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Abstract: Compared with anchor-based detectors, anchor-free detectors have the advantage of
flexibility and a lower calculation complexity. However, in complex remote sensing scenes, the limited
geometric size, weak features of objects, and widely distributed environmental elements similar to
the characteristics of objects make small object detection a challenging task. To solve these issues, we
propose an anchor-free detector named FE-CenterNet, which can accurately detect small objects such
as vehicles in complicated remote sensing scenes. First, we designed a feature enhancement module
(FEM) composed of a feature aggregation structure (FAS) and an attention generation structure
(AGS). This module contributes to suppressing the interference of false alarms in the scene by mining
multiscale contextual information and combining a coordinate attention mechanism, thus improving
the perception of small objects. Meanwhile, to meet the high positioning accuracy requirements
of small objects, we proposed a new loss function without extra calculation and time cost during
the inference process. Finally, to verify the algorithm performance and provide a foundation for
subsequent research, we established a dim and small vehicle dataset (DSVD) containing various
objects and complex scenes. The experiment results demonstrate that the proposed method performs
better than mainstream object detectors. Specifically, the average precision (AP) metric of our method
is 7.2% higher than that of the original CenterNet with only a decrease of 1.3 FPS.

Keywords: small object detection; remote sensing; CenterNet framework; multiscale information;
attention mechanism

1. Introduction

Automatic object detection in remote sensing images has attracted increasing attention
in commercial and military fields, which can be widely applied in aerial reconnaissance,
traffic monitoring, and area surveillance applications. However, due to the limitations
of the resolution and quality of remote sensing images, most objects of interest such as
vehicles [1–4] show the following characteristics: small in size, dim in features, and low
in contrast [5,6]. In addition, the unique remote sensing imaging system leads to the
complexity of the scene and the variability of the target orientation, which brings great
difficulties to the detection task. Therefore, it is of great significance to study an effective
detection method for small objects in remote sensing images. In this article, we define an
object with an area of less than 32 × 32 pixels as a small object [7] and concentrate mainly
on small vehicle detection in remote sensing images.

A convolution neural network (CNN) [8] can realize end-to-end detection by adap-
tively learning representative features without handcrafted features. The typical detection
networks can roughly be divided into two categories: anchor-based and anchor-free de-
tectors. The anchor-based detectors, such as Faster-RCNN [9] and YOLO [10], require
fine-tuned anchor parameters according to the aspect ratio of the objects in the dataset to
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achieve promising performances. However, the aspect ratio of objects in different remote
sensing scenes appears so diversified, which makes it hard and consuming to adjust the
parameters of the anchors [11]. Without the concern of anchor selection, the anchor-free
detectors are independent of the hyperparameters of the anchors, reducing the calculation
complexity of the algorithm. In addition, the anchor-free detectors detect objects from
high-resolution feature maps relying on key points, which are prone to capture objects on a
small scale.

CenterNet [12], as a typical representative of anchor-free detectors, directly predicts the
center point of the object through the extracted feature map. Compared to other methods,
the concise object detection framework of CenterNet gives it the potential to achieve a bal-
ance between detection accuracy and speed. In addition, CenterNet uses a high-resolution
feature downsampled four times from the input image to predict, which has the advantage
of achieving the desired detection performance for small and dense objects. Nevertheless,
due to the diversity and complexity of the scenes and the monotonic appearance of the
small objects, it is difficult to extract robust features for adequate representations as the
performance of CenterNet largely relies on the acquired feature map, which limits its
application performance in complex remote sensing scenes to a certain extent.

In this paper, we propose the feature-enhanced CenterNet (FE-CenterNet) by design-
ing a feature-enhanced module (FEM) to help the network reinforce the practical feature
while suppressing unnecessary details. At the same time, we adopted a new loss function in
the CenterNet framework to ensure the positioning accuracy of small objects. All the above
improvements were implemented without many additional parameters and computation
costs. In addition, to evaluate the performance of small object detectors in remote sensing
images, we constructed a dim and small vehicle dataset (DSVD) composed of various
objects and complex scenes. The experiments prove that FE-CenterNet has a significant
advantage in small object detection and achieves state-of-art performance on the DSVD.

The main contributions of our work are listed as follows:

• An anchor-free detector, which has excellent performance for small object detection in
complex remote sensing scenes.

• A feature-enhanced module, which largely contributes to improving the ability of
feature extraction and representation of small objects by digging the multiscale feature
and integrating the attention mechanism.

• An established small and dim vehicle dataset, which helps to assess the performance
of detection algorithms for small objects.

The remainder of this paper is organized as follows. After introducing the related
works of small object detection in Section 2, we elaborate on the proposed FE-CenterNet
architecture in Section 3. In Section 4, we briefly introduce the constructed dim and
small dataset and describe the experiments conducted to compare the performance of the
proposed method and that of typical methods. Finally, we summarize and conclude in
Section 4.

2. Related Works

With the rapid development of deep learning techniques, remote sensing object detec-
tion based on convolutional neural networks (CNN) attracts progressive attention. As we
know, mainstream methods are divided into anchor-based and anchor-free frameworks. In
this section, we introduce the main development trends and analyze the existing problems
of the two categories. On this basis, we illustrate the reason for choosing the anchor-free
framework and the solution of the proposed method for small object detection in remote
sensing images.

2.1. Anchor-Based Framework for Object Detection

After 2012, the rise of CNN promoted object detection to a tremendous advancement.
By automatically mining significant features, the problems of poor accuracy and redundant
computation based on handcrafted feature descriptors can be alleviated. Anchor-based
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detectors predict and classify objects on the different candidates generated from various
anchors with the hyperparameters of number, size, and aspect ratio. Whether the candidates
are produced, the anchor-based frameworks are divided into two-stage and one-stage
detectors. The former uses a region proposal network (RPN) [9] to extract the region of
interest (ROI) as the first stage and then performs precise bounding box regression and
object classification.

R-CNN [13], as the earliest two-stage detector, first uses the selective search method
to generate candidates, followed by CNN to extract the features. The issue lies in the
requirement of performing feature extraction on all of the candidates individually, which is
a repeatedly time-consuming process. To solve the above problem, Fast-RCNN [14] directly
extracts features from the overall image and then maps them to the regions of interest. At
the same time, in order to reduce the time consumed by the traditional region proposal al-
gorithm, Faster-RCNN [9] introduces the RPN to achieve end-to-end object detection based
on deep learning and further simplifies the detection pipeline. Subsequent improvements
mainly appear on the basis of the modules of Faster-RCNN. Mask RCNN [15] utilizes
RoIAlign instead of RoIPool, which solves the region mismatch problem in the feature
map mapping process. Cascade-RCNN [16] determines the positive and negative samples
through different IOU (interaction over union) thresholds and cascades multiple networks
to optimize the prediction results. For small target detection, Wang et al. [17] combine the
region-based fully convolutional networks (R-FCN) and deformable convolution (DCN) to
fully utilize the limited information of small vehicles. Zhang et al. [18] utilize the K-means
to generate the hyperparameters of anchors. They introduce the modified VGG16 and
Soft-NMS into Faster-RCNN to achieve an effective detection performance of small-scale
aircraft. The two-stage networks establish a coarse-to-fine object detection method based
on the anchor box mechanism and realize the promising detection performance. However,
the two-stage procedure significantly increases the computation cost and inference time.

Compared to the two-stage detectors, the one-stage detector treats object detection as a
regression problem. It directly regresses the extracted features to obtain the target category
probability and position coordinate value. The detectors of YOLO architecture, as the main-
stream one-stage object detector, divide the input image into multiple grids of the same
size. They classify the suspected object and regress the position based on the bounding
boxes centered on the grid. YOLOv2 [10] designs Darknet as the feature extraction network
and adds batch normalization (BN) after all of the convolutional layers. YOLOv3 [19]
continues to improve the backbone network named Darknet53, which downsamples the
feature map through convolution in place of pooling. In order to solve the imbalance of
positive and negative samples in the one-stage network, RetinaNet [20] proposes focal loss
to adjust the weight of the indistinguishable samples in the loss function. Now, plenty of im-
proved versions [3,21,22] are proposed based on YOLOv3, which apply and combine a large
number of advanced detection technology tricks. They gradually achieve an outstanding
balance between accuracy and speed. For small target detection, Bashir et al. [23] combine
a cyclic generative adversarial network (GAN) to achieve the image super-resolution of
the small targets with the YOLO detection architecture. Zhou et al. [24] apply the gamma
correction for image preprocessing to brighten the shadow part of the image and propose
a feature fusion structure IR-PANet to increase the recognition ability for small targets.
Kim et al. [25] propose an efficient channel attention pyramid YOLO (ECAP-YOLO), which
adds a detection layer for small object detection.

However, the anchor-based methods, as the earliest significant branch of object de-
tection, largely depend on the number of positive and negative samples and the hyperpa-
rameters of anchor boxes in terms of detection performance. For the unique overlooking
perspective of remote sensing, the orientation variance of the object makes it necessary
to set a large number of anchor boxes with different scales and aspect ratios, which sig-
nificantly increases the computation complexity of the algorithm. It limits the detection
performance and speed in the remote sensing scenes.
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2.2. Anchor-Free Framework for Object Detection

Anchor-free detectors remove the anchor mechanism and apply key points to gener-
ate the candidates. These methods do not need to set hyperparameters for the anchors,
reducing the calculation complexity of the algorithm. The anchor-free frameworks based
on key points usually detect objects on high-resolution feature maps, so they are inclined to
perceive objects with a small scale. Such methods have a higher flexibility and universality
for object detection in remote sensing images from a special bird’s-eye view. They have the
potential to achieve effective detection of dim and small objects in complex scenes.

CornerNet [26] realizes the localization and detection of objects by predicting the diag-
onal corners. It utilizes the distance between the embedding vectors of corners to match the
same target. Based on CornerNet, CentripetalNet [27] introduces a centripetal shift module
and cross-star deformable convolution to achieve bounding box prediction with a higher
quality. ExtremeNet [28] predicts the central key points with four extreme key points of
each category and matches them using violent enumeration. FCOS [29] directly predicts the
distance from the four sides of the bounding box to the center. Although the above methods
delete the anchor machinima, they all include some complicated postprocessing methods
to match the key points. Compared to other methods, CenterNet [12], as a concise object
detection framework, achieves a balance between detection accuracy and speed. It predicts
the central point heatmap of the object and obtains information such as the length and
width through the features around the center. Motivated by the region proposal network
(RPN), FII-CenterNet [30] introduces the foreground information to reduce the influence
of the complex scenes and concentrate on the objects of interest. In [31], a probabilistic
two-stage detector is constructed based on CenterNet with the combination of the object
likelihood and a conditional classification score. In [32], CenterNet++ combines the center
key points with corner key points which detect an object as a triplet to capture the salient
information globally. The above improved methods are inspired mainly by the two-stage
detectors, which can improve the detection accuracy to a certain extent. However, the
introduction of foreground information or a region proposal destroys the structural sim-
plicity of CenterNet and dramatically increases the computation complexity and inference
time. So, we propose FE-CenterNet to achieve a promising detection performance with
little increase in the detection time. To enhance the perception ability of small objects, we
designed a feature enhancement module integrating the coordinate attention mechanism
and multiscale feature extraction. At the same time, a loss function that integrates robust
localization information was put forward in the training process, which can improve the
regression accuracy of the location without additional computation for inferring.

3. Proposed Method

The main architecture of FE-CenterNet is depicted in Figure 1. Similar to CenterNet,
the FE-CenterNet utilizes a modified DLA-34 [12] as the backbone to extract features
at multiple levels and obtains the feature map downsampled four times. Specifically,
we propose the feature-enhanced module (FEM) after the backbone network, improving
the representation ability of small object characteristics. This module is composed of
feature aggregation structure (FAS) and attention generation structure (AGS), and the
detailed explanation of the two structures is provided in Section 3.1. FAS integrates
the multiscale feature with the introduction of context information to suppress the false
alarms from complex scenes. Moreover, AGS embeds the coordinate relationship into
the attention mechanism, strengthening the perception ability of small objects. During
the training process, we put forward a new loss function to adapt to the high demand
for positioning accuracy, which is elaborated in Section 3.2. The loss function improves
detection performance without extra calculation during inference process.
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3.1. Feature-Enhanced Module

The detection of small objects in remote sensing images mainly faces two challenges:
(1) complicated scenes which contain too many false alarms that interfere with small object
detection; and (2) objects are small in scale and weak in characteristics, which makes it
tough to capture the practical features. In response to the above problems, we propose a
feature enhancement module (FEM), which is comprised the feature aggregation structure
(FAS) and the attention generation structure (AGS). This module extracts multiscale features
to aggregate contextual information in images and enhances the perception ability of valid
features for small-scale objects through the attention mechanism. Through FEM, the
feature aggregation and enhancement of the high-resolution feature map, extracted by the
backbone extraction network, can effectively improve the detection performance for small
objects. The main structure of the feature aggregation enhancement module is shown in
Figure 2.

Due to the complexity of remote sensing images, false alarms with similar characteris-
tics to target are prone to appear, largely affecting the detection performance. False alarms
have the same characteristics as the target, which is challenging to identify by merely their
characteristics. Therefore, it is necessary to introduce global context information and use the
semantic information of the scene to suppress false alarms. The ordinary convolution has a
fixed receptive field and can only perform feature extraction on a local area with a fixed
size. In the feature aggregation structure (FAS), we utilized several dilated convolutions
in parallel to gather the multiscale information in the feature map inspired by the ASPP
block [33]. The gathered output can be less affected by the complex scenes due to the
aggregation of valid semantic information.

Compared to ordinary convolution, dilated convolution gives access to the receptive
field of different scales by adjusting the dilation rate. Here, we denote a dilated convolution
with the dilation rate of m and the size of a kernel n × n as dconvm

n×n. For the input feature
map Fin ∈ Rc×h×w, h and w represent the length and width of the feature map, respectively.
c is the number of channels. The feature extraction result under a specific receptive field is
obtained with the same dimension as the input feature map:

Fm
n×n = dconvm

n×n(Fin) (1)
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We set the dilation rate of 6, 12, and 18 and made the dilated convolution operate
on the input feature map to get the aggregated features at different scales. In addition, a
1 × 1 convolution was used to keep the feature representation with the exact resolution as
the input feature map. Then, concatenation operator and 1 × 1 convolution were applied
to get the final output. The calculation process is shown below, where Fcat is the aggregated
result of the multiscale information. Here, 1 × 1 convolution helps to make the output of
the feature map channels the same as the channels of the input map.

Fcat = conv1×1

[
dconv6

3×3(Fin), dconv12
3×3(Fin), dconv18

3×3(Fin), conv1×1(Fin)
]

(2)

The extracted multiscale features in different channels make distinct contributions to
detecting small objects. Therefore, we added the channel attention mechanism to assign
different weights to each channel based on the significance after feature fusion. The channel
attention mechanism automatically obtained the importance of each channel through
learning, thus strengthening the edge details and semantic information. Inspired by the SE
block [34], we obtained the global information of each channel through the spatial pooling
operator, yielding a 1 × 1 × C channel feature vector. The k-th channel of the feature vector
vc is formulated as:

vk
c =

1
h× w

h

∑
i=1

w

∑
j=1

Fk
cat(i, j) (3)

where Fk
cat(i, j) represents the value of Fcat in the i-th row, the j-th column, and the k-th channel.

After that, we used the bottleneck layer composed of two fully connected layers. The
dimension of the feature vector was first reduced and then restored to the original one. The
bottleneck layer can better adapt to the complex correlation between channels and reduce
the amount of calculation. The sigmoid function processes the feature vector to obtain the
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normalized weight of each channel. Finally, the feature map in each channel was multiplied
by the weight factor to obtain the rescaled result. The final output is written as:

FFAS = Fcat · Sigmoid(FC(ReLU(FC(vc)))) (4)

where FC represents the fully connected layer, and ReLU and Sigmoid are the nonlinear
activation function.

Due to the limited geometric scale, small objects lack texture details. At the same
time, the positioning accuracy requirement for small objects is higher than that for large
objects. It means that a slight deviation of the center position may lead to inaccurate
bounding box regression. Therefore, after using the feature aggregation structure (FAS) to
obtain feature maps integrated with the multiscale information, we proposed an attention
generation structure (AGS) based on the coordinate attention mechanism. By embedding
the coordinate position, this structure strengthened the effective features of the small objects
to improve the localization and perception ability.

The attention mechanism helps the network improve the perception of specific detailed
features and semantic information by applying different significance to channels and
regions. Inspired by the CA [35] block, the AGM consists of spatial information encoding
and decoding procedures. The coordinate embedding contributes to mining the spatial
dimension information beneficial to localizing small objects.

First, AGS embeds spatial information into the channel relationship through a pair of
pooling operators along the dimensions x and y, respectively. This pooling can preserve the
coordination information while obtaining channel description in comparison with global
pooling. Due to the embedding of coordinate position, the encoded feature map can capture
the spatial information of the interested region, which helps to satisfy the dependency of
position information for small object detection. For the feature map Fcat ∈ Rc×h×w from
the FAS, the pooled vector vx ∈ Rc×h×1 and vy ∈ Rc×1×w, along a single spatial dimension,
can be formulated below:

vk
x(i) =

1
w

w

∑
j=1

Fk
cat(i, j) (5)

vk
y(j) =

1
h

h

∑
i=1

Fk
cat(i, j) (6)

where vk
x(i) is the pooled result along the vertical direction in k-th channel and i-th position,

and vk
y(j) is the pooled result along the horizontal direction in k-th channel and j-th position.

For the pooled vectors calculated from Equations (5) and (6), we applied the channel
concatenation to obtain the aggregated vector vx,y ∈ Rc×1×(h+w). In addition, 1 × 1
convolution was utilized to achieve the reduction in channel dimension. This channel
compression process facilitates the representation of channel correlations while reducing
the number of parameters. The final encoded result vencode ∈ Rc/r×1×(h+w) is expressed as:

vencode = Sigmoid
(
conv1×1

(
vx,y

))
(7)

where conv1×1 denotes the 1 × 1 convolutional transformation.
After acquiring the feature vector vencode which encoded the spatial information, the

next step was the spatial information decoding and applying the decoded attention weights
to the input feature map. The encoded vector vencode was split along vertical and horizontal
dimensions to get the single direction encoded vectors v′x ∈ Rc/r×1×h and v′y ∈ Rc/r×1×w:

v′x, v′y = split(vencode) (8)

where split(·) represents the dimension splitting operator.
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For the split vectors, 1 × 1 convolutional transformation was used to restore the
influence of channel reduction, yielding the same channel dimension as the input feature
map. The decoded attention weights along different spatial directions can be written as:

wx = Sigmoid
(
conv1×1

(
v′x
))

(9)

wy = Sigmoid
(
conv1×1

(
v′y
))

(10)

where wx and wy are a pair of attention weights embedded in the vertical and horizontal
spatial information, respectively. By applying the decoded attention weights, the final
output feature map Fout ∈ Rc×h×w can be formulated as:

Fk
AGS(i, j) = wk

x(k, i)× wk
y(k, j)× Fk

FAS(i, j) (11)

3.2. Loss Function

In order to improve the regression accuracy of bounding boxes for small objects,
the original loss of CenterNet was updated with the complete interaction over union
(CIOU) [36], which was finally composed of keypoint heatmap, and interaction over union,
size, and central offset. The whole function Ldet is formulated as:

Ldet = Lheatmap + λsizeLsize + λo f f setLo f f set + λciouLciou (12)

We set (1, 0.1, 1) to
(

λsize, λo f f set, λciou

)
, which are the hyperparameters to adjust the

weight of each part in the loss function.
CenterNet detects objects as points and generates the keypoint heatmap P̂ ∈ [0, 1]W/R×H/R×C,

size prediction Ŝ ∈ RW/R×H/R×2, and central offset Ô ∈ RW/R×H/R×2 before predict-
ing [11], where W, H, and C represent the width, length, and object categorifies, respectively.
R is the downsample stride, and we set it to 4, ensuring sufficiently high-resolution feature
maps for small object detection. The keypoint loss is defined as:

Lheatmap = −1
N ∑

xyc

(
1− P̂xyc

)α log
(

P̂xyc
)

, Pxyc = 1

Lheatmap = −1
N ∑

xyc

(
1− P̂xyc

)β(P̂xyc
)α log

(
1− P̂xyc

)
, otherwise

(13)

where Pxyc is the ground truth heatmap generated by the Gaussian function same as
CenterNet. As only those Pxyc = 1 were viewed as positive samples, it brought about the
imbalance between positive and negative samples, which we used the focal loss to alleviate.
α and β are the hyperparameters in focal loss set to 2 and 4 by default. N is the total number
of key points used for normalization

For the k-th ground truth bounding box denoted as
(

x(k)1 , y(k)1 , x(k)2 , y(k)2

)
, the length

and width is sk =
(

w(k), h(k)
)

=
(

x(k)2 − x(k)1 , y(k)2 − y(k)1

)
, while the central position is

p =
((

x(k)1 + x(k)2

)
/2,
(

y(k)1 + y(k)2

)
/2
)

. The size and offset are both trained with L1 loss,
which are calculated as

Lsize =
1
N

N

∑
k=1

∣∣∣Ŝpk − sk

∣∣∣ (14)

Lo f f set =
1
N ∑

p

∣∣∣Ôp̃ −
( p

R
− p̃

)∣∣∣ (15)

where p̃ = [p/R] represents the integer part of position after downsampling by R times.
The original CenterNet loss function independently optimizes the central position

and target size, which causes poor positioning accuracy for small objects. Therefore, we
introduced the CIOU during the loss function calculation training under the supervision
of overlapping between the prediction bounding box and the ground truth bounding
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box. CIOU considers the distance, overlap degree, and aspect ratio and comprehensively
optimizes the matching degree of the prediction and ground truth bounding boxes. The
CIOU is written as:

Lciou = 1− IOU +
ρ2
(

ppred, pgt

)
c2 + αv (16)

where IOU is the interaction over union between the prediction bounding box and the
ground truth bounding box. ppred and pgt are the center point of prediction and ground
truth, respectively. ρ represents the Euclidean distance operator, and α is the weight factor.
The aspect ratio similarity is formulated as:

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(17)

The addition of the CIOU loss can improve the positioning accuracy of CenterNet for
small objects and improve the convergence efficiency of the network.

4. Experimental Results
4.1. Dim and Vehicle Datasets

We built a dim and small vehicle dataset (DSVD) based on the UNICORN 2008
dataset [37] to evaluate the small object detection performance of the proposed algorithm.
The UNICORN 2008 source dataset is a kind of wide area motion imagery (WAMI) dataset,
which includes 6471 images. Each image has a coverage area of about 5 km × 5 km and an
image size of around 10,000 × 10,000 pixels. Based on UNICORN 2008, the constructed
small object dataset has the following detection difficulties:

• The vehicles with relatively monotonic appearance are small in size, dim in features,
and low in contrast. It is very difficult to obtain a robust characteristic representation
for these objects. The local regions of objects are shown in Figure 3.

• The images cover a wide area and various complex scenes, such as parking lots, roads,
neighborhoods, etc. In addition, there are plenty of suspected objects in scenes prone
to becoming false alarm sources. The complicated scenes are depicted in Figure 4.

Remote Sens. 2022, 14, 5488 10 of 18 
 

 

The UNICORN 2008 source dataset is a kind of wide area motion imagery (WAMI) da-
taset, which includes 6471 images. Each image has a coverage area of about 5 km × 5 km 
and an image size of around 10,000 × 10,000 pixels. Based on UNICORN 2008, the con-
structed small object dataset has the following detection difficulties: 
• The vehicles with relatively monotonic appearance are small in size, dim in features, 

and low in contrast. It is very difficult to obtain a robust characteristic representation 
for these objects. The local regions of objects are shown in Figure 3. 

• The images cover a wide area and various complex scenes, such as parking lots, 
roads, neighborhoods, etc. In addition, there are plenty of suspected objects in scenes 
prone to becoming false alarm sources. The complicated scenes are depicted in Figure 
4. 

 
Figure 3. The vehicles in UNICORN 2008 dataset. 

 
Figure 4. The complicated scenes in UNCIRON 2008 dataset. 

The aforementioned complexity of scenes and weak characteristics of objects make 
detecting vehicles in UNICORN 2008 rather challenging. We split the images in UNI-
CORN 2008 into several blocks of 640 × 640 pixels and selected diverse scenes. For the 
picked images up to 3225, we labeled the vehicles thoroughly using the rectangular 
bounding box. In total, 2257 images were randomly chosen from the whole images for the 

Figure 3. The vehicles in UNICORN 2008 dataset.



Remote Sens. 2022, 14, 5488 10 of 16

Remote Sens. 2022, 14, 5488 10 of 18 
 

 

The UNICORN 2008 source dataset is a kind of wide area motion imagery (WAMI) da-
taset, which includes 6471 images. Each image has a coverage area of about 5 km × 5 km 
and an image size of around 10,000 × 10,000 pixels. Based on UNICORN 2008, the con-
structed small object dataset has the following detection difficulties: 
• The vehicles with relatively monotonic appearance are small in size, dim in features, 

and low in contrast. It is very difficult to obtain a robust characteristic representation 
for these objects. The local regions of objects are shown in Figure 3. 

• The images cover a wide area and various complex scenes, such as parking lots, 
roads, neighborhoods, etc. In addition, there are plenty of suspected objects in scenes 
prone to becoming false alarm sources. The complicated scenes are depicted in Figure 
4. 

 
Figure 3. The vehicles in UNICORN 2008 dataset. 

 
Figure 4. The complicated scenes in UNCIRON 2008 dataset. 

The aforementioned complexity of scenes and weak characteristics of objects make 
detecting vehicles in UNICORN 2008 rather challenging. We split the images in UNI-
CORN 2008 into several blocks of 640 × 640 pixels and selected diverse scenes. For the 
picked images up to 3225, we labeled the vehicles thoroughly using the rectangular 
bounding box. In total, 2257 images were randomly chosen from the whole images for the 

Figure 4. The complicated scenes in UNCIRON 2008 dataset.

The aforementioned complexity of scenes and weak characteristics of objects make
detecting vehicles in UNICORN 2008 rather challenging. We split the images in UNICORN
2008 into several blocks of 640 × 640 pixels and selected diverse scenes. For the picked
images up to 3225, we labeled the vehicles thoroughly using the rectangular bounding box.
In total, 2257 images were randomly chosen from the whole images for the network training,
and the other 968 images were the test data for the network performance evaluation.

4.2. Evaluation Metrics

We applied the precision, recall, F1-score, and AP (average precision) metrics to
evaluate the detection performance of the proposed method. The intersection over union
(IOU) of the detected bounding boxes and ground truth bounding boxes was set to a
threshold of 0.5. Among these metrics, precision and recall can be used to evaluate the
detection of missed and false alarms, which are calculated as follows:

precision =
TP

TP + FP
(18)

recall =
TP

TP + FN
(19)

where TP, FP, and FN represent the true positive, false positive, and false negative.
The F1 score and AP can more comprehensively evaluate the detection method. F1,

the harmonic mean of precision and recall, is written as:

F1 =
2

1
precision + 1

recall
(20)

AP is defined as the area surrounded by the recall–precision curve, which is formulated as:

AP =
∫ 1

0
precision(recall)d(recall) (21)

To evaluate the inference speed of the detection algorithm, we utilized the FPS (frame
per second) metric.

4.3. Implementation Details and Ablation Analysis

The experiments were all conducted in an Inter Xeon® Silver 4210R CPU and NVIDIA
Quadro RTX 4000 GPU with the Pytorch framework. During the training process, the
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input resolution was 512 × 512 pixels, and we obtained a 128 × 128 pixels feature map to
predict. We trained the model with a batch size of four for 140 epochs. An Adam optimizer
was chosen with the learning rate of 8 × 10−5, which was reduced by 10 times at 90 and
120 epochs, respectively.

Figures 5 and 6 show some detection results of our method, which can achieve a good
performance for small and dim objects. As shown in Figure 5, some objects with limited
appearance features are in low contrast, while our method can detect all the objects without
missing alarms. For the complicated scenes with plenty of interference similar to the objects
in Figure 6, our method can also perform well without false alarms.
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Based on the constructed DSVD, we conducted ablation experiments on the proposed
method to evaluate the performance improvement in small object detection. The same
strategy and parameters were applied during the training and evaluation process to ensure
fair comparisons. As shown in Table 1, we used the precision, recall, F1-score, and AP to
evaluate the detection performance and the FPS to compare the detection speed. Clearly, the
proposed method has excellent advantages in terms of the metrics of detection performance
compared with CenterNet and hardly affects inference speed. The addition of the FEM
and the improvement in the loss function increases the AP metric by 4.3% and 2.7%,
with a slight decrease in the FPS metric. Finally, compared with the initial CenterNet,
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FE-CenterNet, in this paper, improves the AP by 7.2%, with almost no additional inference
time added (the FPS is from 17.9 to 16.6). Meanwhile, to visually illustrate the effect of
the FEM, we provide some feature visualization in Figure 7. Before enhancement, there
exists plenty of interference which may be highlighted in the feature map. However, they
are suppressed a lot after the enhancement of the FEM. In addition, the objects with weak
characteristics on the left and right are not clearly shown in the feature map. Through the
feature enhancement, these targets are all highlighted.

Table 1. Ablation experiments for proposed method.

Methods Precision Recall F1 Score AP FPS

CenterNet 79.8% 74.9% 77.3% 70.2% 17.9
CenterNet + FEM 82.7% 78.6% 80.6% 74.5% 16.7

CenterNet + proposed loss function 80.8% 77.0% 78.9% 72.9% 17.9
CenterNet + FEM + proposed loss function 83.5% 80.8% 82.1% 77.4% 16.6
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In order to exhibit the improvement in the detection performance more intuitively, the
detection results with CenterNet and the proposed FE-CenterNet are visualized, as depicted
in Figure 8. Among them, three typical scenes of roads, parking lots, and communities
in the dataset are selected. It can be seen that based on the feature enhancement module
and the improved loss function, FE-CenterNet is less susceptible to the interference of false
alarm sources and has a stronger perception ability for small objects. In the remote sensing
images with complex and changeable scenes, natural landscapes and artificial equipment
with similar characteristics to the target are prone to appear, such as shadow blocks (regions
1, 3, 5, 6, 9, and 10), roofs (region 2), and trees (regions 4 and 7). CenterNet cannot make
good use of the contextual information, which makes it difficult to distinguish objects from
such false alarms. The network proposed in this paper can aggregate the multiscale features
through the feature aggregation structure, effectively reducing the mistake of false alarms
and improving precision. At the same time, the vehicle objects in the remote sensing image
are small in geometric scale and weak in texture and structural characteristics, which is
hard to be fully perceived by the network. As shown in region 8 and region 11, CenterNet
failed to detect the tiny target. At the same time, FE-CenterNet can achieve a more effective
perception of them through the attention generation structure and improve recall.
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4.4. Algorithm Performance Comparison

In order to verify the overall performance of our proposed method, we compared
it with multiple representative detection algorithms based on the same implementation
environment, datasets, and evaluation metrics. Among the selected methods, Cascade-
RCNN [15] is a two-stage detector improved from Faster-RCNN, which generally out-
performs the one-stage and anchor-free detectors with a higher computational complex-
ity. ImYOLOv3 [3] introduces an attention mechanism to the one-stage YOLOv3, which
performs well for remote sensing object detection. YOLOv7 [21] is currently the latest
algorithm with the YOLO architecture, which combines plenty of advanced detection
tricks. FII-CenterNet [23], also based on the anchor-free CenterNet, improves the detection
ability of traffic objects through the foreground region proposal network drawn from the
two-stage network.

The evaluation results are shown in Table 2. Among the methods, the coarse-to-fine
detection pipeline of Cascade-RCNN and the introduction of foreground information in
FII-CenterNet help improve precision but can hardly detect all the objects. The idea of two-
stage also affects the inference speed a lot. While imYOLOv3 improves the perception ability
of small and dim objects by applying the attention mechanism, the recall is comparatively
higher. However, it is prone to interfere with false alarms which are similar to the objects.
The YOLOv7 adopts the anchor-free mechanism and has an obvious advantage in speed.
The combination of the advanced training and inference strategies also makes it outperform
the other comparison algorithms. However, lacking in strategies designed for small objects,
it is less effective than our FE-CenterNet. Our method, based on the multiscale feature
fusion structure and the attention generation structure, ensures the highest precision, recall,
F1, and AP while simultaneously keeping a relatively high detection speed.
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Table 2. Quantitative results of different methods.

Methods Precision Recall F1 Score AP FPS

Cascade-RCNN 81.0% 69.1% 74.6% 75.6% 7.7
imYOLOv3 76.0% 78.7% 77.3% 74.4% 15.8

YOLOv7 78.8% 79.3% 79.1% 76.1% 20.1
FII-CenterNet 77.2% 74.1% 75.7% 74.8% 14.3

FE-CenterNet (ours) 83.5% 80.8% 82.1% 77.4% 16.5

The above conclusions are intuitively reflected by visualizing the detection results in
Figure 9. We display the detection results of imYOLOv3, Cascade-RCNN, FII-CenterNet
and the proposed method to compare. We chose the displayed images from various complex
scenes such as parking lots, communities, and roads. Meanwhile, the occlusion and low
contrast between the objects and scenes caused great difficulty in detection. From region 1 to
region 3 where objects are densely distributed, a large number of objects were missed in the
detection results of Cascade-RCNN and FII-CenterNet, while imYOLOv3 and the proposed
method can detect more objects in such scenes. For objects with occlusion in region 4 and
objects with weak characteristics from region 5 to region 8, the contrast methods can hardly
perceive the objects, which causes plenty of missing detection. However, the proposed
method can achieve the best detection performance for the above complex without missing
and false detection.

Remote Sens. 2022, 14, 5488 15 of 18 
 

 

the multiscale feature fusion structure and the attention generation structure, ensures the 
highest precision, recall, F1, and AP while simultaneously keeping a relatively high de-
tection speed. 

Table 2. Quantitative results of different methods. 

Methods Precision Recall F1 Score AP FPS 
Cascade-RCNN 81.0% 69.1% 74.6% 75.6% 7.7 

imYOLOv3 76.0% 78.7% 77.3% 74.4% 15.8 
YOLOv7 78.8% 79.3% 79.1% 76.1% 20.1 

FII-CenterNet 77.2% 74.1% 75.7% 74.8% 14.3 
FE-CenterNet (ours) 83.5% 80.8% 82.1% 77.4% 16.5 

The above conclusions are intuitively reflected by visualizing the detection results in 
Figure 9. We display the detection results of imYOLOv3, Cascade-RCNN, FII-CenterNet 
and the proposed method to compare. We chose the displayed images from various com-
plex scenes such as parking lots, communities, and roads. Meanwhile, the occlusion and 
low contrast between the objects and scenes caused great difficulty in detection. From 
region 1 to region 3 where objects are densely distributed, a large number of objects were 
missed in the detection results of Cascade-RCNN and FII-CenterNet, while imYOLOv3 
and the proposed method can detect more objects in such scenes. For objects with occlu-
sion in region 4 and objects with weak characteristics from region 5 to region 8, the con-
trast methods can hardly perceive the objects, which causes plenty of missing detection. 
However, the proposed method can achieve the best detection performance for the above 
complex without missing and false detection. 

(a) 

    

(b) 

    

(c) 

    

Remote Sens. 2022, 14, 5488 16 of 18 
 

 

(d) 

    

(e) 

    
Figure 9. Visualization of the detection results for different methods. (a) Input images with ground 
truth, (b) Cascade-RCNN, (c) imYOLOv3, (d)FII-CenterNet, and (e) our method. 

5. Conclusions 
In this paper, we proposed an anchor-free detector named FE-CenterNet aiming at 

small and dim object detection in complex remote sensing scenes. First, we introduced the 
multiscale contextual information to suppress the interference of false alarms similar to 
the objects and integrate a coordinate attention mechanism to improve the perception of 
small objects, thus proposing the FEM. Then, to improve the positioning regression accu-
racy, we proposed a new loss function that combines the original loss function of Center-
Net with CIOU loss. Finally, to verify the detection performance, we constructed the 
DSVD, composed of varied kinds of complex scenes and objects. The experimental results 
show that our method has a better detection performance and achieves a higher inference 
speed than the other typical algorithms, proving its potential for small object detection in 
complex remote sensing scenes. 

Author Contributions: Conceptualization, T.S. and J.G.; methodology, T.S. and J.H.; software, T.S.; 
validation, T.S., P.Z., and G.B.; formal analysis, Y.Z.; investigation, J.G.; writing—original draft 
preparation, T.S. and J.G.; writing—review and editing, J.H.; supervision, X.Z. and W.Z. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China (NSFC) 
(62101160). 

Data Availability Statement: The dataset established is available upon requests from the corre-
sponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. 

ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. 
2. Zhang, G.; Lu, S.; Zhang, W. CAD-Net: A context-aware detection network for objects in remote sensing imagery. IEEE Trans. 

Geosci. Remote Sens. 2019, 57, 10015–10024. 
3. Chen, L.; Shi, W.; Deng, D. Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical 

remote sensing images. Remote Sens. 2021, 13, 660. 
4. Yan, P.; Liu, X.; Wang, F.; Yue, C.; Wang, X. LOVD: Land Vehicle Detection in Complex Scenes of Optical Remote Sensing 

Image. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5615113. 

Figure 9. Visualization of the detection results for different methods. (a) Input images with ground
truth, (b) Cascade-RCNN, (c) imYOLOv3, (d)FII-CenterNet, and (e) our method.



Remote Sens. 2022, 14, 5488 15 of 16

5. Conclusions

In this paper, we proposed an anchor-free detector named FE-CenterNet aiming at
small and dim object detection in complex remote sensing scenes. First, we introduced the
multiscale contextual information to suppress the interference of false alarms similar to the
objects and integrate a coordinate attention mechanism to improve the perception of small
objects, thus proposing the FEM. Then, to improve the positioning regression accuracy,
we proposed a new loss function that combines the original loss function of CenterNet
with CIOU loss. Finally, to verify the detection performance, we constructed the DSVD,
composed of varied kinds of complex scenes and objects. The experimental results show
that our method has a better detection performance and achieves a higher inference speed
than the other typical algorithms, proving its potential for small object detection in complex
remote sensing scenes.
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