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Abstract: In this era of free and open-access satellite and spatial data, modern innovations in cloud 
computing and machine-learning algorithms (MLAs) are transforming how Earth-observation (EO) 
datasets are utilized for geological mapping. This study aims to exploit the potentialities of the 
Google Earth Engine (GEE) cloud platform using powerful MLAs. The proposed method is imple-
mented in three steps: (1) Based on GEE and Sentinel 2A imagery (spectral and textural features), 
that cover 1283 km2 area, a variety of lithological maps are generated using five supervised classifi-
ers (random forest (RF), support vector machine (SVM), classification and regression tree (CART), 
minimum distance (MD), naïve Bayes (NB)); (2) the accuracy assessments for each class are per-
formed, by estimating overall accuracy (OA) and kappa coefficient (K) for each classifier; (3) finally, 
the fusion of classification maps is performed using Dempster–Shafer Theory (DST) for mapping 
lithological units of the northern part of the complex Paleozoic massif of Rehamna, a large semi-
arid region located in the SW of the western Moroccan Meseta. The results were quantitatively com-
pared with existing geological maps, enhanced color composite and validated by field survey in-
vestigation. In comparison of individual classifiers, the SVM yields better accuracy of nearly 88%, 
which was 12% higher than the RF MLA; otherwise, the parametric MLAs produce the weakest 
lithological maps among other classifiers, with a lower OA of approximately 67%, 54% and 52% for 
CART, MD and NB, respectively. Noticeably, the highest OA value of 96% is achieved for the pro-
posed approach. Therefore, we conclude that this method allows geoscientists to update previous 
geological maps and rapidly produce more precise lithological maps, especially for hard-to-reach 
regions. 
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1. Introduction 
One of the most challenging geological applications using remote-sensing-based sat-

ellite data is mapping lithological features, especially for large and geologically complex 
areas that require high-precision lithological maps [1,2]. Furthermore, the limited availa-
bility of the spatial and spectral quality of open access image data (e.g., Landsat-5 TM, 
Landsat-7 ETM+ (enhanced thematic mapper plus), Landsat-8 OLI (operational land im-
ager), ASTER and Sentinel-2) is widely utilized to extract lithological [3–5], mineral [6,7] 
and structural information [8–10]. The majority of studies investigating the potential of 
remote sensing for geological mapping [4,6,11–13] have been conducted over relatively 
small geographical areas using individual machine learning algorithms (MLAs). There-
fore, an innovative approach, based on several factors, is implemented in this research to 
overcome the aforementioned issues. First, we choose well-discriminating spectral and 
textural information; second, we perform an efficient approach based on fused multi-clas-
sifiers to optimize accuracy; third, we exploit the high computational processing capaci-
ties of Google Earth Engine (GEE) to process free-access remote sensing (RS) geospatial 
big data and use MLAs over a large area.  

Sentinel-2 multispectral data was used due to its high potential for geological map-
ping [14]. A handful of studies have investigated the potential of combining spatio-spec-
tral bands for lithological classification over wide geologically complex regions [15–17]. 
Furthermore, different rock types with similar spectral properties can lead to spectral 
overlap and misclassification [18–20]. Hence, many classification approaches have been 
proposed in the literature to improve classification accuracy by introducing textural char-
acteristics, which can be considered the most discriminating property between different 
lithological units when the spatial resolution of the sensor is enhanced [16,21,22]. 

There are several texture analysis approaches, such as the grayscale co-occurrence 
matrix (GLCM) [23,24], fractal analysis [25], discrete wavelet transform [26], Laplacian 
filter [27], Markov random field [28], granulometric analysis [29,30]. The most commonly 
used in geological applications is the grayscale co-occurrence matrix (GLCM) [31–33]. It 
is a second-order statistical technique that measures the relative occurrence of reference 
pixels compared to neighboring pixels and incorporates spatial information in the form of 
index images that quantify this texture. Second-order statistics have an advantage over 
first-order statistics since they include spatial variability information. The three principal 
computational parameters of GLCM are displacement, neighborhood size and quantiza-
tion. According to previous researches, it is preferable to analyze the textural characteris-
tics of high-resolution imagery with a small neighborhood size [16].  

Haralick et al. [32] proposed a total of 14 second-order statistical measures that may 
be obtained using the GLCM probability matrix. Among them, the following four statis-
tical metrics are frequently used: contrast, ASM, entropy and correlation [28,34]. Entropy 
is the most complex statistical parameter because it includes an effect related to image 
heterogeneity [35]. The quantification of the texture of the image facies is performed by 
calculating texture indices in the form of additional layers that are combined with the 
spectral layers in the different bands of the multispectral image. Generally, the integration 
of textural information within the classification algorithms enhances the lithological map-
ping when fewer (lower) correlated indices are used [16,22,33]. The contrast index and 
entropy are the lowest correlated and most discriminating indices for the texture of geo-
logical bedrock [36]. Applying these indices enhances the accuracy of classification algo-
rithms in lithological mapping, although the amount of improvement depends on the type 
of rock [11]. However, the integration of spatial information in image classification ap-
proaches exposes these algorithms to a new challenge related to the processing of this 
multi-dimensional data (spectral, texture, geometry and shape) for large-scale geological 
mapping. Other issues that make lithological mapping more challenging are the limited 
robustness of the classification methods offered by both free and commercial software. 

The application of artificial intelligence algorithms has been widely used in the field 
of geological applications [4,5,13]. Although many studies have attempted to compare 
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different algorithms to determine the best classification approach for geological mapping, 
no consensus on the validity of the available MLAs has yet been achieved. Each classifi-
cation algorithm can have very good performance for the discrimination of a lithology but 
may have some disadvantages when compared to other lithologies [37]. In other words, 
each MLA has its own pros and cons that depend on the geological complexity of the 
study area, the data quality of available RS imagery and the spatiospectral characteristics 
of each lithological unit. Therefore, the fusion approach based on multiple classifiers that 
merge into a single map may yield an improved result [38]. Due to its potential to increase 
accuracy, this technique has been gaining prospects over the last decade and is being 
widely used for several mapping applications, including land cover mapping [37–40], 
wildfire susceptibility mapping [41], [42], water edge detection [43] and change detection 
[44], with limited application in lithological mapping. Notably, the classifier fusion 
method performed better when the accuracy of each classifier was more than 50%. Ac-
cording to theoretical and practical investigations, an optimum fusion outcome is ob-
tained when individual classifiers are both accurate and contradictory to some classes. 
The Dempster–Shafer fusion (DST) [45] is one of the most frequently used fusion methods 
in the geospatial field; the information acquired from several sources is represented by 
the degree of belief/mass function, then merged/aggregated using the DST combination 
rule [46]. Therefore, the D-S theory is a multi-source data fusion approach for collecting 
more reliable data [47,48]. It is an accurate fusion technique that uses belief uncertainty 
intervals to provide the beliefs of hypotheses based on evidence from multiple observa-
tions [46]. The algorithm uses the reasoning, weight and probability of evidence contained 
in the dataset [46–48]. This method (DST) has been evaluated in many applications, in-
cluding automatic pattern recognition [49], forensics [50] and fingerprint verification [51]. 
However, its application in the field of lithological mapping is non-existent [52]. 

The GEE (https://earthengine.google.com; Casablanca, Morocco; accessed on 5 Sep-
tember 2022) [53] is a free cloud computing platform that enables users to access and man-
age petabytes of satellite data on a large scale using JavaScript and Google’s cloud [54]. 
GEE uses Google’s computing capabilities to decrease uptime and provide a repository 
for script storage and exchange, allowing extensive user collaboration with minimal cost 
and equipment [55]. It provides a variety of packages for image collection, analysis, pro-
cessing, classification and export to ensure that users are no longer solely dependent on 
expensive commercial software [55–57]. Several researches use GEE to take advantage of 
its massive data catalogue to examine dynamic processes over long time-series data and 
to generate large-scale thematic classifications for a variety of applications, including 
LU/LC mapping [58], cropland classifications [59], forest habitats mapping [60], surface 
water detection [61], urban and rural settlement [62], mine mapping [63], natural hazard 
mapping and snow and shoreline detection [64,65]. However, its application in geological 
mapping remains very limited [54]. This study provides an improved approach that is 
developed first in the GEE environment, collecting data and testing various variable com-
binations to enhance each classification step. Secondly, the DST fusion method was used 
to optimize lithological mapping and subsequently improve accuracy by considering the 
advantages of five MLAs classified outputs.  

The novelty of this research lies in the proposed methodology for analyzing the ad-
ditional value of integrating spatio-spectral bands and evaluating the performance of sev-
eral MLAs available in the GEE platform for lithological classification over large geologi-
cal complexes regions. Furthermore, in order to optimize and improve the classification 
accuracy of the exposed rock units, the fusion of multiple classifiers based on the DST 
method has been employed.  

The study described in this paper has the following three main objectives: 
1. Evaluating the potential of the GEE platform and spatio-spectral bands of Sentinel-2 

data to classify the lithological units exposed in a large complex semi-arid region 
within the GEE code editor environment; 
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2. Evaluating and assessing the performance of different MLAs (RF, SVM, CART, MD 
and NB) in terms of classification accuracy of each class; 

3. Optimizing and enhancing lithological mapping accuracy for all the classes using the 
DST fusion approach. 
The main goal of this research was to develop a scheme that could be adapted and 

deployed to produce an accurate lithological map of large geologically complex regions 
in a more operational and automatic approach. 

2. Study Area and Materials 
2.1. Study Area 

The northern part of the complex Paleozoic massif of Rehamna is chosen as a geolog-
ical test site to verify the proposed approach in lithological mapping. It is characterized 
by good bedrock exposure because it is a dry and semi-arid region, which is situated in 
the SW of the western Moroccan Meseta between latitudes 32°31’N and 32°47’N and lon-
gitudes 7°31’W and 8°03’07.1”W, with a total area of approximately 1283 km2 (Figure 1). 
Geologically, the northern part of the Paleozoic massif of Rehamna is divided into the 
following two main subareas: the Paleozoic basement, which was produced during the 
Hercynian orogeny and eroded by preserving the paleoreliefs, and the tabular Meso-Ce-
nozoic cover, which is slightly deformed by small normal faults [66]. 

The Hercynian basement formations were formed from the Cambrian to the Permian 
ages [66]. The Cambrian formations of the Imfout syncline are composed of siliciclastic 
and pyroclastic [67]. The Ordovician is also represented by coarse- to fine-grained si-
liciclastic terrains, particularly pelites and sandstones, with an alternation of large quartz-
itic bars displaying the important reliefs of Oued Kibane [67]. Clay and pelitic rocks from 
the Silurian are poorly exposed in the study area. The lower and middle Devonian are 
composed of pelites with intercalation of thin, gray bioclastic and massive limestones [68]. 
Otherwise, the formations of the upper Devonian are also pelitic but intercalated with 
quartzitic bars that are occasionally capped by a carbonate–sandstone formation that has 
been dated as Strunian, which is exposed in Mechra Ben Abbou and Foum el Mejez 
[69,70]. The Carboniferous (Upper Visean) comprises carbonate rocks and the alternation 
of limestone layers with pelites, in addition to pelite formation with intercalation of basic 
magmatic rocks, which are exposed as sills and dikes in Gada Jenabia [71]. The erosion 
products of the Hercynian edifice chain represent a large outcrop of the continental red 
deposits in the Paleozoic massif of Rehamna that comprise conglomeratic, sandstone and 
pelitic materials [66]. 

The epicontinental red cover base sediments are composed of conglomerates, sand-
stones and pelites. However, the underlying series comprises limestone and marl marine 
formations. The quaternary terraces with alluvium (conglomerate and sand) have been 
deposited along the Oum Er-Rbia River [66]. 
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Figure 1. (a) Location of the Paleozoic massif of Rehamna (structural and metamorphic map of the 
Rehamna massif); (b) Google Earth imagery of the study area with a resolution of 2 m. 

2.2. Data Sources and Preprocessing  
In general, the preparation of the base dataset is a crucial step for any lithological 

classification scheme [7]. Spectral and textural features of Sentinel-2A (S2A) level-2A 
(L2A) optical data were used in this study. The S2A is a wide -swath, high-resolution and 
free-access multi-spectral instrument (MSI). It collects remote sensing datasets in 13 spec-
tral bands situated in the visible, near infrared (VNIR), red edge (Re) and shortwave in-
frared (SWIR) spectral domains, with spatial resolution ranging from 10 to 60 m [72,73] 
(Table 1). 

(a) 
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It is worth noting that S2A datasets used in this study were filtered by the region of 
interest (ROI), the period of acquisition (23 September 2020), and the highest percentage 
of cloud cover (10). The S2A cloud cover masking is generated using the QA60 band (60 
m), which comprises dense clouds and cirrus [74]. This band is given in GEE along with 
the S2 surface reflectance data, as GEE reduces most of the time-consuming preprocessing 
steps needed in traditional computing software [54]. 

In the next step, satellite image spectral enhancement techniques were performed by 
running various methods, such as minimum noise fraction (MNF) and principal compo-
nent analysis (PCA). 

Table 1. Spectral and spatial characteristics of Sentinel 2A MSI. 

Band num-
ber 

Spectral characteristic Central wavelength 
(nm) 

Spatial resolution 
(m) 

B1 Coastal aerosol 443 60 
B2 Blue (B) 490 10 
B3 Green (G) 560 10 
B4 Red (R) 665 10 
B5 Vegetation red edge 1 (Re1) 705 20 
B6 Vegetation red edge 2 (Re2) 740 20 
B7 Vegetation red edge 3 (Re3) 783 20 
B8 Near infrared (NIR) 842 10 

B8a Near infrared narrow (NIRn) 865 20 
B9 Water vapor 945 60 

B10 Shortwave infrared Cirrus 1380 60 
B11 Shortwave infrared 1 (SWIR1) 1910 20 
B12 Shortwave infrared 2 (SWIR2) 2190 20 

3. Methodology 
The investigation started with the integration of image spectral enhancement and 

spatial texture features for better discrimination of lithological units. Subsequently, a 
multi-classification scheme is fused for improved lithological mapping of a large, complex 
semi-arid area. The general processing chain of the proposed approach is displayed in 
Figure 2. 
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Figure 2. Methodological workflow of the current study within GEE platform and local computer. 

3.1. Data Enhancement and Processing  
Various algorithms and techniques, such as principal component analysis (PCA), 

minimum noise fraction analysis (MNFA) and textural feature indices, were applied to 
Sentinel 2-A imagery in order to improve the discrimination of the lithological units ex-
posed in the study area. The details of the processes are described below. 

3.1.1. Spectral Enhancement Techniques 
1. Principal Component Analysis (PCA) 

PCA [75] is a multivariate statistical and feature reduction process [5,76–78], to em-
phasize and highlight spectral information related to geological features by eliminating 
the irradiance effects of all MSI bands. It can be applied to multispectral datasets by trans-
forming a number of correlated and high dimensional spectral bands into a set of linearly 
uncorrelated lower dimension output principal components (PCs) [75,79,80]. This trans-
formation technique is performed by computing the covariance and correlation matrix 
and defining new orthogonal axes data, by removing redundancy in the dataset, filtering 
noise in the latest PCs and thereby generating enhanced contrast images represented by a 
false color composite (FCC) [81]. Two image components have been selected in this study 
(PC2 and PC5) from the application of standard PCA transformation to the VNIR and 
SWIR bands of S2A datasets.  
2. Minimum Noise Fraction Analysis (MNFA) 

The second technique that we used is the minimum noise fraction analysis (MNFA), 
which is used to derive noise-free PCs, which show higher spectral contrast and showcase 
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earth surface materials [82]. The MNF transformation involves two successive PCA rota-
tions; the first one is also called noise-whitening and is based on the application of noise 
covariance matrix to decorrelate and rescale the noise in the datasets [83–88]; the second 
step is a standard PCA transform derived from the noise whitened data [89]. Depending 
on the MNFA band data, the first three components contained the largest amount of geo-
logical information and allows delineation of corresponding lithological boundaries of the 
study area (Figure 3).  

 

Figure 3. The Sentinel-2A MNF bands (1, 2 and 3) combination. 

3.1.2. Textural Feature Processing 
The spatial features of a geological object are its shape, size and texture [21,90,91]. 

The latter is the simplest feature to extract from spatial datasets since it does not require a 
segmentation step [90]. When the texture is well quantified and exploited, it represents 
the spatial pattern of the gray levels of pixels and improves the discrimination of litholog-
ical units [21,90–92]. In geological mapping, the following several textural analysis ap-
proaches have been used: gray level co-occurrence matrix (GLCM) [23,24], fractal analysis 
[25], discrete wavelet transformation [26], Laplace filters [27], Markov random fields [28], 
granulometric analysis [29,30] or mathematical morphology analysis [93], [94]. In addition 
to its availability on the GEE platform, the GLCM matrices are the most popular parame-
ters for the quantification of textural information. It is a statistical computation approach 
of second-order histograms that uses a lot of processing techniques and produces a mas-
sive data set with many features [94]. Hence, the use of the GEE platform is preferred, 
which allows the extraction of GLCM matrices rapidly and easily for a large study area. 
Average, homogeneity, variance, entropy, contrast, dissimilarity and correlation are the 
texture measurements extracted from the GLCM in GEE. These parameters are frequently 
redundant when derived from multispectral imagery [93]. Therefore, PCA was used to 
select the richest image in textural information with the highest variance. In this study, 
only the first principal component (PC) was used to calculate the texture data since it ac-
counts for 98.67% of total variations. 

The GLCM defines a square matrix whose size 𝑁 𝑁  , with 𝑁  is equal to the larg-
est gray level appearing in the image. It shows that each image pixel’s spatial distribution 
contains textural information and is represented in Equation (1) as follows: 𝑃 , 𝑑 , 𝑁 = ((𝑥, 𝑦), (𝑥 𝑎, 𝑦 𝑏)/ 𝐼(𝑥, 𝑦) = 𝑛; 𝐼(𝑥 𝑎, 𝑦 𝑏) = 𝑚)   (1) (1)

where the parameter d is the distance between each pair of pixels in the image, θ is the 
angle (generally 0°, 45°, 90° or 135°) and 𝑁  is the number of gray levels considered in 
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the image, n, m with n, m = 1, 2…… ,𝑁  are the gray levels of the two pixels separated by 
the displacement vector d of coordinates (a, b) and (x, y) are the spatial coordinates of the 
pixel having gray level n and (x + a,y + b) of the pixel with gray level m.  

According to previous studies, it is preferable to analyze the textural properties of 
open access images with medium to coarse resolutions with a small moving window size 
[31]. Since the GLCM results depend on the values of Ng and dθ, in this study the rotation 
invariant was ensured by using 𝑁  = 256, d = 1 and the average value of the GLCM ob-
tained for 0°, 45°, 90° and 135°, with 3 × 3 moving window covering the neighboring pix-
els. Two texture indices, contrast (CON) and entropy (ENT), were used due to their high 
decorrelation as defined in Equations (2) and (3). 

CON = (𝑖 − 𝑗) 𝑃,  (2)

ENT = − 𝑃 𝑙𝑜𝑔𝑃,  (3)

3.2. Machine Learning-Based Techniques 
3.2.1. Random Forest (RF) 

Random forest (RF), developed by Leo Breiman in 2001 [95], is a supervised non-
parametric machine learning classifier that is based on bagging technique [96]. RF pro-
duces multiple trees by randomly splitting a predefined number of variables to divide at 
each node of the decision trees. It predicts classes using a majority vote based on the par-
titioning of data from numerous decision trees by implementing the Gini Index to choose 
the best split threshold of input variables [97,98]. This classifier requires the selection of 
the input variables for each decision tree (ntree) and the number of possible characteristic 
parameters (mtry) that can be randomly sampled for splitting at each node of the trees in 
the forest [95]. Therefore, among current remote sensing classification algorithms, RF has 
become the most extensively used in lithological mapping [5,99,100]. 

3.2.2. Support Vector Machine (SVM) 
The support vector machine (SVM) is a popular non-parametric MLA based on the 

statistical learning theory proposed by Vapnik in 1995 [101]. The main aim of the SVM 
algorithm is to determine the optimal hyperplane (decision boundary) separating various 
input training samples (support vectors) from each class [102]. The parameters that need 
to be adjusted and optimized when using the SVM for classifying remote sensing images 
are the kernel function type (polynomial, sigmoid, linear and radial basis function), 
gamma kernel function (GKF) and the penalty parameter [103]. Studies have shown that 
the SVM has advantages in terms of small samples and high dimensionality [104]. How-
ever, the fast performance and accurate results make SVM one of the widely used litho-
logical mapping classifiers [4,105]. 

3.2.3. Classification and Regression Tree (CART) 
Classification and regression tree (CART) is a binary non-parametric decision tree 

classifier. It is based on a hierarchical decision tree (DT) framework, by recursively split-
ting parent nodes into child nodes until they reach a pre-defined threshold of non-splita-
ble terminal nodes (also known as a “leaf node”) [106]. CART implements the information 
gain ratio (Gini impurity index) [107] to determine which input features will provide the 
optimum splitting at each node [106]. The higher Gini index value, the smaller the purity 
of the dataset. The great disadvantage of this technique is its extreme sensitivity to the 
training dataset. Even little changes in the training data can result in entirely different tree 
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structures. However, this algorithm can create complex trees to solve complicated issues 
with large datasets. This classifier has been mildly used in lithological mapping [108]. 

3.2.4. Minimum Distance (MD)  
The minimum distance (MD) classification is a classic supervised machine learning 

method, widely used in lithological mapping and mineral exploration [109–111]. It is 
based on computing the Euclidean distance between each image pixel vector and the 
mean vector for each class, in a multi-dimensional space using the mean vectors of each 
class [112]. 

3.2.5. Naïve Bayes (NB) 
Naïve Bayes (NB) [113,114] is a statistical learning algorithm that uses the Bayes the-

orem to predict a class by estimating the highest posterior probability for each class under 
the naïve assumption of the inputs for each class that are conditionally independent [115]. 
NB has been found to be competitive against many different classification methods in a 
variety of practical tasks [116,117]. NB minimizes the issues of class discrimination to find 
class conditional marginal densities, which indicates the probability that a given sample 
belongs to one of the target classes [118]. 

3.3. Lithological Mapping Based on Dempster–Shafer Fusion 
Dempster–Shafer theory (DST), also known as classical Dempster–Shafer evidence 

theory, is a well-defined fusion technique that uses the belief confusion matrix to combine 
different classified features into a new class [46]. It is a formal framework for defining and 
reasoning with uncertain information and which makes it possible to represent both im-
precision and uncertainty using the mass function or evidence mass (m), the belief func-
tion or credibility (Cr) and the disbelief function or plausibility (pl) [119]. The masses of 
evidence are defined on a set called the framework of discernment Ω. This set contains the 
N hypotheses 𝐻𝑦  necessary for the complete description of the situation, as demon-
strated in Equation (4) as follows [120]: 

 = 𝐻𝑦 , 𝐻𝑦 , … … . , 𝐻𝑦  (4)

In this study, the hypotheses that describe the situation are the classes Si to which the 
pixels of the image are assigned as demonstrated in Equation (5) as follows: 

 = 𝑆 , 𝑆 , … 𝑆 , … . , 𝑆 ,  (5)

where, N the total number of classes. 
The reasoning concerns the set E of parts S of Ω given in Equation (6) as follows: E = 𝑆/𝑆 ⊂ Ω = ∅, 𝑆 , 𝑆 , … . 𝑆 , Ω  (6)

where, Card (E) = 2Ω =2N 
The probability assignment is an evidence mass function m defined from 2N to [0,1] 

that satisfies two requirements in the Equation (7) as follows: 

⎩⎪⎨
⎪⎧m(A) ≥ 0, ∀A ⊂ Ωm(A) = 1    ∈m()  =  0  (7)

The measure of credibility as well as that of plausibility are deduced from the mass 
of evidence by the following Equations (8) and (9): 𝐶𝑟(S) =  𝑚(A)⊆ , ∅  ,  (8)
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𝑝𝑙(S) = 𝑚(𝐴)⋂ ∅ = 1 − 𝑚(𝐴) (9)

with 𝐶𝑟(𝑆) ≤ 𝑝𝑙(𝑆) 
where, for every S ⊂ Ω, Cr(S) corresponds to the amount of information that is con-

tained entirely within the considered subset of S by m. It contains all the knowledge cred-
iting the veracity of this subset. pl(S) corresponds to the amount of information not dis-
cretizing S, i.e., all the information contained in the sub-assemblies having an intersection 
with S. These two functions are considered as the lower and higher probability [121]. Fig-
ure 4 shows graphically the relationships between Cr, Pl and uncertainty. 

 
Figure 4. The general DST scheme illustrates the relation between different functions. 

Parallel combination of classifiers is essentially based on the errors of individual clas-
sifiers, which are usually represented in the confusion matrix for each classifier j given in 
Equation (10) as follows: 

𝑃 = 𝑛 ⋯ 𝑛⋮ 𝑛 ⋮𝑛 ⋯ 𝑛  (10)

where, N represents the number of classes. The learning class Si is represented by row i 
while the class determined by classifier j is represented by column j. 

The confusion matrix for each classifier is subsequently represented. When classifier 
j selects class 𝑆 , the masses of evidence will be determined by the following Equations 
(11) and (12): 𝑚 𝑆 = 𝑛∑ 𝑛  (11)𝑚 (𝑆̅ ) = 1 − 𝑛∑ 𝑛  (12)

Therefore, the recognition and the confusion probability of classifier j are defined in 
Equations (13) and (14) as 𝜏  and 𝜏 , respectively. 𝜏 = ∑ 𝑛∑ 𝑛,  (13)𝜏 = 1 − 𝜏  (14)

The following Equations (15) and (16) based on the classical Dempster’s rule are used 
to make it more flexible in terms of combining information from n classifiers represented 
by their mass functions mi at the same time [122–124]. The crucial point for merging is to 
add the probabilities of all the sets. 

m(S) = 11 − 𝐾 𝑚 (𝑆 ). 𝑚 𝑆 … 𝑚 𝑆 … 𝑚 𝑆∩ …∩ 0        𝑆 =  ∅      𝑆 ∅  (15)

 
where, K is defined in Equation (16), 
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𝐾 =  𝑚 (𝑆 ). 𝑚 (𝑆 ) … 𝑚 (𝑆 )⋂ …∩  (16)

where, n is the number of masses of evidence or number of classifiers, N is the number of 
classes or hypotheses, k is the kth hypothesis, K is termed as degree of conflict in the range 
of [0, 1] to represent the conflict level among multiple mass of evidence, and m(S) is the 
orthogonal sum of n masses of evidence. 

In this paper, for assigning each pixel in the fusing classifiers’ decision rules, we se-
lect the class label for which the belief function is maximal, as shown in Equation (17) as 
follows: ∀ 𝑥 ∈  S , 𝑚(𝑆 )(𝑥) = 𝑚𝑎𝑥 𝑚(𝑆 )(𝑥), 1 ≤ 𝑘 ≤ 𝑁  (17) 

where, Sk (k = 1, 2, …, N) represents N safety levels, Sw is the result of the classification 
fusion of n classifiers. 

The belief function is calculated by means of the Dempster–Shafer combination of 
Masses of Belief and indicates the belief that each input classification map presents for 
each label value. Moreover, the masses of belief are based on the input confusion matrices 
of each classification map, either by using the PRECISION or RECALL rates, or the OVER-
ALL ACCURACY, or the KAPPA coefficient. Thus, each input classification map needs to 
be associated with its corresponding input confusion matrix file for the Dempster–Shafer 
fusion. 

4. Results 
In this study, Sentinel 2A imagery was used because its bands are more adequate for 

lithological discrimination than other satellite images due to its high spatial and spectral 
resolution in the VNIR to SWIR range [3]. Preprocessing, spectral subset and spatial 
resampling were performed on S2A remote sensing imagery using the GEE cloud plat-
form, before attempting lithological classification using spectral and textural features. 
This was carried out to achieve reflectance data with bands in the same spectral range 
(VNIR-SWIR) and resample all image bands into a single spatial resolution (10 m). The 
areas covered by waterbodies, vegetation and terrace alluvium were mapped since the 
study area is a dry and semi-arid region. The lithological maps produced from each ap-
proach were assessed using the overall accuracy, the average accuracy of each class and 
the Kappa coefficient, derived from the confusion matrix. It should be noted that GEE 
enables us to solve the challenges concerning the data availability, data storage, data pre-
processing and free computing resources, which facilitates the computationally cumber-
some feature space used in this research (14 bands of spectral and textural information), 
in addition to the geological complexity of the study area that is characterized by multiple 
lithological classes (14 classes), which is time-consuming in local computing mode. 

4.1. Selection of Training and Validation Samples 
The selection of accurate training and validation samples is one of the most important 

stages in the lithological mapping process [125]. The geological maps, in situ field verifi-
cation, data sources, Google Earth and enhanced color composite imagery of the study 
area allowed us to improve the selection of training and validation polygons. Since the 
classification approach employed was pixel-based, training and validation samples 
matched the defined lithological units to which they belonged, hence avoiding mixed 
pixel issues. A visual approach was used on the reference datasets to collect 480 polygons 
that were manually selected, with the same number of samples for each category (approx-
imately 30 polygons for each class) distributed over the study area for all the classes in the 
GEE map area environment, where the reference samples were divided into two sets of 
75% training and 25% validation samples. 
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Figure 5 shows the variation of an average of all training samples derived from the 
study area for Sentinel 2A bands. It illustrates that vegetation and water features have 
different spectral properties than lithological units. 

 
Figure 5. Average reflectance spectra of representative bedrock outcrops based on training samples 
selected from Sentinel 2A. 

4.2. Classification Schemes 
Machine learning algorithms, including RF, SVM, CART, MD and NB, were used to 

classify spectral and textural features of Sentinel 2A, within the GEE cloud computing 
platform, in the northern part of the complex Paleozoic massif of Rehamna, to identify 
lithological units. All models were well trained by optimal parameters. The five classifi-
cation algorithms and the proposed method results for the rocky outcrops are shown in 
Figure 6.  
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Figure 6. (a) Location of the training samples polygons superposed on the RGB color composite 
generated with the PC2, MNF1 and MNF3 bands. Lithological maps of the study area by: (b) ran-
dom forest (RF); (c) support vector machine (SVM); (d) classification regression tree (CART); (e) 
minimum distance (MD); (f) naïve Bayes (NB); (g) using the proposed approach. 

The classification results obtained using parametric classifiers, particularly CART 
(Figure 6d), MD (Figure 6e) and NB (Figure 6f), provide more noise than other methods. 
However, the lithological units comprised of siltstone were well-mapped using paramet-
ric algorithms. According to the pre-existing geological maps [66], the lithological units 
extracted using RF (Figure 6b) and SVM (Figure 6c), non-parametric MLAs, are more pre-
cise in detecting bedrock units (pelites, quartzite) and sedimentary rocks (limestone, sand-
stone, dolomite), respectively. However, the proposed fusion method using DST had high 
consistency in terms of all rock types exposed in the study area, as shown in Figure 6g. 

4.3. Accuracy Assessments of Classified Maps 
The accuracy estimates of the lithological mapping results of the ML classifiers avail-

able in GEE and the proposed method based on DST are displayed in Figure 7. Among 
the results obtained using different MLAs, it can be observed that the average value of 
OAs of non-parametric classifiers, particularly SVM and RF, were higher than those of 
parametric MLAs, namely, CART, MD and NB. Otherwise, the proposed approach, based 
on DST, effectively maximizes the classification accuracy by registering values of and for 
OA and K coefficient, respectively, which indicates that this method is more accurate in 
recognizing and classifying the lithological units in remote sensing images. 
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Figure 7. (a) The average classification accuracies standard deviation of each class; (b) overall accu-
racies; (c) Kappa coefficient using several machine learning algorithms and DST result. 

5. Discussion 
Unlike the majority of previous studies that adopted individual MLAs using third-

party software for lithological mapping of small geographical areas [3,4,13,126–129], we 
exploit the capabilities of the GEE cloud computing platform to perform the MLAs proce-
dure using the spatio-spectral data from Sentinel 2. The spatial information was used as a 
pixel local variability in band measurements (entropy and contrast) contained in the tex-
ture index images extracted from the GLCMs. Then, we transferred it to a local computer 
to train the DST fusion technique by integrating all the MLAs results to produce an opti-
mized lithological map. This is a point of novelty in our study. 

The use of the GEE environment offers a variety of open-access geospatial big data 
and various algorithms (preprocessed spatial models and classifiers), which allow us to 
create and manage multiple workflows, in order to produce detailed large-scale maps in 
a cost- and time-efficient manner relative to traditional computing software [54,56]. In this 
platform, we used five supervised machine learning classification algorithms (RF, SVM, 
CART, MD, NB) to construct a lithological map in the northern part of the complex Paleo-
zoic massif of Rehamna, based on the spatio-spectral characteristics of Sentinel 2A without 
needing to purchase or download any software or datasets. 

According to the statistical results summarized in Figure 7, the highest accuracies 
were produced using nonparametric MLAs such as SVM and RF, which were completely 
in line with the previous studies in this field [4,13,126], compared to parametric MLAs, 
namely, CART, MD and NB, as they require normally distributed data and statistical pa-
rameters are directly inferred from training datasets [125,126]. In contrast, no assumptions 
or statistical parameters are needed for non-parametric MLAs [130,131]. The classification 
findings produced in this investigation were compared with pre-existing geological maps 
[66] and enhanced color composite images to assess the resulting maps acquired in this 
study. Figure 8 shows a visual comparison between the individual classification results 
from our research in three complex magnified regions, particularly Machraa ben Aabou, 
Foum el M’jez and Oued Quibane. It can be seen in Figure 8 that basement rocks, espe-
cially pelite (Pt) (Figure 8i,h) and quartzite (Qz) (Figure 8h), were well identified using the 
RF algorithm. Otherwise, the SVM MLA outperformed in distinguishing different sedi-
mentary cover rocks, namely, clay and sandstone (ClS) (Figure 8j), limestone and dolomite 
(LD), as well as marl–limestone (ML) (Figure 8k, 8l). The worst lithological maps were 
produced when performing classification with parametric algorithms, as illustrated in 
Figure 8. The mapping results of most rock units exposed in the study area using CART, 
MD and NB are largely misclassified into surrounding lithological units. Although the 
three methods achieved low classification accuracy, there were still some lithological units 
well identified using those algorithms. For example, the sandstone and siltstone (SSt) were 
well distinguished (Figure 8m,n) and achieved the highest accuracy (Figure 8a) using the 
CART classifier, in addition to the MD algorithm that yielded good performances in iden-
tifying the argillite and siltstone (ASt) as well as the schist and quartzite sandstone (ScQS) 
(Figure 7a), besides NB shows a better capability for discriminating the psammite and 
siltstone (PSt) (Figures 8s and 7a). This further illustrated the robustness of the proposed 
approach in improving classification accuracy in lithological mapping by fusing multiple 
classifiers. Thus, adding more MLAs increases the probability that the accuracy of the 
proposed approach will be enhanced and higher than the highest accuracy attained by a 
single algorithm. 
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Figure 8. Visual assessment of magnified areas among the classification results against an enhanced 
color composite and existing geological maps. 

The spectral profile from S2 bands (Figure 5) show that the rocks composed of argil-
lites (ASt) in addition to those composed of silicates, particularly the magmatic rocks (Mg 
and RMo), are more distinct compared to other lithological units’ spectra; therefore, all 
the MLAs discriminate them correctly. Otherwise, a lesser separability in the spectral pro-
file is shown by sedimentary rocks composed of the following (Table 2): sandy rocks (PSt 
and SSt); clay (CCl and ClS); calcite and dolomite (LD); in addition to the basement rocks 
(Pt and Qz), their mineralogical composition is predominantly quartz, which leads to a 
confused discrimination in individual MLAs, especially parametric classifiers that were 
affected by the heterogeneity of these classes. Thus, lithological mapping using MLAs de-
pends not only on the data quality and robustness of the classifiers but is also proportional 
to the nature of lithological units, their mineral compositions, their spectral separability, 
weatherability and the magnitude of bedrock outcrops relative to other lithological units. 
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Table 2. Lithological and mineralogical description of the rock units in the study area. 

Era Lithological units Mineral characteristics 

Quaternary Alluvium and terraces Clay, silt, sand, gravel or similar unconsolidated 
detrital materials 

Meso-Cenozoic 

Conglomerate Silica, calcite or iron oxide 
Sandstone Quartz sand, feldspar and sometimes silt and clay 

Pelite Clay minerals (silica, kaolinite, alumina), quartz, 
feldspar and micas 

Limestone Calcite and dolomite 
Marl Calcium carbonate, clay and silt 

Paleozoic 

Magmatic rocks 
Silicates (quartz, feldspars, feldspathoids, colored 

minerals containing iron and magnesium) 
Carbonate rocks (limestone)  Calcite, dolomite 

Pelite and quartzite Quartz, feldspar and micas 

Clay and pelitic rocks Clay minerals (silica, kaolinite, alumina), quartz, 
feldspar and micas 

Siliclastic and pyroclastic rocks (psammite, 
sandstone, siltstone) 

Quartz and feldspar 

 
Besides visual comparison with pre-existing geological data, extensive fieldwork has 

been performed to update and validate the results of the lithological map produced using 
the proposed approach. Three fieldwork missions were carried out in March 2022, by in-
vestigating the mapped area.  

The geological map (Figure 9a) and the enhanced color composite (Figure 9c) were 
used along with the field investigation to validate the proposed approach (Figure 9b) in 
the region of Machraa ben Aabou. The folds of psammite and siltstone (PSt) and clay and 
sandstone (ClS) were tuned by the in-situ field verification shown in Figure 9d. Those 
folds are not mapped in the pre-existing geological map; however, they are observed in 
the color composite image and well identified in the proposed method as shown in the 
blue circle in Figures 9a, 9b and 9c. For the cover units, the geological map shows only 
one rock unit type, which is clay and sandstone (ClS); otherwise, the color composite im-
age and field verification (Figure 9e) confirmed the presence of two cover-type lithologies 
in the resulting map, which are marl–limestone (ML) and clay and sandstone (ClS), as 
shown with a yellow circle in Figure 9a–c. 
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Figure 9. Validation of the proposed approach at the magnified area of Machraa ben Aabou: (a) 
existing geological map; (b) lithological map using DST; (c) enhanced color composite and field 
photographs of (d) psammite and siltstone (PSt); (e) panoramic view of cover lithologies. 

Furthermore, the geological map (Figure 10c), the enhanced color composite (Figure 
10e) and the field survey performed along the complex region of Foum el M’jez (shown 
in Figure 10) were used to validate the optimized lithological map results using the DST 
approach. The verification locations show considerable compatibility with the predicted 
lithologies. 
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Figure 10. Validation of the proposed approach at the magnified area of Foum el M’jez: (a) fractured 
limestone and dolomite (LD); (b) sandstone and siltstone (SSt); (c) existing geological map; (d) lith-
ological map using DST; (e) enhanced color composite; (f) panoramic view of the basement outcrop 
with A: the Zoom to the Quartzite (Qz). 

(c) (d) (e) 

 

(f) 
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Figure 11 shows the in-situ field verification of the basement outcrops of the complex 
region of Oued Quibane. Additionally, through the field survey, the geological map (Fig-
ure 11a) and the enhanced color composite (Figure 11c) have been provided to validate 
the lithological map produced using the proposed approach. Most of the lithological units 
exposed in the study area are somewhat consistent and accurate; otherwise, the quartzite 
(Qz) exposed on surface lithology has been replaced by Quaternary/terraces (QT), as 
marked by red circles in Figure 11a, 11b and 11c, as the highest overall accuracy of the Qz 
lithological units achieved using RF (80%) is lower than the highest accuracy of the QT 
(89%) obtained using SVM MLA (Figure 7a). 

Summarily, lithological classification of a large complex semi-arid region, such as the 
northern part of the Paleozoic of Rehamna in the Moroccan Meseta, is impossible to pro-
cess by commonly used traditional classification software packages. Therefore, this study 
exploits the capabilities of cloud-based platforms jointly with local computer software to 
optimize lithological mapping. Based on spatio-spectral information of S2A imagery, the 
results reveal that the proposed approach improves the classification performance com-
pared to individual classifiers. 

 
 
 

 
 
 
 
 
 
 
 
 
 

(d) (e) 
 

 

 

Figure 11. Validation of the proposed approach at the magnified area of Oued Quibane: (a) existing 
geological map; (b) lithological map using DST; (c) enhanced color composite and field photographs 
of the basement outcrops: (d) pelite (Pt) and (e) quartzite (Qz). 

6. Conclusions 
Due to the complexity and limited data quality in free satellite-borne remote sensing 

imagery as well as the restricted performance of single classification algorithms, this study 

(a) (b) (c) 
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demonstrates a fused multi-classifier (SVM, RF, MD, NB) approach for optimizing litho-
logical mapping using the DST method applied to spectral and textural information of 
Sentinel 2A imagery. The free cloud-based computing platform, GEE, has been proposed 
in order to access and process the datasets in a vast part of the study area. This process 
occurred in the north of the complex Paleozoic massif of Rehamna. The results demon-
strate that the classification accuracy is mostly affected by the types of lithological units 
and their mineral compositions, variations in reflectance spectra, non-linear spectral mix-
ing and sensitivity to weathering, in addition to the classification methods. The resulting 
lithological maps were compared visually and assessed statistically using the confusion 
matrix. The proposed DST classified map shows a high accuracy over lithological maps 
resulting from the other classifiers, which indicates that this approach is more robust and 
effective in increasing the accuracy in the lithological mapping of complex semi-arid re-
gions due to the complementary contribution of MLAs. In future works, the lithological 
mapping will be based on a deep learning algorithm, which will be developed within 
GEE, as cloud computing services are making deep learning more accessible and easier to 
manage a large-scale computing capacity as well as training algorithms on a distributed 
architecture, which can be immensely helpful in a geological investigation. 
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