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Abstract: Floods are the among the most frequent and common natural disasters, causing numerous 

casualties and extensive property losses worldwide every year. Since flooding areas are often ac-

companied by cloudy and rainy weather, synthetic aperture radar (SAR) is one of the most powerful 

sensors for flood monitoring with capabilities of day-and-night and all-weather imaging. However, 

SAR images are prone to high speckle noise, shadows, and distortions, which affect the accuracy of 

water body segmentation. To address this issue, we propose a novel Modified DeepLabv3+ model 

based on the powerful extraction ability of convolutional neural networks for flood mapping from 

HISEA-1 SAR remote sensing images. Specifically, a lightweight encoder MobileNetv2 is used to 

improve floodwater detection efficiency, small jagged arrangement atrous convolutions are em-

ployed to capture features at small scales and improve pixel utilization, and more upsampling lay-

ers are utilized to refine the segmented boundaries of water bodies. The Modified DeepLabv3+ 

model is then used to analyze two severe flooding events in China and the United States. Results 

show that Modified DeepLabv3+ outperforms competing semantic segmentation models (SegNet, 

U-Net, and DeepLabv3+) with respect to the accuracy and efficiency of floodwater extraction. The 

modified model training resulted in average accuracy, F1, and mIoU scores of 95.74%, 89.31%, and 

87.79%, respectively. Further analysis also revealed that Modified DeepLabv3+ is able to accurately 

distinguish water feature shape and boundary, despite complicated background conditions, while 

also retaining the highest efficiency by covering 1140 km2 in 5 min. These results demonstrate that 

this model is a valuable tool for flood monitoring and emergency management. 

Keywords: flood mapping; water extraction; HISEA-1; synthetic aperture radar (SAR); convolution 

neural network (CNN) 

 

1. Introduction 

Floods are among the most frequent and common natural disasters in the world, 

causing severe damage to life, property, infrastructure, and the environment. This is par-

ticularly true in China where approximately two-thirds of the country has suffered from 

flooding events of various magnitudes. Statistical results show that, from 2001 to 2020, an 

average of 103.566 million people were affected by floods, causing direct economic loss 

reaching 167.86 billion CNY (0.34% of GDP) each year in China [1]. Furthermore, the num-

ber of rainstorms and flooding events in China has increased over the past 30 years, cor-

responding to an increase in the intensity and frequency of extreme heavy rainfall [2]. To 

cope with the increasing flood risk and aid in damage mitigation, dynamic monitoring of 

floods has become a prevailing demand for disaster emergency management. 
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In early studies, water body detection relied on on-the-spot investigation. Results of 

this method are site-specific and accurate; however, it also requires extensive human and 

material resources and is difficult to obtain at large spatial scales. Since the mid-20th cen-

tury, remote sensing technology has been developing rapidly to create advantages such 

as wide detection ranges, rapid imaging response, and rich surface information. Satellite 

remote sensing has, therefore, become the premise of flood monitoring. In general, there 

are two primary remote sensing sensors: optical and microwave. Optical sensors are pas-

sive and, thus, only available during daylight hours, and they are also limited by cloudy 

and foggy weather conditions. This makes optical sensors inadequate since flooding peri-

ods are often accompanied by such weather. Instead, synthetic aperture radar (SAR), an 

active high-resolution microwave remote sensing sensor, is well suited for flood mapping 

since its use of microwaves allows it to image both day and night and in near-all weather 

conditions. Due to progress in technologies such as microelectronics, low-cost microsatel-

lites are becoming the future of satellite remote sensing. HISEA-1 is the world's first C-

band SAR miniaturized satellite, successfully launched at the Wenchang Satellite Launch 

Center on 22 December 2020 in China. Its imagery supports a wide range of research in-

cluding monitoring and analyzing the coastal environment for coastal hazards such as 

flooding and inundation. 

To date, there have been several methods of floodwater segmentation in SAR images, 

such as threshold-based methods [3–5], superpixel-based methods [6,7], watershed-based 

methods [8,9], active contour methods [10–12], and classification-based methods [13,14]. 

The comparison of these methods is given in Table 1. Additionally, some change detection 

methods using multiple temporal SAR imagery have also been applied for flood extent 

mapping [15–17]. While these methods can provide reliable results, performance depends 

on many factors including (1) the speckle noise of SAR images, (2) uneven grayscale dis-

tribution, (3) user dependence of parameter tuning, and (4) existence of interference fac-

tors for water bodies such as vegetation, soil moisture, and hill and building shadows, 

which all can have similar backscattering characteristics as water bodies. This can make 

traditional flood mapping methods weak when such conditions exist in imagery. 

Table 1. Comparison of various SAR image segmentation techniques. 

Segmentation Techniques Characteristic, Advantage Limitation, Disadvantage 

Threshold-based 
Low computation complexity; no need for 

prior knowledge 

Spatial details are not considered; not good if 

no clear peaks  

Superpixel-based Groups of pixels that look similar 
Challenging in detailed information and su-

perpixel number 

Watershed-based 
Region-based; detected boundaries are con-

tinuous 

Complex calculation of gradients; over-seg-

mentation 

Active contour methods 
Good performance for complicated bounda-

ries 
Dependent on initial contour 

Classification-based  
Pixel-level classification; more choice of 

classification methods 

Dependent on classifying effect; some models 

need to be trained  

In recent years, segmentation algorithms have become more advanced in automa-

tion, intelligence, and optimization. Convolutional neural networks (CNNs) are among 

the most classic models of deep learning, with powerful feature learning and fitting abil-

ities. In 2014, fully convolutional networks (FCNs) were proposed as an end-to-end pixel 

level segmentation algorithm, removing all fully connected layers in CNNs in order to 

segment images of varying size. Since then, new semantic segmentation networks have 

emerged to further refine image segmentation abilities. 

U-Net [18] is a “U”-shaped encoder/decoder network that was first used in medical 

image segmentation. The U-Net encoder module uses the convolutional layer and the 

maximum pooling layer to alternately perform down sampling processes four times. The 
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decoding module adopts a 2 × 2 deconvolution to perform upsampling, layer by layer, to 

restore the feature map resolution. This is then spliced with the feature map of the corre-

sponding level in the encoding layer to fuse the low-level and high-level semantic fea-

tures, and to refine the image edge information. 

SegNet [19] restores feature map resolution by invoking the max pooling index in-

formation of the corresponding downsampling layer for upsampling. Using the pooling 

index reduces the amount of detail lost during the operation, and it does not require train-

ing and learning during the upsampling process, which accounts for a small amount of 

memory. 

From 2015 to 2018, Google successively launched DeepLab [20], v2 [21], v3 [22], and 

v3+ [23] semantic segmentation networks. These networks employ atrous convolutions to 

increase the receptive field and replace the feature details lost during pooling downsam-

pling. Atrous spatial pyramid pooling (ASPP) is used to extract features of multiscale ob-

jects, and conditional random field (CRF) is also proposed to refine the target segmenta-

tion contour. The DeepLab series network has been iteratively updated in four versions, 

and the accuracy of the PASCAL VOC2012 test set has increased from 71.6% to 89.0%. 

Considering the robustness of CNNs in the field of semantic segmentation, they are 

considered to be an effective method in flood detection research; thus, they are popular 

for use in water body extraction research. Kang et al. [24] was the first to apply CNNs to 

water extraction in SAR imagery, using FCN16 to extract water bodies in GF-3 images and 

proving the abilities of CNNs in water body segmentation. Nemni et al. [25] proved the 

extraction performance of CNNs in large-scale remote sensing images by combining U-

Net with residual networks to detect large-scale water bodies in Sentinel-1 images. Koshi-

mura [26] used CNNs to distinguish between permanent and temporary water bodies by 

fusing Sentinel-1 SAR and Sentinel-2 optical images. 

In this paper, we build an efficient deep convolutional neural network (Modified 

DeepLabv3+) based on the DeepLabv3+ model to accurately map floods in HISEA-1 im-

agery. The main contributions of this work are summarized as follows: 

1. A high-resolution floodwater detection dataset based on HISEA-1 imagery is con-

structed. It contains many diverse types of water bodies, including those involved in 

flooding events.  

2. A Modified DeepLabv3+ Model is proposed to achieve accurate and fast extraction 

of floodwaters. The improvements include (1) using a lightweight network called 

MobileNetv2 as the backbone to improve floodwater detection efficiency, (2) employ-

ing small jagged arrangement atrous convolutions to capture features at small scales 

and improve pixels utilization, and (3) increasing the upsampling layers to refine the 

segmented boundaries of water bodies.  

3. Two flooding events in China and the United States are analyzed to monitor the dy-

namic changes and flood levels of water bodies in the affected area.  

The organization of this paper is as follows: Section 2 introduces the dataset produc-

tion and label making process; Section 3 details the methodology for floodwater extrac-

tion, highlighting the improvements of Modified DeepLabv3+ model; Section 4 reports 

the main results, including model performance and validation; Section 5 is an analysis of 

two flooding events in China and the United States in July 2021; conclusions are given in 

Section 6. 

2. Materials 

2.1. Water Body Extraction Images 

In this work, we utilize HISEA-1 SAR images to train and test Modified DeepLabv3+ 

model for floodwater segmentation. HISEA-1 is a C-band SAR minisatellite with a weight 

of 185 kg and an incident angle range of 20°–35°. HISEA-1 operates in VV polarization 

and three different imaging modes ranging from 1 to 20 m resolution and 5 to 100 km 

swath width (see Xue et al. [27] for more details).  
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We selected 20 HISEA-1 images captured in 2021 to create the dataset for flood water 

extraction. These 20 images comprise three different flood events with their locations 

shown by the red box in Figure 1. All images are level 2 ORG (orthorectification geoloca-

tion) products, with striping mode, 3 m resolution, and VV polarization.  

The first scene (Image No. 1 in Figure 1 and Table 2, hereafter) comes from the dam 

break event of Hulunbuir, Inner Mongolia. On 18 July 2021, the dams of Yong'an Reser-

voir and Xinfa Reservoir burst one after another after enduring continuous heavy rainfall, 

causing the G111 National Highway to be washed away and many roads to be inter-

rupted.  

Seven scenes (Image Nos. 8–11 and Nos. 18–20) are from the typhoon In-Fa flood 

event, taken on 25 July 2021 and 26 July 2021, respectively. Typhoon In-Fa was the sixth 

typhoon in 2021, landing in Zhoushan City and Jiaxing City, Zhejiang Province at approx-

imately 12:30 a.m. on 25 July and 9:50 a.m. on 26 July, respectively. In-Fa was a slow-

moving typhoon which brought strong winds and heavy rainfall to Ningbo, Shaoxing, 

Hangzhou, Jiaxing, and other places, causing flooding and waterlogging in many cities.  

Lastly, 12 scenes (Image Nos. 2–7 and Nos. 12–17) are from a rare heavy rainstorm 

and flood event in Henan Province in July 2021. From 17 July 2021 to 23 July 2021, under 

the dual influence of the Western Pacific subtropical high and typhoon In-Fa, Henan en-

countered a historically exceptionally heavy rain, causing many rivers to flood. Daily rain-

fall of 20 national meteorological stations in the province exceeded the historical extreme 

value since their establishment, with strong convective weather also occurring in Hebei 

and other surrounding provinces. Images corresponding to these observed flooding con-

ditions provided the 20 scenes used to create the floodwater dataset. The dataset, there-

fore, includes images of various conditions including the reservoir dam break, urban wa-

terlogging, flooded villages and farmland, and other flooded areas.  

In addition, two images (Image Nos. 21–22) that did not participate in the training 

and validation of the model were selected to verify the robustness and generalization abil-

ity of the model. The main parameters of all images are given in Table 2. 

 

Figure 1. Spatial distribution of training (red) and test (blue) sites.  

Table 2. HISEA-1 images used in the construction of floodwater extraction dataset, including the 

location, acquisition time, orbit direction, incidence angle in the mid-swath, and size of the images. 



Remote Sens. 2022, 14, 5504 5 of 19 
 

 

Image ID Time Date Central Location Study Area Orbit Direction 
Incidence Angle 

Mid-Swath 
Image Size 

Training region 

No. 1 21 July 2021 48°30′N/124°12′ E 
Inner Mon-

golia 
Descending 24.5° 9819 × 13,833 

No. 2 25 July 2021 36°42′N/114°31′E Hebei Descending 28.5° 9926 × 13,862 

No. 3 25 July 2021 36°24′N/114°26′E Hebei Descending 28.5° 9924 × 13,863 

No. 4 25 July 2021 36°6′N/114°20′E Henan Descending 28.5° 9921 × 13,863 

No. 5 25 July 2021 35°47′N/114°15′E Henan Descending 28.5° 9917 × 13,862 

No. 6 25 July 2021 35°10′N/114°3′E Henan Descending 28.5° 9918 × 13,863 

No. 7 25 July 2021 34°34′N/113°53′E Henan Descending 28.5° 9286 × 13,640 

No. 8 25 July 2021 30°7′N/120°12′E Zhejiang Ascending 26.5° 9487 × 14,504 

No. 9 25 July 2021 29°49′N/120°17′E Zhejiang Ascending 26.5° 9476 × 14,503 

No. 10 25 July 2021 29°30′N/120°30′E Zhejiang Ascending 26.5° 9471 × 14,501 

No. 11 25 July 2021 29°9′N/120°27′E Zhejiang Ascending 26.5° 9482 × 14,502 

No. 12 26 July 2021 35°29′N/113°48′E Henan Descending 16.25° 9157 × 14,163 

No. 13 26 July 2021 35°11′N/113°43′E Henan Descending 16.25° 9202 × 14,174 

No. 14 26 July 2021 34°50′N/113°38′E Henan Descending 16.25° 9199 × 14,176 

No. 15 26 July 2021 34°31′N/113°34′E Henan Descending 16.25° 9175 × 14,174 

No. 16 26 July 2021 34°12′N/113°29′E Henan Descending 16.25° 9183 × 14,177 

No. 17 26 July 2021 33°59′N/113°26′E Henan Descending 16.25° 9200 × 14,196 

No. 18 27 July 2021 29°45′N/121°34′E Zhejiang Descending 29.5° 9856 × 14,508 

No. 19 27 July 2021 29°25′N/121°28′E Zhejiang Descending 29.5° 9856 × 14,508 

No. 20 27 July 2021 28°54′N/121°20′E Zhejiang Descending 29.5° 9842 × 14,506 

Testing region 

No. 21 25 July 2021 34°51′N/113°58′E Henan Descending 28.5° 9286 × 13,643 

No. 22 27 July 2021 29°6′N/121°23′E Zhejiang Descending 29.5° 9833 × 14,502 

2.2. Image Preprocessing 

The SAR images used in this study were all acquired in HISEA-1 strip imaging mode. 

They are standard level 2 SAR orthorectification geolocation (ORG) products with 3 × 3 m 

resolution, generated from level 1 single look complex (SLC) products via multi-look pro-

cessing, geometric correction, radiation correction, and geographic resampling. Hence, 

only a 3 × 3 Lee filter is adopted here to suppress speckle noise in all images, and the 

smoothed SAR images are then input into an annotation tool for dataset generation.  

2.3. Dataset Generation 

Image annotation includes the following steps: 

1. Employment of an online annotation tool LabelMe [28] to manually label water bod-

ies and construct sample sets referring to the optical image at the same time. 

2. Batch-convert all marked json files to png image format. 

3. Due to limitations of graphics processing unit (GPU) capabilities, all samples were 

resized to 256 × 256 sub-images without overlapping parts. 

All sample sets were randomly allocated in the ratio of 6:2:2, and divided into 1404 

training sets, 468 validation sets, and 468 test sets (a total of 2340 experimental data). This 

dataset covers 20,000 square kilometers, and it contains rivers, tributaries, reservoirs, lakes 

and paddy fields. Figure 2 shows examples of water types contained in the HISEA-1 da-

taset. The dataset can be accessed via Zenodo (https://zenodo.org/record/7198950 (ac-

cessed on 14 October 2022)). 
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(1) (2) (3) (4) (5) (6) 

Figure 2. Examples of the HISEA-1 water body extraction dataset, including five common water 

types (rivers, reservoirs, streams, paddy fields, and lakes) and their corresponding ground truth. 

Columns (1), (3), and (5) are SAR images, while columns (2), (4) and (6) are the corresponding 

ground truth. 

3. Methodology 

DeepLabv3+ is a mainstream encoder/decoder semantic segmentation network, se-

lecting Xception [29] as the backbone network to extract abstract and high-level semantic 

features. Feature maps obtained through the backbone are then pooled to extract the fea-

tures of multiscale objects through atrous spatial pyramid pooling (ASPP). The decoder 

module draws on the idea of FCN feature fusion, and it uses the skip connection structure 

to fuse high-level and low-level features to refine object edge segmentation. In this section, 

we modify the DeepLabv3+ model to be more suitable for flood mapping according to the 

characteristics of water bodies. 

3.1. Using Lightweight Network MobileNetv2 as Encoder 

Xception is an extreme Inception [30] module which changes the 1 × 1 convolution 

and the 3 × 3 convolution in Inception-v3 [31] into a unified 1 × 1 convolution operation, 

followed by a 3 × 3 convolution operation that fully decouples channel correlation and 

spatial correlation. Depthwise separable convolution is used to replace the convolution 

operation in this network. Xception contains a total of 36 convolutional layers and 14 mod-

ules with many parameters.  
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In order to more quickly and accurately extract flood water features, we modified the 

DeepLabv3+ to instead use the lightweight encoder MobileNetv2. MobileNetv2 is com-

monly used in mobile or embedded devices with fast responsiveness consisting of bottle-

necks stacked by multiple inverse residual blocks and linear blocks stacked. The inverse 

residual block is inspired by the residual block in ResNet [32]. The residual block (Figure 

3a) is narrow in the middle and wide on both sides. It first uses a 1 × 1 convolution kernel 

to drop the channel, and then connect the ReLU nonlinear activation. Next, it uses a 3 × 3 

convolution and ReLU, as well as a 1 × 1 convolution and ReLU, to restore the number of 

feature map channels before adding them to the input. The inverse residual block (Figure 

3b) is narrow on both sides and wide in the middle. First, it goes through a 1 × 1 convolu-

tion to increase the number of channels, and then uses 3 × 3 depthwise separable convo-

lutions and ReLU6 to extract features. It finishes by using a 1 × 1 convolution to reduce 

the number of channels and adding it to the input. Overall, the number of feature map 

channels at both ends of the inverse residual block is very small. The total amount of com-

putation is also greatly reduced due to the use of depthwise separable convolution. Mo-

bileNetv2 has two inverse residual block modules. The input and output dimensions of 

the convolution module with stride 1 are the same size, and the identity mapping struc-

ture is used. The size of the input and output of the convolution module with stride 2 is 

different, and the identity mapping structure is not used.  

There are two primary differences between MobileNetv2 and Xception. First, the or-

der of depthwise convolution and pointwise convolution is different. In MobileNetv2, the 

network first performs a 3 × 3 convolution on each channel, and then performs a 1 × 1 

pointwise convolution. Xception performs a 1 × 1 convolution first, and then a 3 × 3 con-

volution operation. The second difference is that Xception uses ReLU for nonlinear acti-

vation after the 3 × 3 convolution operation, while MobileNetv2 performs inverted resid-

uals. In the last layer of the block of MobileNetv2, a 1 × 1 convolution kernel is used to 

replace the ReLU nonlinear activation with linear activation to reduce the information loss 

caused by ReLU for features with fewer channels. MobileNetv2, therefore, has fewer pa-

rameters, is lighter, has a faster response, and is more conducive to water extraction. 

 

Figure 3. (a) Residual block and (b) inverted residual block. 1: 1 × 1 convolution kernel, 3 × 3: 3 × 3 

convolution kernel, Relu: ReLU nonlinear activation, Relu6: ReLU6 nonlinear activation, Dwise: 

depthwise convolution. 

3.2. Employing Smaller Jagged Arrangement Atrous Convolutions in ASPP 

Inspired by the spatial pyramid pool [33], ASPP uses atrous convolution to sample 

the multiscale image feature at different rates. It consists of three parallel atrous convolu-

tions of rates 6, 12, and 18, a 1 × 1 convolution, and global average pooling. However, it 

has been observed that such large atrous rates are better suited for large water body seg-

mentation, making it difficult to capture smaller water bodies such as streams and ponds. 

Moreover, when there is a common factor relationship in an atrous rate group (e.g., 2, 4, 

and 8), there will be discontinuous feature information and low pixel utilization, also 

known as the “grid effect” [34]. We, therefore, change the atrous rate to 2, 5, and 9. The 

zigzag arrangement not only considers the segmentation requirements of large-scale and 

small-scale objects, but also effectively improves the utilization of pixels. 
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3.3. Adding More Upsampling Layers in Decoder 

Since CNNs reduce feature map resolution and lose some detailed information dur-

ing the pooling downsampling process, a skip connection structure was introduced in 

FCNs to improve model accuracy by combining deep features with low-level features. 

DeepLabv3+ adopts skip connection structures in the decoding module. In the upsam-

pling layer, the features of two parts are fused: the first part is the shallow network feature 

obtained by down-channel processing the backbone network with a 1 × 1 size convolution 

kernel; the other part is the feature map output by ASPP after 1 × 1 convolution and four 

upsampling iterations. These two parts are fused and then subjected to 3 × 3 convolution 

and four upsampling iterations to obtain the prediction result. The encoder and decoder 

in DeepLabv3+ only have one connection, which allows the integration of shallow net-

work features, but ignores deep semantic features and spatial information. This results in 

a good segmentation effect on clear images, but makes it difficult to obtain small-scale 

water body features and distinct outline information in remote sensing images. 

Consequently, we added three upsampling layers in the decoder structure. More spe-

cifically, MobileNetv2 was divided into four blocks with each block consisting of three or 

four bottlenecks. The feature information upsampled from the previous feature map of 

the corresponding module in the encoder was then fused such that the information be-

tween the encoder and the decoder is more closely connected. This increased water outline 

clarity and feature details. 

3.4. Modified DeepLabv3+ Model for Water Extraction 

The architecture of Modified DeepLabv3+ is shown in Figure 4. The encoder module 

selects MobileNetv2 as the backbone network to extract abstract and high-level semantic 

features. The feature map obtained through the backbone network is then used to extract 

the features of multiscale objects through ASPP. The decoder uses the skip connection 

structure to construct four upsampling layers, fuses multilayer semantic features, refines 

object edge segmentation, and improves the accuracy of water extraction. The feature out-

put by upsampling gathers the characteristic information of three branches. The first part 

is the low-level feature obtained by a 1 × 1 convolution dimensionality reduction opera-

tion of the backbone network MobileNetv2. The second is the output feature of the three 

newly added upsampling layers. The features in the encoder are subjected to two, four, 

and six iterations of bilinear interpolation upsampling to obtain the same resolution as the 

features in the lower layer. The third part is the feature map obtained by the combined 

features output by ASPP after 1 × 1 convolution dimension reduction and eight iterations 

of bilinear interpolation upsampling. The features of the three branches are fused and then 

undergo 3 × 3 convolution and four iterations of bilinear interpolation upsampling to re-

cover the resolution of the feature map, and output the prediction results. 

 

Figure 4. The architecture of Modified DeepLabv3+. 
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3.5. Metrics 

The training model is quantitatively analyzed using three evaluation indicators: ac-

curacy, F1, and intersection over union (IoU). 

accuracy =
TP + TN

TP + TN + FP + FN
. (1) 

precision =
TP

TP + FP
. (2) 

recall =
TP

TP + FN
. (3) 

F1 =
2 × precision × recall

precision + recall
. (4) 

IoU =
TP

TP + FN + FP
. (5) 

Accuracy refers to the proportion of all correctly classified pixels to the total pixels. 

F1 combines the results of precision and recall, allowing both to reach the highest value 

at the same time and be referenced as a harmonic average result. IoU refers to the ratio of 

the intersection and union between the ground truth and prediction, while the mIoU is 

the result of summing the intersection ratios of all categories and averaging them.  

Since disaster monitoring has requirements for detection time, water extraction 

speed is also included in the evaluation scope in this paper. Detection rate refers to the 

time it takes for the model to test images. Higher image resolutions take more time. 

4. Results 

4.1. Experimental Setup 

All experiments were carried out on a workstation with an Intel Xeon Gold 5118 Pro-

cessor, 128 G RAM, and NVIDA Tesla V100-PCIE 32 GB graphics card using the PyTorch 

framework. We set the number of iterations for all training models to be 13 K, the training 

epoch to 300, and the initial learning rate to 0.001 with a ploy learning strategy. The mo-

mentum-based stochastic gradient descent method was used to optimize the network. The 

weight decay and momentum were set to 0.0005 and 0.9, respectively. The batch size was 

set to 32. All training networks were performed for multiple iterations until the maximum 

number of iterations was reached. 

4.2. Comparison with Other Models 

We compared the results of Modified DeepLabv3+ with U-Net, SegNet, and 

DeepLabv3+ to evaluate the performance of the modified model. Table 3 shows the model 

performance with respect to accuracy, F1, and mIoU. These results show that Modified 

DeepLabv3+ had the best segmentation accuracy and efficiency among the four models. 

Furthermore, it only took 46.8 s to extract all the water bodies in the testing set, which is 

67% faster than the original DeepLabv3+ model. 

Visual representation of results from the four model water body segmentations are 

shown in Figure 5. The large difference in results is reflected in the extraction of streams 

and paddy fields (Figure 5b,e). The streams and paddy fields extracted by the SegNet, U-

Net, and DeepLabv3+ were discontinuous and incomplete, whereas Modified 

DeepLabv3+ could extract the complete water body. These segmentation results are 

highly consistent with the label water body, with clear contours and low false alarm rates. 

Additionally, DeepLabv3+ had a higher false alarm rate because it misidentified building 

and hill shadows near the lake as water bodies (Figure 5c,d). These results show that Mod-

ified DeepLabv3+ is an accurate and efficient water extraction model since the extracted 

water body features were complete with clear boundaries. 
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Figure 5. Visualization of water body segmentation for the four models: SegNet, U-Net, 

DeepLabv3+, and Modified DeepLabv3+. Water body types: (a) river, (b) stream, (c) lake, (d) reser-

voir, and (e,f) paddy field. 

Table 3. Performance of four models, with the best results for each metric shown in bold. 

Models Accuracy F1 mIoU Detection Time (s)  

SegNet 0.9447 0.8603 0.8441 187.2 

U-Net 0.9517 0.8801 0.8636 140.4 

DeepLabv3+ 0.9427 0.8551 0.8390 140.0 

Modified DeepLabv3+ 0.9574 0.8936 0.8779 46.8 

4.3. Performance for Various Water Body Types 

To examine the robustness of the model, we selected SAR images (Image Nos. 21–22 

in Figure 1 and Table 2) that did not participate in model training, verification, and testing. 

SegNet, U-Net, DeepLabv3+, and Modified DeepLabv3+ were used to segment images (all 
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sized 1024 × 1024) of five different water body types: large rivers, tributaries, lakes, paddy 

fields, and reservoirs. The results are shown in Table 4. In terms of mIoU, SegNet, U-Net, 

and DeepLabv3+ showed little difference in the extraction test results of various water 

body types, with mIoUs of 89.84%, 90.90%, and 90.32%, respectively. On the other hand, 

the mIoU of the modified model reached 92.33%, and the segmentation effect was better 

than the other three models, proving its strong generalization ability. In terms of water 

body extraction efficiency, SegNet, U-Net, and DeepLabv3+ required 23.5 s, 24.5 s, and 

25.5 s to detect the five specific scenes, respectively. In contrast, the proposed model only 

took 10.0 s. 

Figure 6 shows a map of segmentation results for various water body types. All four 

models had better segmentation results in single, relatively regular water bodies, such as 

the extraction of river and stream water bodies. However, more prominent differences 

could be found in the detail for extracting irregular or dense water bodies. The first exam-

ple is a narrow meandering stream extending from the lake (red box in Figure 6c). This 

meander was only identified by Modified DeepLabv3+. In general, farmland is the first to 

be affected when a flood occurs; thus, monitoring areas such as paddy fields is crucial for 

disaster assessment. When dense paddy fields were present within SAR imagery (red box 

in Figure 6d), Modified DeepLabv3+ had the best performance among the four models. 

Paddy fields captured by the proposed model were complete, coinciding with visual in-

terpretations. For reservoirs, all four models could extract relatively complete reservoir 

shapes. However, since reservoirs are typically located in mountainous regions, shadows 

might interfere with model predictive capabilities since water bodies can have similar 

brightness values. This can make the boundary between water and shadow relatively 

blurry and complicate its extraction. Nevertheless, the results show that the target contour 

extracted by the modified model was clearer (red box in Figure 6e). 

The blue boxes in Figure 6c,e show the result of the shaded area discrimination. The 

proposed model seldom misidentified shadows as water compared with the other three 

models. This means that it could effectively overcome the issues presented by the presence 

of shadows and accurately extract the water body information from a complex back-

ground. 
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Figure 6. Visualized results for extracting five different typical types of water bodies using four 

models: SegNet, U-Net, DeepLabv3+, and Modified DeepLabv3+. Water body types: (a) river, (b) 

stream, (c) lake, (d) paddy field, and (e) reservoir. The red and blue dashed boxes denote some 

typical comparative areas. 

Table 4. Performance of four models for extracting five typical water bodies from SAR image, the 

best ones for are in bold. 

Models Accuracy F1 mIoU Detection Time (s) 

SegNet 0.9750 0.9035 0.8984 23.5 

U-Net 0.9777 0.9148 0.9090 24.5 

DeepLabv3+ 0.9765 0.9068 0.9032 25.5 

Modified DeepLabv3+ 0.9820 0.9283 0.9376 10 

4.4. Performance for Large-Scale Floodwater Extraction 

The impact of flood disasters is very wide, often causing large-scale inundation. This 

requires the segmentation algorithm to take into account large areas when performing 

water body extraction. Therefore, Modified DeepLabv3+ was applied to flood images of a 

heavy rainstorm flood event in Henan Province (Image No. 21 in Figure 1 and Table 2), 

which involved water bodies at a larger scale. The image denotes a flooded area with 

water bodies visually interpreted. This flood covered many water body types such as large 

rivers, lakes, streams, and paddy fields. There are multiple dense paddy fields below the 

Yellow River, roads in the urban center are complex and staggered, and small rivers are 

interspersed among them. This image also contained several small-scale water bodies, as 

well as building and mountain shadows.  

The extracted results were post-processed by the open operation, and, after the mor-

phological processing of first erosion and then expansion, the small protruding parts were 

removed, and the object contour was smoothed.  
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Table 5 summarizes the accuracy of each model for large-scale water detection. When 

applied to large-area water detection, the segmentation of the modified DeepLabv3+ re-

sulted in accuracy, F1, and mIoU scores of 98.51%, 88.64%, and 89.01%, respectively. In 

contrast, mIoU from the original DeepLabv3+ model was 76.73%; thus, the modified 

model led to a 16% improvement. For detection efficiency, SegNet, U-Net, and 

DeepLabv3+ had similar detection times, taking more than 10 min to process a 9286 × 

13,643 pixel SAR image respectively. The modified model required only 5 min to detect 

water bodies in a 1140 km2 image. Such efficient processing time is an indispensable ad-

vantage for real-time flood monitoring. 

Figure 7 shows the visualization results of large-scale remote sensing image water 

extraction. According to the visual results, the extraction of water bodies in the Yellow 

River Basin were similar across the four models with the differences mainly reflected in 

the extraction of farmland and streams. Paddy fields are dense and numerous, making it 

increasingly difficult for model segmentation. Segmentation results of paddy fields (red 

box in Figure 7) indicate that the DeepLabv3 + model performed the worst since many 

paddy fields were not extracted. Furthermore, although SegNet and U-Net were able to 

extract a large amount of farmland information, this information was not complete. The 

paddy field segmentation result based on Modified DeepLabv3+ was complete and had 

higher coincidence with the visually interpreted results. For stream detection (blue box in 

Figure 7), the extraction results of SegNet and Modified DeepLabv3+ were more complete; 

but the streams extracted by SegNet had more fractures and the continuity was not as 

good as that of Modified DeepLabv3+. Roads can also serve as complications for water 

segmentation. Therefore, a highway was randomly selected to test the discrimination abil-

ity of the model. According to the results (yellow box in Figure 7), SegNet and U-Net had 

high false alarm rates, oftentimes classifying the expressway as water. The misclassifica-

tion ratio of DeepLabv3+ to Modified DeepLabv3+ was lower.  

On the basis of these factors, it can be concluded that Modified DeepLabv3+ can ac-

curately, completely, and efficiently extract flood water bodies of various types, and it has 

a strong generalization ability and robustness. 

Table 5. Performance of four models for floodwater extraction from a large-scale SAR, with the best 

results shown in bold. 

Models Accuracy F1 mIoU Detection Time (min) 

SegNet 0.9807 0.8493 0.8589 10.5 

U-Net 0.9832 0.8720 0.8776 10.4 

DeepLabv3+ 0.9710 0.7218 0.7673 10.3 

Modified DeepLabv3+ 0.9851 0.8864 0.8901 4.9 

Note: This is the entire SAR image, with a size of 9286 × 13,643. 
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Figure 7. Performance of four models for segmenting flood disaster: (a) flood disaster image of 

HISEA-1; (b) ground truth; extraction results from model (c) SegNet, (d) U-Net, (e) DeepLabv3+, 

and (f) Modified DeepLabv3+. The red, yellow, and blue dashed boxes denote some typical com-

parative areas. 

5. Spatiotemporal Analysis of Two Flood Events 

Furthermore, we took two severe flood events that were successfully captured by 

HISEA-1 as examples, and we used our new model to analyze the dynamic spatiotem-

poral changes of water bodies during the flood events. 

5.1. Severe Floods Caused by Extremely Heavy Rainfall in Henan Province, China 

From 17 to 22 July 2021, Xinxiang City, Henan Province experienced the strongest 

extreme rainfall ever recorded, with a maximum rainfall of 907 mm. Affected by the con-

tinuous heavy rainfall and the concentrated discharge of upstream floods, the water level 

of the Communist Canal continued to rise, causing the dam to breach. The flood that over-

flowed the embankment poured into the Weihe River, resulting in severe flooding that 

affected Weihui City, Qi County, Huixian City, and other places.  

We focus on the spatiotemporal distribution of floods in Wei River and Communist 

Canal, as well as the surrounding areas (see Figure 8a; central location of 35°29′N/114°9′E). 

Two SAR images with VV polarization were selected to monitor the floodwater change, 
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including the pre-flood Sentinel-1 image in interferometric wide swath (IW) mode (ac-

quired on 15 July 2021) and the post-flood HISEA-1 image in striping mode (acquired on 

25 July 2021). 

Figure 8d shows that the study area did not experience heavy rainfall during the pre-

flood time period on 15 July. Only small water bodies such as rivers, paddy fields, and 

lakes were present before the disaster, with the total water area approximately 1.3 km2. 

On 25 July, after heavy rainfall, the flood area increased to 105.77 km2, accounting for 8.5% 

of the entire SAR image. The worst-hit areas of the river were at the junction of Weihui 

City and Qi Counties. The floods spilled out to the north and south, affecting many vil-

lages and farmland. 

 

Figure 8. Geospatial analysis of severe floods in Henan Province in July 2021: (a) study area of flood 

event; (b) pre-flood SAR image with Sentinel-1; (c) post-flood image with HISEA-1; (d) floodwater 

monitoring thematic map with Modified DeepLabv3+ (red is pre-flood area on 15 July 2021; cyan is 

post-flood area on 25 July 2021). 

5.2. Flood Disaster Caused by Hurricane Ida in New Orleans, Louisiana, USA 

On 29 August 2021, Category 4 Hurricane Ida made landfall in New Orleans, Louisi-

ana, with winds of 209 kilometers per hour. Ida generated stormy conditions with heavy 

precipitation, leading to widespread inundation in New Orleans and knocking out power, 

toppling trees, and causing critical damage to bridges and roads.  

The study area is shown in Figure 9a (central location of 29°52′N/90°02′E). We fo-

cused on changes in water bodies in the city center. Two SAR images with VV polarization 

were selected to monitor the floodwater change, including the pre-flood Sentinel-1 image 

in interferometric wide swath (IW) mode (acquired on 5 August 2021) and the post-flood 

HISEA-1 image in striping mode (acquired on 2 September 2021). 

Results shown in Figure 9d indicate that most of the flooding occurred in the marsh 

and lake toward the south of the city. Floods poured into low-lying terrain, expanding the 

water bodies of swamps and lakes. The detected floodwaters on 2 September increased 

by 26.72 km2 compared to before the flood on 5 August. 
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Figure 9. Flood mapping based on Modified DeepLabv3+ caused by Hurricane Ida in New Orleans: 

(a) study area; (b) pre-flood SAR image with Sentinel-1 on 5 August 2021; (c) post-flood SAR image 

with HISEA-1 on 2 September 2021; (d) flood monitoring thematic map with Modified DeepLabv3+ 

(red is pre-flood area on 5 August 2021, cyan is post-flood area on 2 September 2021. 

6. Conclusions 

Flooding events are nearly impossible to prevent; however, rapid and precise moni-

toring is important for their assessment and helping to mitigate potential damage. SAR is 

the ideal instrument for flood monitoring because it can provide all-weather and all-day 

observations since it is not limited by light conditions and cloud visibility like their optical 

counterparts. Flooding normally occurs as a consequence of heavy rainfall accompanied 

with high cloud coverage; thus, cloud penetration capabilities provide SAR satellites with 

unique advantages over other traditional satellites in flood monitoring. The flooding in 

New Orleans is a typical example of coastal flooding caused by extreme events such as 

hurricanes. Hurricanes can induce coastal flooding through various ways including heavy 

rainfall, storm surge, and levee breaches. The flooding that occurred in New Orleans after 

Hurricane Katrina in 2005 was attributed primarily to levee failures [35]. Most of the flood-

ing that occurred was focused along the Mississippi River and the lakes near the southern 

coast, indicating that flooding was probably a result of both the heavy rainfall and storm 

surge. The flooding in Henan, China resulted from prolonged heavy rainfall; however, 

the causes of these heavy rainfalls are not yet fully understood. La Niña offers one possi-

bility, since ENSO events can affect the East Asia Monsoon and consequently change local 

precipitation patterns [36]. 

In this paper, we proposed a robust and efficient deep learning model for flood map-

ping from HISEA-1 SAR imagery based on the DeepLabv3+ framework with three major 

modifications: (1) employing a lightweight MobileNetv2 as the DCNN’s backbone for 

rapid floodwater identification, (2) using ASPP with smaller dilation rates to adapt to di-

verse water body extraction and improve pixel utilization, and (3) increasing to three up-

sampling layers to fully integrate the features of the encoding and decoding structures 

and refine the water body contour boundary. The accuracy, F1, and mIoU of the modified 

model were 95.74%, 89.31%, and 87.79%, respectively, showing remarkable performance 

in flooding mapping compared to three models (U-Net, SegNet, and DeepLabv3+). Fur-

thermore, Modified DeepLabv3+ is suitable for a multitude of water body types, espe-

cially for more difficult water extraction tasks of paddy fields and streams. The proposed 

model was then used to assess two severe flooding events in 2021 captured by the HISEA-
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1 SAR satellite. Results show that areas in Henan, China were severely affected by wide-

spread flooding, leading to approximately 103.77 km2 of villages and farmland being in-

undated. New Orleans also experienced flooding as a result of Hurricane Ida, causing an 

inundation extent of nearly 26.72 km2. The exceptional performance of the model is in part 

due to the high-resolution imagery collected by the HISEA-1 SAR satellite, making both 

this satellite and this model extremely suitable for monitoring rapidly occurring disasters 

such as floods, as well as for observing the ocean and coastal regions. 

As a supervised learning model, Modified DeepLabv3+ needs substantial training 

data. Here, we provide an open HISEA-1 SAR Floodwater Mapping Dataset in Zenodo; 

however, the water labels were generated manually and required a high human resource 

cost. Furthermore, the segmentation effect of Modified DeepLabv3+ may be limited by the 

accuracy and diversification of labels. If the training data have more diverse ground fea-

tures, the model will have better segmentation results. Future work will extend the dataset 

to include more imagery from HISEA-1, as well as other high-resolution SAR satellites, 

and develop an automatic or semiautomatic labeling technique to improve the efficiency 

of annotation. DEM (digital elevation model) data could also be used to further improve 

the accuracy of floodwater segmentation, especially in mountainous areas. 

Floodwater monitoring is a prominent task of emergency management, and SAR is a 

powerful tool in flood tracking due to its cloud-penetrating abilities. Here, we used 

HISEA-1 imagery to detect water bodies, demonstrating the potential of small SAR satel-

lites in disaster monitoring. In the future, more low-cost SAR miniaturized satellites will 

be deployed to improve the emergency response time. 
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