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Abstract: Recent advancements in hyperspectral remote sensing bring exciting opportunities for
various domains. Precision agriculture is one of the most widely-researched examples here, as it can
benefit from the non-invasiveness and enormous scalability of the Earth observation solutions. In this
paper, we focus on estimating the chlorophyll level in leaves using hyperspectral images—capturing
this information may help farmers optimize their agricultural practices and is pivotal in planning the
plants’ treatment procedures. Although there are machine learning algorithms for this task, they are
often validated over private datasets; therefore, their performance and generalization capabilities are
virtually impossible to compare. We tackle this issue and introduce an open dataset including the
hyperspectral and in situ ground-truth data, together with a validation procedure which is suggested
to follow while investigating the emerging approaches for chlorophyll analysis with the use of our
dataset. The experiments not only provided the solid baseline results obtained using 15 machine
learning models over the introduced training-test dataset splits but also showed that it is possible to
substantially improve the capabilities of the basic data-driven models. We believe that our work can
become an important step toward standardizing the way the community validates algorithms for
estimating chlorophyll-related parameters, and may be pivotal in consolidating the state of the art in
the field by providing a clear and fair way of comparing new techniques over real data.

Dataset: DOI:10.1016/j.dib.2022.108087.

Dataset License: The license under which the data set is made available is (CC-BY).

Keywords: hyperspectral imaging; machine learning; chlorophyll estimation; benchmark; validation

1. Introduction

Recent advancements in sensor technology bring new possibilities in hyperspectral
image (HSI) analysis—such data effectively captures hundreds of spectral bands in the elec-
tromagnetic spectrum. In precision agriculture, acquiring detailed information concerning
the chlorophyll saturation lets the plant breeders optimize their operation and plan the
plants’ treatment. Because the chlorophyll fluorescence, which is induced by solar radia-
tion, is a direct representative of the actual vegetation photosynthesis, it is also the main
vegetation performance indicator [1]. Therefore, monitoring the chlorophyll fluorescence
parameters could bring important information on plants’ stress or help us to detect the
moment of the crop photosynthesis termination [2]. Furthermore, such measurements are
valuable because they could make us understand the plant response to herbicide treat-
ments and enable us to react quickly to possible plant conditions’ changes. Additionally,
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the exposition to toxicants can be inferred from HSI [3]. Finally, the decreasing amount
of chlorophyll—as a result of combustion—causes changes in the characteristics of the
spectral signature of hyperspectral measurements [4]. It allows us to extract important
insights concerning the scanned area, e.g., to assess whether it is under an active fire (be-
cause there are continuous changes over time), the area is burnt (because the chlorophyll
content is low) or if there is a risk of the active area re-developing (partial burnout). It
is worth mentioning that the process of monitoring and prevention of fires in Europe is
carried out by the European Forest Fire Information System, which is part of the Earth
Observation Programme. As part of it, monitoring of fires is carried out using multispectral
data from Sentinel-2—the key information source is the red-edge band, which is one of
the best descriptors of chlorophyll [4]. Furthermore, the chlorophyll-a index allows for
the preparation of the pigmentation map [5], which can be the basis for detecting harmful
algae blooms using the remotely sensed data [6,7]. Thus, determining the concentration
of chlorophyll is important in monitoring water quality as well. Overall, although we
focus on estimating the chlorophyll in leaves, non-invasive determination of its level is of
paramount importance in an array of applications that could be potentially targeted at an
enormous scale thanks to airborne and satellite imaging [8].

There are several ways to determine the level of chlorophyll in leaves, but most
of them require direct and invasive access to leaves. Therefore, due to the high costs
of such economically-infeasible, time-consuming and non-scalable procedures, the non-
invasive techniques have become an important yet still under-developed research venue.
The approaches which are focused on exploiting the multi- and hyperspectral images
for this task span across those that use the in-field [9], airborne [10] and satellite [11,12]
imaging, with the latter offering immediate scalability over large areas. Although there
are works that reported promising results for the multispectral data [13], hyperspectral
imaging is the current main focus, as it can allow for precise chlorophyll estimation thanks
to the very detailed spectral information available in such data [14].

The state-of-the-art techniques for estimating the chlorophyll level exploit classic and
deep supervised machine learning [15], with the latter benefiting from automated represen-
tation learning [16]. Such algorithms, however, require representative and large training
sets capturing both image data and in situ measurements to generalize over new data.
Unfortunately, albeit chlorophyll estimation is an important topic, there are no publicly
available and established datasets that could provide an unbiased way of comparing the
approaches for this task. Therefore, we are currently facing the reproducibility crisis [17].
Additionally, collecting high-quality ground truth is time- and cost-inefficient, hence such
datasets are often synthesized [18]. Haboudane et al. focused on estimating the chlorophyll
level from HSI and used a private set containing the images (72 VIS-NIR bands with 2 m
GSD) and 12 reference measurements [10]. Similarly, the HSI band selection targeting the
chlorophyll estimation was tackled over the in-house data in [19]. Although it is possible
to obtain a rough chlorophyll level approximation using the spectral indices [12,20], its
quality is questionable [21].

Acquiring precise in situ measurements is a pivotal step in building datasets that
could be used to train and validate machine learning chlorophyll estimation algorithms.
The majority of approaches that measure the actual level of chlorophyll utilize the soil-plant
analysis development (SPAD) parameter [22]. There are, however, techniques exploiting the
photosynthesis efficiency parameter and the chemical reflectance index [23]. Interestingly,
some works presented the methodology to model the relationship between the chlorophyll
content and the plant stress that could be investigated using the maximal photochemical ef-
ficiency of PSII (Fv/Fm) [24] or the fluctuations in the light intensity. Overall, the algorithms
for non-invasive monitoring of chlorophyll parameters from multi/hyperspectral image
data have been intensively researched due to their practical applicability and potential
scalability (e.g., if deployed on board a satellite [8]) in precision agriculture, but there are
no standardized procedures to validate them in an unbiased way. Furthermore, there are
no publicly available and adopted datasets that could be used in such validation pipelines.
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1.1. Contribution

In this paper, we address both research gaps (the lack of standardized procedures
to validate the algorithms for chlorophyll estimation from HSI, and the lack of public
and adopted datasets that could be utilized to investigate the approaches for this task)
and introduce an end-to-end and reproducible validation procedure coupled with the
real-life dataset of hyperspectral imagery and in situ measurements. We captured the in
situ chlorophyll measurements together with the high-resolution HSI data and introduced
a standardized approach for using this dataset to validate the emerging chlorophyll estima-
tion techniques. This validation procedure will help us avoid any experimental flaws—we
discussed such flaws concerned with the training/test dataset splits in our previous work
in the context of the HSI segmentation [25].

Our contributions are therefore threefold:

• We introduce a publicly available set of (i) chlorophyll content measurements with
some complementary information, including the soil moisture, weather parameters
collected during the measurements or the relative water content, being the amount
of water in a leaf at the time of sampling relative to the maximal water a leaf can
hold and (ii) the corresponding high-resolution hyperspectral imagery (2.2 cm GSD).
The dataset encompasses the orthophotomaps with the marked plots where the chloro-
phyll sampling has been completed, as well as the extracted images of separate plots.
We performed the on-the-ground chlorophyll measurements, which resulted in four
ground-truth parameters (Section 3.1):

1. The SPAD index [22];
2. The maximum quantum yield of the PSII photochemistry (Fv/Fm) [24];
3. The performance index for energy conservation from photons absorbed by PSII

to the final PSI electron acceptors (PI) [26];
4. Relative water content (RWC) measurements for the sampled canopy, for captur-

ing additional derivative information on the nutrition of the plants.

• We introduce a procedure for the unbiased validation of machine learning algorithms
for estimating the chlorophyll-related parameters from HSI, and we ensure the full
reproducibility of the experiments over our dataset (Section 3.2).

• We deliver the baseline results obtained for the introduced dataset (for four ground-
truth parameters) using 15 machine learning techniques which can constitute the
reference for any future studies emerging from our work (Section 4). Additionally,
we show that the performance of a selected model can be further improved through
regularization.

1.2. Structure of the Paper

In Section 2, we contextualize our work within state of the art by providing a review
of an array of applications which can benefit from machine learning techniques operating
on multi- and hyperspectral data, with a special emphasis put on chlorophyll estimation
and on the way such approaches are validated. Section 3 introduces our chlorophyll
estimation dataset, together with the validation procedure which is suggested to follow
while exploiting it for experimentation. Our experimental results, obtained for various
machine learning techniques over the suggested training-test dataset split, are gathered
and discussed in Section 4. Finally, Section 5 concludes the paper.

2. Related Literature

The nature of activities in the agricultural sector has changed over the years as a
result of a broadly-understood human activity, which encompasses—among other factors—
rapidly growing population, environmental pollution, climate change and depletion of
natural resources. The premise of precision agriculture is an effective food production
process with a reduced impact on the environment. To achieve this goal, however, it is
required to assess the soil quality, its irrigation, fertilizer content and seasonal changes
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that occur in the ecosystem. Estimating the yield volume planned for a given region may
also constitute the important information related to the effectiveness of the implemented
agricultural practices [27]. Remote sensing may easily become a tool enabling the iden-
tification of soil and crop parameters due to the possibility of assessing a large area in
subsequent time points. For agriculture, it is carried out using both passive and active
methods. In the former case, multi- and hyperspectral remote sensing is used. The ap-
proaches using multispectral images (MSIs) are mainly based on the content of chlorophyll
and its related parameters [28,29]. Nevertheless, the wide bandwidth that characterizes
multispectral imaging results in limited accuracy in the early detection of negative symp-
toms such as nutrient deficiency or plant diseases [30]. The use of hyperspectral imaging,
on the other hand, which is characterized by high spectral resolution (the bands are narrow
and continuous), allows for the detection of more subtle details in the spectral response
of a given area [31]. HSI-based methods can detect potential abnormalities, such as plant
diseases, much faster than the MSI-based ones because the spectral signature contains
more detailed characteristics derived from significantly narrower bands [32]. Additionally,
satellites equipped with multispectral sensors (e.g., WorldView, QuickBird, Sentinel-2,
Landsat) are still more popular than those with hyperspectral sensors (see, e.g., the EO-1
Hyperion mission and various emerging missions, including Intuition-1). Furthermore,
there are some practical challenges that need to be faced for HSI missions, as such data
may be extremely large, hence should be processed on board a satellite to downlink the
“information” instead of raw image data. However, hyperspectral analysis in agriculture is
popularly carried out by field-point methods using a spectroradiometer. The limitation to a
few selected places makes spatial estimation impossible; therefore, research is conducted to
determine the correlation between data collected by the field methods and data recorded by
satellites [29,33,34] or by manned or unmanned airplanes [27,35–37]. In Figure 1, we show
that the popularity of the topics (quantified as the number of papers published yearly)
related to the MSI/HSI analysis in agriculture and including chlorophyll estimation, has
been steadily growing over the last ten years. It also confirms the importance of introducing
standardized validation procedures, which can be easily used to confront the emerging
approaches for a given task in an unbiased and reproducible way.

Figure 1. The popularity of topics related to the HSI analysis in various agricultural applications,
including the chlorophyll estimation, quantified as the number of papers on such topics published
between 2012 and 2022 (this analysis is based on https://app.dimensions.ai/discover/publication
(accessed on 1 November 2022), the analysis was performed on 8 September 2022; in the legend, we
present the keyphrase which was used). We can appreciate that the number of articles tackling the
automated chlorophyll determination from hyperspectral imagery is increasing at a steady pace.

https://app.dimensions.ai/discover/publication
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HSIs provide a tremendous amount of spectral-spatial information. On its basis, target
agricultural parameters can be estimated—the narrow infrared and near-infrared bands
can be used to accurately calculate the leaf area index (LAI) [38]. Similarly, the analysis of
spectral data allowed us to define a vegetation index based on the assessment of chlorophyll
content [35,39]. Assessing the content of chlorophyll in crops is one of the most important
approaches, as chlorophyll is a reliable indicator of the crop health. The reason for the high
usefulness of this biophysical pigment is that it enables us to evaluate the biochemical pro-
cesses, which reflects the productivity of plants [31]. Vegetation coefficients are the basis for
the estimation and monitoring of biomass, as well as for the assessment of soil composition
and its moisture. There have been an array of machine learning techniques proposed for
such tasks—the biomass estimation was performed using random forests [35,36,40,41], sup-
port vector machines [36,40,41] and multivariate regression modeling [28,36,41]. To tackle
the problem of the high dimensionality of hyperspectral data, band selection and feature
extraction, using, e.g., principal component analysis [42], are commonly deployed [36,43].
They elaborate a subset of the most discriminative bands or features [44]—the experiments
using HSI obtained by unmanned aerial vehicles suggest that limiting the spectral range in
the context of monitoring the plant growth to 454–950 nm [35] or 454–882 nm [27] is enough
to achieve this goal.

In Table 1, we gather a set of the selected works focusing on MSI/HSI analysis in vari-
ous agricultural applications (the papers tackling the chlorophyll estimation are presented
in green), whereas Table 2 presents the corresponding experimental results reported in
those publications. We can appreciate that both classic and deep machine learning models
have been extensively developed throughout the years, but their direct comparison is
virtually impossible, as the authors (i) utilize different datasets (of different cardinality and
underlying characteristics, as they may have been captured using various sensors, in differ-
ent acquisition conditions and following different acquisition procedures) and validation
scenarios (e.g., different cross-validation approaches), and (ii) commonly report different
metrics quantifying the capabilities of the investigated techniques. In this work, we tackle
this issue and introduce a dataset capturing high-resolution hyperspectral imagery coupled
with the in situ chlorophyll measurements, alongside the suggested validation procedure
(its training-test split and a set of metrics, which should be used to quantify the prediction
performance of the algorithms) and our baseline results obtained in this experimental
scenario. We believe that it may be an important step toward unbiasing the way the com-
munity verifies the emerging approaches for estimating chlorophyll-related parameters
from hyperspectral imagery, and it can help us effectively tackle the reproducibility crisis
in the machine learning-based HSI analysis [17].

Table 1. Selected works focusing on the machine learning-powered analysis in agricultural applica-
tions, together with the additional feature extraction step performed in the corresponding method.
The papers focusing on the chlorophyll estimation are in green.

Ref. Year Goal Feature Extraction Algorithm

[31] 2022 prediction of chlorophyll
content in maize

selected bands;
vegetation indices

random forest

[35] 2021 monitoring of above-ground
biomass of maize

vegetation indices stepwise regression;
random forest;
extreme gradient boosting

[45] 2021 monitoring of wheat
yellow rust

vegetation indices;
meteorological features

linear discriminant analysis;
support vector machine;
artificial neural network

[46] 2020 mapping of live fuel
moisture content

NDVI;
NDWI;
NIRv

recurrent neural network

[28] 2020 estimation of biomass vegetation indices deep neural network
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Table 1. Cont.

Ref. Year Goal Feature Extraction Algorithm

[27] 2020 monitoring of crop growth high-frequency
IWD information;
continuous wavelet
transform (CWT)

multiple linear stepwise
regression

[40] 2020 dry biomass estimation
of paddy rice

VH;
VV

random forest;
support vector machine;
k-nearest neighbor;
gradient boosting decision tree

[47] 2020 LAI detection LAI Gaussian process
regression (GPR);
variational
heteroscedastic GPR

[33] 2020 estimation of
soil organic carbon

principal component
analysis;
NDI;
RI;
DI

discrete wavelet transform
at different scales;
random forest;
support vector machine;
back-propagation
neural network

[48] 2020 estimation of
soil organic carbon

vegetation indices:
NDVI, SAVI, NBSI,
NDWI, NDBI, FI

random forest

[36] 2019 monitoring of above-ground
biomass of maize

recursive-feature elimination multiple linear regression;
support vector machine;
artificial neural network;
random forest

[41] 2019 pasture conditions,
seasonal dynamics
of LAI and AGB

NDVI;
EVI;
LSWI

multiple linear regression;
support vector machine;
random forest

[38] 2018 canopy green leaf area GBVI;
NDVI;
CI

empirical vegetation index regression
(NDVIa-b and CIa-b);
physically-based inversion,
support vector regression

[49] 2016 maize biomass estimation,
the seasonal variation

specific leaf area simple algorithm for yield estimates

[43] 2015 detection of favorable
wavelengths

singular value
decomposition

stepwise regression

Table 2. The results reported in the selected works on machine learning-powered analysis in various
agricultural applications. The papers focusing on the chlorophyll estimation are in green.

Ref. Date Source Type Wavelength Amount of Data Measure Value

[31]
DJI S1000 UAV;
MicaSense Altum;
Downwelling Light
Sensor 2 (DLS-2)

MSI
465, 532, 630 nm,
680–730 nm,
1200–1600 nm

3576 R2

RMSE
RRMSE

results reported
for the seasons
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Table 2. Cont.

Ref. Date Source Type Wavelength Amount of Data Measure Value

[35] DJI S1000 UAV;
Cubert UHD 185

HSI 454–950 nm 1809 R2

RMSE
RRMSE

0.85
0.27 t

ha
0.84%

[45] Sentinel-2;
National Meteorological
Information Center

MSI 490, 560, 665,
842, 705 nm

58 accuracy 84.20%

[46] Sentinel-1;
Landsat-8

SAR
MSI

C-band;
450–510 nm,
530–590 nm,
640–670 nm,
850–880 nm,
1570–1650 nm,
2110–2290 nm

not specified R2

RMSE
bias

0.63
25.00%
1.90%

[28] Sentinel-2 MSI 443–2190 nm 209 R2

RMSE
RRMSE

0.87
1.84 t

ha
24.76%

[27] DJI S1000 UAV;
Cubert UHD 185;
Sony DSC QX100

HSI 454–882 nm 144 R2

RMSE
MAE

0.85
0.79 t

ha
1.01 t

ha

[40] Sentinel-1A SAR C-band 175 R2

RMSE
0.72
362.40 g

m2

[47] Sentinel-2 MSI 400–2400 nm 114 R2

RMSE
R2

RMSE

0.78 (GPR)
0.70 (GPR)
0.80 (VHGPR)
0.63 (VHGPR)

[33] Gaofen-5 HSI 433–1342 nm,
1460–1763 nm,
1990–2445 nm

14 R2

RMSE
0.83
2.89 g

kg

[48] ALOS PALSAR;
Landsat TM

SAR
MSI

L-band;
530–590 nm,
640–670 nm,
850–880 nm,
1570–1650 nm,
2110–2290 nm

not specified R2

RMSE
RDP

0.59
9.27 g

kg
1.98

[36] DJI S1000 UAV;
1.2 megapixel Parrot
Sequoia camera

MSI 550–790 nm 120
185

R2

RMSE
MAE

0.94
0.50
0.36

[41] Sentinel-1A;
Landsat-8;
Sentinel-2

SAR
MSI

C-band;
452–512 nm,
636–673 nm,
851–879 nm,
1566–1651 nm

not specified R2

RMSE
0.78
119.40 g

m2

[38] HyMap;
CHRIS/PROBA

HSI
MSI

677–707 nm 118 R2 0.79

[49] Formosat-2;
SPOT4-Take5;
Landsat-8;
Deimos-1

MSI specific to
the sensor

195 R2

RRMSE
0.96
4.6%

[43] Landsat ETM+;
KONOS;
GeoEye-1;
WorldView-2;
Hyperion

HSI
MSI

772, 539,
758, 914,
1130, 1320 nm

9,
23,
23,
24,
10

R2

RMSE
0.12–0.97
1.15–2.47 g

m2
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3. Materials and Methods

In this section, we present our dataset containing high-resolution hyperspectral im-
agery coupled with the in situ chlorophyll measurements (Section 3.1). The validation
procedure which should be followed while utilizing this dataset to investigate the capabili-
ties of emerging chlorophyll estimation techniques is discussed in detail in Section 3.2.

3.1. Chlorophyll Estimation Dataset (CHESS)

In Figure 2, we visualize the process of building the CHlorophyll EStimation DataSet
(CHESS). The data was collected in 2020 in the Plant Breeding and Acclimatization Institute
—National Research Institute (IHAR-PIB) facility located in the Central Poland region
(Jadwisin, Masovian Voivodeship). For the selected 24 outdoor plots of two different soil
profiles (12 plots for each soil profile, without any repetitions or overlaps), two popular (in
the central Europe) potato varieties were planted: Lady Claire and Markies (split evenly).
The acquisition was carried out in June and July 2020 (3 rounds of acquisition, 4 weeks
apart: 3 flights over 2 sets of 12 plots resulting in 72 HSIs acquired in total) when the
leaves were fully developed. The images were captured using an unmanned aerial vehicle
with the push-broom imaging spectrometer that registers 150 continuous spectral bands
(460–902 nm with the 2.2 cm GSD). The orthorectification procedure was executed using
the collected image material of each spectral band—it was possible thanks to using four
location targets (see the far left image in Figure 2) whose geographical positions have
been collected with a precise GPS device. The spectral correction of those maps using four
calibration targets of different spectral characteristics (selected to cover the spectrum range
in which plants are perceived best) was performed. This allowed us to finalize the image
acquisition process with low location error (less than 1 cm), high image resolution (2.2 cm
GSD), and consistent spectral characteristics.

In parallel to the image acquisition campaign, the in situ on-the-ground measurements
were performed on each plot (sampling was executed at the same time). To provide precise
measurements, we captured (i) the readout of the photosynthesis efficiency quantified
as the chlorophyll content using the SPAD index using the Minolta SPAD-502 device,
(ii) the measurement of the maximum quantum yield of the PSII photochemistry (Fv/Fm)
using the Multifunctional Plant Efficiency Analyzer (Handy-PEA fluorimeter, Hansatech
Instruments Ltd. and Pea Plus software), (iii) the performance of the electron flux to the final
PSI electron acceptors, as discussed in [50], and (iv) RWC which reflects the lab-measured
degree of hydration of the leaf’s tissue [51–53].

Figure 2. The dataset preparation procedure: 6 hyperspectral orthophotomaps, one for each flight
for each set of 12 plots (left) were used to extract 72 hyperspectral 150-band images (middle left).
The ground measurements of four parameters were performed for each plot (middle right). We
extracted the spectral curves, individually for each pixel and aggregated across all pixels—see,
e.g., the median spectral curve in the far right image.

The detailed agronomic setup and the dataset [54] with the training-test split consti-
tuting the validation procedure suggested in this paper, hence ensuring full reproducibility
of the study, are available at https://data.mendeley.com/datasets/xn2wy75f8m (accessed
on 1 November 2022). Since the measurements were collected in three independent rounds
of data acquisition performed in the outdoor environment, CHESS reflects different plant
characteristics and is intrinsically heterogeneous. We believe that exploiting a standardized

https://data.mendeley.com/datasets/xn2wy75f8m
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and non-biased validation procedure built upon such real-life data is of utmost importance
to ensure full reproducibility and to avoid the “illusion of progress” in the field [17].

Figure 3. Empirical cumulative distribution (ECDF) of all parameters (SPAD, FvFm, PI and RWC) in
the training and test sets.

3.2. Unbiased Validation of Chlorophyll Estimation

Unbiased and fair validation of the emerging algorithms for the non-invasive estima-
tion of the chlorophyll-related parameters from HSI is critical to allow the community to
track the progress in the field, and to accelerate the practical adoption of such approaches.
Since there are differences across the measurement methodology followed for each in situ
parameter (the SPAD index, Fv/Fm, PI and RWC), we provide four separate training-test
dataset splits, independently for each ground-truth chlorophyll-related parameter. Each
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split (i.e., for each parameter) is equinumerous, meaning that the number of plots is equal in
the training and test subsets (36 HSIs with the ground-truth measurements captured for 36
separate plots of interest in both training and test sets). To be able to effectively quantify the
generalization capabilities of the machine learning models trained and validated over such
dataset splits, we stratified them according to the corresponding parameter’s distribution
to maintain similar distributions in both training and test sets (Figure 3). The reflectance
characteristics of all HSIs across all folds are rendered in Figure 4. They show that there is a
high agreement in the spectral features captured for the training and test images. Hence,
the test set indeed resembles the characteristics of the training data and may be used to
quantify the generalizability of the data-driven algorithms.

Figure 4. Spectral characteristics of all HSIs in the training and test sets. The mean spectral curves
are rendered as blue and orange (dashed) lines for the training and test set, respectively.
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Although the captured ground-truth parameters are commonly utilized in agronomy
to assess the condition of the plants, they are measured differently, hence their characteris-
tics are inherently varying. In Table 3, we gather the correlation coefficients across all of the
parameters, indicating that, albeit some of them are indeed correlated (e.g., SPAD and PI,
with the Pearson’s and Spearman’s coefficients amounting to 0.675 and 0.674, respectively),
RWC is unrelated to other ones.

Table 3. Inter-parameter correlation between the measured ground-truth parameters (the Pearson’s
correlation coefficient values are reported over the main diagonal, whereas the Spearman’s correlation
coefficient values are given below the main diagonal; the corresponding p-values for the presented
correlation coefficients are shown in brackets).

Parameter SPAD FvFm PI RWC

SPAD 1.000 (1.000) 0.668 (0.000) 0.675 (0.000) 0.109 (0.363)
FvFm 0.574 (0.000) 1.000 (1.000) 0.743 (0.000) 0.352 (0.002)

PI 0.674 (0.000) 0.877 (0.000) 1.000 (1.000) −0.094 (0.434)
RWC 0.697 (0.550) 0.253 (0.161) −0.047 (0.692) 1.000 (1.000)

4. Experimental Results

The objectives of our experiments are twofold: (i) to present the baseline results, ob-
tained using a variety of machine learning algorithms (15 in total), over the introduced
chlorophyll estimation dataset (CHESS) using the proposed training-test dataset splits
(independently for SPAD, Fv/Fm, PI, and RWC), and to (ii) show that the predictive power
of a selected model can be improved through additional regularization. To quantify the
prediction performance of the algorithms (over the test sets), we exploit the classic metrics,
including the coefficient of determination R2 (upper bounded by the value of one indicat-
ing the perfect score, and all negative values of R2 indicating a worse fit than the average
fit [55]), the mean absolute percentage error (MAPE), the mean squared error (MSE) and the
mean absolute error (MAE)—all errors should be minimized. For all models, we utilized
their default parameters (Table 4), as suggested by Pedregosa et al. [56]—we intentionally
have not executed any additional hyperparameter optimization to present the baseline
solutions elaborated using the machine learning techniques with default parameterization.
The algorithms are fed with the median spectral curves (hence, the feature vectors contain
150 values corresponding to the median value of each band within the image), and each
model predicts a single chlorophyll-related parameter (SPAD, Fv/Fm, PI or RWC). There-
fore, we do not perform any additional feature extraction or band selection (they may easily
improve the performance of data-driven HSI analysis algorithms [44]).

Table 4. The most important hyperparameter values, as suggested by Pedregosa et al. [56], of all
parameterized machine learning algorithms investigated in this study.

Algorithm Hyperparameters

Ada Boost Maximum number of estimators: 50, learning rate: 1, linear loss.

Decision Tree

Loss function: squared error, maximum depth of the tree: not set, minimum number of
samples required to split an internal node: 2, minimum number of samples required to
be at a leaf node: 1, allowing all features to be considered for the best split with unlimited
number of leaf nodes.

Extra Trees

Maximum number of estimators: 102, loss function: squared error, maximum depth of
the tree: not set, minimum number of samples required to split an internal node: 2,
minimum number of samples required to be at a leaf node: 1, allowing all features to be
considered for the best split with samples’ bootstrapping while building trees, unlimited
number of leaf nodes.

Extreme Gradient Boosting Learning rate: 0.3, maximum depth of an individual estimator: 6, minimum sum of
instance weight: 1, maximum delta step: 0, regularization terms λ: 1 and α: 0.
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Table 4. Cont.

Algorithm Hyperparameters

Gradient Boosting
Learning rate: 0.1, maximum number of estimators: 102, maximum depth of an
individual estimator: 3, loss function: squared error, percentage of samples required to
split an internal node: 10%.

Kernel Ridge α: 1, the degree of the linear polynomial kernel: 3, zero coefficient for polynomial and
sigmoid kernels: 1.

Lasso α: 1, maximum number of iterations: 103, tolerance stopping criteria: 10−4.

Light Gradient Boosting Machine

Maximum tree leaves for base learners: 31 without any limit for the tree depth for base
learners, boosting learning rate: 10−1, number of boosted trees to fit: 102, number of
samples for constructing bins: 2 · 104, no minimum loss reduction required to make a
further partition on a leaf node, minimum sum of instance weight in a leaf: 10−3,
minimum samples in a child: 20.

Linear Support Vector Machine Regularization parameter C: 1, L1 loss, maximum number of iterations: 103, the
tolerance stopping criteria: 10−4.

Nu Support Vector Machine

Kernel: Radial Basis Function, upper bound on the fraction of training errors and a lower
bound of the fraction of support vectors: 0.5, regularization parameter C: 1, γ: 1 /(
|F | · σ2(T)

)
, where F is the number of features, and σ2(T) is the variance of the

training set.

Random Forest

Maximum number of estimators: 102, function measuring the quality of split: squared
error, minimum number of samples required to split an internal node: 2, minimum
number of samples required to be at a leaf: 1, allowing all features to be considered for
the best split with unlimited number of leaf nodes, no maximum number of samples
for bootstrapping.

Ridge α: 1, tolerance stopping criteria: 10−3.

Stochastic Gradient Descent

Loss function: squared error with L2 regularization, α = 10−4, L1 ratio: 0.15, maximum
number of passes over the training data: 103, the stopping criterion for loss: 10−3, data
shuffling after each epoch, the initial learning rate: 10−2, the exponent for inverse scaling
learning rate: 0.25, 10% of training data is the validation set for early stopping with 5
iterations with no improvement termination.

Support Vector Machine

Kernel: Radial Basis Function, γ: 1 /
(
|F | · σ2(T)

)
, where F denotes the number of

features, and σ2(T) is the variance of the training set, tolerance for stopping criterion:
10−3, regularization parameter C: 1, ε: 10−1, where ε specifies the epsilon-tube within
which no penalty is associated in the training loss function with points predicted within a
distance ε from the actual value.

In Table 5, we gather the results obtained for all investigated parameters (SPAD, FvFm,
PI and RWC) using top-3 machine learning models (with default parameterization), accord-
ing to the R2 metric, being the most widely utilized quality measure in precision agriculture.
We can appreciate that Linear Regression allows for obtaining the best coefficients of de-
termination for SPAD, FvFm and PI, which are significantly larger than those achieved
by the second-best algorithm (R2 smaller by 0.099, 0.110, and 0.288 than for Extreme Gra-
dient Boosting, Gradient Boosting and Extra Trees for SPAD, FvFm and PI, respectively).
For RWC, this linear model resulted in R2 of 0.720 (it was ranked fourth), and it was
outperformed by the non-linear regression techniques. The results indicate that building
heterogeneous regression ensembles, capturing both linear and non-linear models [57],
may further improve the overall quality of estimating the parameters of interest.

To show that a selected model can be further improved, we employed a classic L2
regularization to the Ridge regression model, as it outperformed the other techniques for
RWC (note that it failed to deliver high-quality prediction for other parameters, as presented
later). A similar application of a regularized model was utilized to estimate the chlorophyll
concentration by Lin and Lin [58], and it was shown to be effective in enhancing the
algorithm’s generalization capabilities. In Figure 5, we present the R2 values over the
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test sets (for each parameter) obtained for a range of the α hyperparameter values which
controls the regularization strength (the larger α becomes, the stronger regularization is).
We can observe that for a fine-tuned α parameter, we can significantly improve the model’s
performance for all chlorophyll parameters. Ridge regression with L2 regularization (with
α of 2.5× 10−5, 5× 10−5, 10−11 and 10−3 for SPAD, FvFm, PI and RWC, respectively) not
only did provide statistically-significant improvements over the baseline Ridge model for
all parameters, but also outperformed the other investigated models in 3/4 chlorophyll
parameters (Table 6). Here, only for PI, the results were the same as those obtained by
Linear Regression (R2 of 0.667). Thus, further improvements of the machine learning
models, including the optimization of their hyperparameters or selection of appropriate
training and/or feature sets, can easily lead to better regressors which may be confronted
with the other techniques using our validation procedure in an unbiased and fair way.

Table 5. Three best machine learning models (according to R2) with default parameterization for
each ground-truth parameter. We indicate if the metric should be minimized (↓) or maximized (↑).

Param. Model R2 ↑ MAPE ↓ MSE ↓ MAE ↓
Linear Regression 0.818 0.072 9.583 1.569

SPAD Extreme Gradient Boosting 0.719 0.092 14.808 2.784
AdaBoost 0.698 0.080 15.935 1.814

Linear Regression 0.718 0.037 0.001 0.021
FvFm Gradient Boosting 0.608 0.037 0.001 0.017

AdaBoost 0.600 0.037 0.001 0.016

Linear Regression 0.667 0.532 0.169 0.280
PI Extra Trees 0.379 1.251 0.315 0.368

Random Forest 0.213 1.594 0.400 0.470

Ridge 0.817 0.014 2.249 1.207
RWC Extreme Gradient Boosting 0.793 0.014 2.541 1.021

Support Vector Machine 0.745 0.017 3.127 1.541

Figure 5. The Ridge regression results (R2 over the test sets for each parameter) obtained using a
range of the α hyperparameter values.
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Table 6. The Ridge regression model with the L2 regularization.

Param. α R2 ↑ MAPE ↓ MSE ↓ MAE ↓
SPAD 2.5× 10−5 0.827 0.072 9.095 1.625
FvFm 5× 10−5 0.727 0.036 0.001 0.021

PI 10−11 0.667 0.532 0.169 0.280
RWC 10−3 0.859 0.013 1.731 0.941

Finally, in Table 7, we present the experimental results obtained for all investigated
parameters using all regression models. Here, the best results obtained using the models
with default parameterization are boldfaced in black, whereas the Ridge regression model
with additional L2 regularization is rendered in green (we discuss the process of improving
a selected baseline model to enhance its capabilities later in this section). Finally, if the
Ridge regression model with regularization led to obtaining the globally-best metric value
(when compared with other techniques), we boldfaced and underlined the corresponding
entry. The results indeed show that it is possible to enhance the generalization capabilities
of the “default” machine learning models.

Table 7. Performance of the investigated machine learning models for each chlorophyll-related
parameter of interest. The best results obtained using the baseline machine learning models are
boldfaced in black, whereas the model with further regularization is indicated in green (if it resulted
in the best metric value across all models, the values are boldfaced and underlined). We indicate if
the metric should be minimized (↓) or maximized (↑).

Parameter Model R2 ↑ MAPE ↓ MSE ↓ MAE ↓
SPAD AdaBoost 0.698 0.080 15.935 1.814

Decision Tree 0.178 0.132 43.324 2.640
ExtraTrees 0.649 0.099 18.494 2.307
Extreme Gradient Boosting 0.719 0.092 14.808 2.784
Gradient Boosting 0.639 0.095 19.025 2.059
Kernel Ridge 0.132 0.179 45.768 4.787
Lasso −0.091 0.213 57.509 6.045
Light Gradient Boosting Machine 0.180 0.178 43.255 5.016
Linear Regression 0.818 0.072 9.583 1.569
Linear Support Vector Machine 0.216 0.131 41.321 3.242
Nu Support Vector Machine −0.142 0.219 60.211 6.065
Random Forest 0.587 0.123 21.760 3.029
Ridge 0.037 0.202 50.789 6.153
Ridge with L2 0.827 0.072 9.095 1.625
Stochastic Gradient Descent 0.119 0.187 46.465 5.794
Support Vector Machine −0.289 0.231 67.984 6.831

FvFm AdaBoost 0.600 0.037 0.001 0.016
Decision Tree −0.005 0.055 0.003 0.020
ExtraTrees 0.136 0.049 0.003 0.016
Extreme Gradient Boosting 0.407 0.044 0.002 0.019
Gradient Boosting 0.608 0.037 0.001 0.017
Kernel Ridge −1.609 0.100 0.009 0.054
Lasso −0.002 0.061 0.003 0.028
Light Gradient Boosting Machine −0.002 0.061 0.003 0.028
Linear Regression 0.718 0.037 0.001 0.021
Linear Support Vector Machine 0.363 0.048 0.002 0.022
Nu Support Vector Machine 0.316 0.047 0.002 0.022
Random Forest 0.510 0.043 0.002 0.019
Ridge 0.272 0.051 0.003 0.025
Ridge with L2 0.727 0.036 0.001 0.021
Stochastic Gradient Descent −4.424 0.155 0.019 0.102
Support Vector Machine −0.112 0.070 0.004 0.034
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Table 7. Cont.

Parameter Model R2 ↑ MAPE ↓ MSE ↓ MAE ↓
PI AdaBoost −0.067 1.825 0.542 0.262

Decision Tree −0.150 0.955 0.584 0.350
Extra Tree 0.379 1.251 0.315 0.368
Extreme Gradient Boosting 0.168 1.407 0.423 0.388
Gradient Boosting 0.114 1.508 0.450 0.296
Kernel Ridge −0.147 1.834 0.583 0.588
Lasso −0.020 1.941 0.518 0.502
Light Gradient Boosting Machine −0.010 1.623 0.513 0.456
Linear Regression 0.667 0.532 0.169 0.280
Linear Support Vector Machine −0.133 1.334 0.576 0.465
Nu Support Vector Machine −0.010 1.529 0.513 0.634
Random Forest 0.213 1.594 0.400 0.470
Ridge −0.036 1.993 0.526 0.442
Ridge with L2 0.667 0.532 0.169 0.280
Stochastic Gradient Descent −0.108 1.550 0.563 0.601
Support Vector Machine 0.019 1.818 0.499 0.506

RWC AdaBoost 0.657 0.018 4.213 1.233
Decision Tree 0.432 0.025 6.977 1.900
Extra Tree 0.704 0.018 3.641 1.090
Extreme Gradient Boosting 0.793 0.014 2.541 1.021
Gradient Boosting 0.646 0.020 4.350 1.250
Kernel Ridge −4.435 0.074 66.776 4.045
Lasso 0.000 0.036 12.288 3.549
Light Gradient Boosting Machine 0.000 0.036 12.288 3.549
Linear Regression 0.720 0.018 3.440 1.385
Linear Support Vector Machine −14.497 0.125 190.396 7.235
Nu Support Vector Machine 0.695 0.019 3.745 1.610
Random Forest 0.709 0.018 3.581 1.499
Ridge 0.817 0.014 2.249 1.207
Ridge with L2 0.859 0.013 1.731 0.941
Stochastic Gradient Descent −1.491 0.051 30.598 3.334
Support Vector Machine 0.745 0.017 3.127 1.541

5. Conclusions and Future Work

Capturing the information concerning the chlorophyll level in leaves is an important
practical issue in precision agriculture, as it helps practitioners optimize their operation and
appropriately plan and monitor the treatment process of various plants. Although there
exist in-field methods that allow us to recognize the actual chlorophyll level through
elaborating an array of indicators, they are invasive, time-inefficient and lack scalability.
Therefore, developing non-invasive approaches benefiting from the detailed information
available in hyperspectral imaging has attracted research attention. However, the emerging
data-driven algorithms for this task are commonly evaluated using private datasets without
any standardized validation procedure, which makes their comparison with the current
state of the art virtually impossible. In this paper, we tackled this issue and proposed
an open dataset (coupling HSI with in situ ground-truth measurements), together with
its training-test splits and quality metrics that can be used to confront the emerging and
existing techniques in a fully-unbiased and fair way. Our experimental study not only
provided a solid baseline obtained using 15 classic machine learning predictors, but we
also showed that it is possible to enhance such models to improve their generalizability.
We believe that our work may constitute an important step toward standardizing the way
we compare the chlorophyll-analysis algorithms and may help consolidate state of the art
in the field by providing a clear way of comparing new approaches over real data.

Our work is an interesting point of departure for further research. In this work,
we did not intend to introduce a new, “ground-breaking” algorithm for estimating the
chlorophyll level from HSI. There are, however, immediate next steps which should be
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performed to improve the performance capabilities of machine learning models, with the
hyperparameter optimization being one of them. In Figure 6, we show how two most
important hyperparameters of Support Vector Machines (C and γ) affect their performance.
Observing the results of the models optimized for each target parameter separately and
gathered in Table 8, we can appreciate that the grid-searched Support Vector Machines
significantly outperformed their default parameterization (Table 7). Therefore, optimiz-
ing the most important hyperparameters of other techniques would likely lead to their
noticeable improvements.

Figure 6. The results elaborated using a Support Vector Machine over the test sets for each parameter,
and obtained using a range of the C and γ hyperparameter values.
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Table 8. The results elaborated using a Support Vector Machine with the hyperparameters optimized
for each parameter separately. We indicate if the metric should be minimized (↓) or maximized (↑).

Param. γ C R2 ↑ MAPE ↓ MSE ↓ MAE ↓
SPAD 106 10−1 0.808 0.073 10.136 2.401
FvFm 100 10−1 −0.169 0.076 0.004 0.052

PI 101 100 0.652 1.157 0.177 0.372
RWC 103 10−1 0.845 0.016 1.904 1.006

We are observing an unprecedented success of deep learning in HSI analysis—such
techniques may certainly improve the quality of the estimated chlorophyll-related param-
eters [15]. To unchain the full scalability potential of HSI, we can perform the analysis
process on board a satellite to extract knowledge from raw pixels. However, the algorithms
to be deployed in such hardware-constrained execution environments should be resource-
frugal and robust against various noise affecting the in-orbit image acquisition [8] and must
be thoroughly validated before they can run in space [59]. Developing the (deep) machine
learning models for on-board processing is currently widely-explored due to a significant
number of emerging Earth observation missions, including our Intuition-1 satellite.
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The following abbreviations are used in this manuscript:

AGB Above-ground biomass
ALOS Advanced Land Observing Satellite
CHESS CHlorophyll EStimation DataSet
CHRIS Compact High Resolution Imaging Spectrometer
CWT Continuous wavelet transform
DNN Deep neural network
EFFIS The European Forest Fire Information System
EVI Enhanced vegetation index
FvFm The maximum quantum yield of the PSII photochemistry
GBDT Gradient boosting decision tree
GBVI Green brown vegetation index
GSD Ground sample distance
GPR Gaussian process regression
HSI Hyperspectral image
k-NN k-nearest neighbor
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LAI Leaf area index
LSWI Land surface water index
MAE Mean absolute error
MAPE Mean absolute percentage error
MLR Multiple linear regression
MSE Mean squared error
MSI Multispectral image
NBSI Non-binary snow index
NDVI Normalized difference vegetation index
NIR Near-infrared spectra
NIRv Near-infrared reflectance of vegetation
PALSAR Phased Array L-band Synthetic Aperture Radar
PCA Principal component analysis
PI The index for energy conservation from photons absorbed by PSII to PSI electron acceptors
R2 Coefficient of determination
RDP Ratio of the performance to deviation
RF Random forest
RFE Recursive-feature-elimination
RMSE Root mean squared error
RRMSE Relative root mean squared error
RWC Relative water content measurements for the sampled canopy
SAVI Soil-adjusted vegetation index
SAR Synthetic-aperture radar
SOC Soil organic carbon
SPAD The actual level of chlorophyll utilizing the soil-plant analysis development
SVD Singular value decomposition
SVM Support vector machine
VHGPR Variational heteroscedastic GPR
VIS-NIR Visible–near-infrared spectra
VH Vertical transmitted and horizontal received
VV Vertical transmitted and vertical received polarization
XGB Extreme gradient boosting
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