3D point cloud for cultural heritage in recent years. This aligns
with the landmark article presented in Table 3, namely, Remondino et al. [123] (2014), which
summarized the state of the art in high density image matching techniques and drew high
attention in the field of 3D point cloud for cultural heritage.
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5. Conclusions

In this work, CiteSpace software was used to conduct the scientometric analysis of the
research concerning employing 3D point cloud for cultural heritage in order to investigate
the research productivity as well as the emerging trends. The research, published as journal
papers, were collected from the Web of Science database with a timespan ranging from
2006 to 2022. Based on the collected papers, a total of four networks have been generated
and visualized for the scientometric analysis, including the term co-occurrence network
analysis, document co-citation network analysis, collaborative country network analysis
and category co-occurrence network analysis. A number of remarkable results have been
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obtained from those analyses. The main terms extracted through measuring their log-
likelihood ratio and centrality can reflect multiple data acquisition methods (e.g., total
station, terrestrial laser scanners and UAV integration), information extraction and fusion
(e.g., building information modeling, historic building information modeling and semantic
segmentation) as well as the popular applications (e.g., cultural heritage documentation,
restoration purposes, deformation analysis, and structural damage), which compose the
research hotpots in this field. Based on the document co-citation network analysis, the
paper proposed by Barazzetti L et al. (2010) [121] has been the most cited work since
2010 and holds strong citation bursts, which can be regarded as landmark research in the
surveyed domain. At the national level, it is interesting that countries such as Germany,
China, and Italy, which own numerous world heritage sites, have also contributed more in
the academic research of this domain. From the perspective of disciplines, the research of
3D point cloud for cultural heritage features has significant features of interdisciplinary,
crossing “geoscience”, “materials science”, “chemistry”, “environmental sciences” and
“humanities”. This, in turn, puts forward higher requirements for the research in this field,
leading to greater challenges we are potentially facing in the future. It is an inevitable
trend to strengthen the exchange and cooperation at the national level and the joint efforts
of multiple disciplines. These findings provide valuable reference for those who are
engaged in the field of 3D point cloud data for cultural heritage and helps them to have
a comprehensive and systematic understanding of the research topics, hot issues and
development trends.

Despite the achievements obtained in this work, there still exists space for improve-
ment in the near future. As the articles surveyed in this work are only in English and
collected from the Web of Science database, some relevant research may have been missed
in this review. In the future, those articles either written in other languages (e.g., Chinese) or
recorded in other databases (e.g., Scopus), can be included for further comparison analysis.
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